

Studies on remoTES-based Cryogenic Calorimeters for the COSINUS Experiment

IMPRS Recruitment Workshop, 12.07.2023 Speaker: Kumrie Shera

Cryogenic Observatory for SIgnals seen in Next Underground Searches (COSINUS)

- Direct dark matter search operating Nal as a cryogenic calorimeter
- Primary objective: a model-independent cross-check of the modulation signal observed by the DAMA/LIBRA experiment https://iopscience.iop.org/article/10.1088/1475-7516/2018/05/074/pdf

COSINUS cryogenic detector module

Phonon signal + Light signal: dual channel readout technique

- \rightarrow particle identification on an eventby-event basis
 - → background discrimination → clarification of the modulation signal observed by DAMA/LIBRA

ТП

Transition Edge Sensor (TES)

Phonon channel + Light channel: readout with Transition Edge Sensors

Transition Edge Sensors

- Sensors made of superconducting tungsten thin film (T_c = 15 mK)
- Operated in the transition between the normal conducting and the superconducting phase
- Small increase in the temperature O(μK) leads to a change in the resistance O(mΩ)

Superconducting transition

٦Π

TES

TES and Nal

Nal:

- hygroscopic
- soft
- low melting point (662 °C)

ΤП

TES and Nal

Nal:

- hygroscopic
- soft
- low melting point (662 °C)

ТΠ

TES and Nal

Nal:

- hygroscopic
- soft
- low melting point (662 °C)

remoTES

• TES deposited on a separate wafer arXiv:1503.01200

Motivation for my work

- remoTES readout design crucial for COSINUS to achieve a threshold of 1 keV
- remoTES is a composite design
- goal: study systematically the impact of the different components on the overall performance

Motivation for my work

- remoTES readout design crucial for COSINUS to achieve a threshold of 1 keV
- remoTES is a composite design
- goal: study systematically the impact of the different components on the overall performance

Systematic studies on silicon(Si) remoTES cryogenic calorimeters

Overview

Overview of the different detector setups				
Run	Detector Au-pad thickness Bond		Bonding technique	Au-bridge/Au-island
Run233	Ψ	1 μm (glued)	Wedge-bond	Au-bridge
	Φ	1 μm (glued)	Wedge-bond	Au-bridge
Run595	Electra	200 nm (sputtered)	Ball-bond	Au-bridge
	Olympia	8 μm (glued)	Ball-bond	Au-bridge
Run596	Electra'	200 nm (sputtered)	Second ball-bond	Au-bridge
	Olympia'	8 μm (glued)	Ball-bond	Au-island

→ CRESST R&D facility at MPP

Overview

Overview of the different detector setups				
Run	Detector	Au-pad thickness	Bonding technique	Au-bridge/Au-island
Dun 222	Ψ	1 μm (glued)	Wedge-bond	Au-bridge
Runz33	Φ	1 μm (glued)	Wedge-bond	Au-bridge
Run595	Electra	200 nm (sputtered)	Ball-bond	Au-bridge
	Olympia	8 μm (glued)	Ball-bond	Au-bridge
Run596	Electra'	200 nm (sputtered)	Second ball-bond	Au-bridge
	Olympia'	8 μm (glued)	Ball-bond	Au-island

CRESST R&D facility at MPP

Wedge-bond on 1 μm thick Au-foil

- The wedge bonding foot breaks the Aupad
 - \rightarrow limitation of the surface area of the Au-pad available for phonon collection
- Wedge bond might be a bottleneck for signal transmission
- Microfractures are produced in the Nal crystal below the bond foot

Picture was taken in cooperation with **Miriam Modjesch (MPP)**

ТΠ

Ball-bond

Pro:

- Less bonding force → less destructive for Au-pad and crystal (important for Nal)
- Might enable better signal transmission

Ball-bond on 1 μm thick glued Au-foil

Pro:

- Less bonding force → less destructive for Au-pad and crystal (important for Nal)
- Might enable better signal transmission

Ball-bond on 200 nm thick sputtered Au-film

Pro:

- Less bonding force → less destructive for Au-pad and crystal (important for Nal)
- Might enable better signal transmission

Ball-bonds were performed by Carina Schlammer (MPP)

Ball-bond on 8 μm thick glued Au-foil

Pro:

- Less bonding force → less destructive for Au-pad and crystal (important for Nal)
- Might enable better signal transmission

Ball-bonds were performed by Carina Schlammer (MPP)

Performance comparison

Detector	Au-pad	Baseline resolution (eV)		
Ψ	1 μm	280±9	Wodgo bond	
Φ	1 μm	440±13	weuge-bond	
Electra	200 nm	133±3		
Olympia	8 µm	89±2	Ball-bond	
Electra'	200 nm	167±8		
Olympia'	8 µm	1159±134		

Olympia: best performance \rightarrow heat capacity not the limiting factor

Detector	Olympia	
Absorber	Si (20×10×5) mm³	
Au-pad	8 μm thickness	
Au-wire	25 µm	
Bonding technique	Ball-bond	
TES	W-TES on Al ₂ O ₃	
Calibration sources	⁵⁵ Fe	

Detector	Olympia	
Absorber	Si (20×10×5) mm³	
Au-pad	8 µm thickness	
Au-wire	25 μm	
Bonding technique	Ball-bond	
TES	W-TES on Al ₂ O ₃	
Calibration sources	⁵⁵ Fe	

12/07/2023

Time (ms)

Modification: removal of the Au-bridge

ШП

(ms)

Rise Time

ТΠ

Detector Olympia'

Modification: removal of the Au-bridge

Detector	Baseline resolution (eV)	
Ψ	280±9	
Ф	440±13	
Electra	133±3	
Olympia	89±2	
Electra'	167±8	
Olympia'	1159±134	

Modification: removal of the Au-bridge

ТΠ

Conclusion

The remoTES offers possibilities for NaI/COSINUS but also other absorbers. In these studies it was found that:

- Wedge bonding tears the thin Au-foil
- Ball bonding improves the performance of the detector
- Heat capacity is not the limiting factor for the present detector design → bestachieved performance by Olympia
- Au-island leads to faster-decaying pulses

Conclusion

Outlook

The remoTES offers possibilities for NaI/COSINUS but also other absorbers. In these studies it was found that:

- Wedge bonding tears the thin Au-foil
- Ball bonding improves the performance of the detector
- Heat capacity is not the limiting factor for the present detector design → bestachieved performance by Olympia
- Au-island leads to faster-decaying pulses

New COSINUS bonding machine!

Conclusion

The remoTES offers possibilities for NaI/COSINUS but also other absorbers. In these studies it was found that:

- Wedge bonding tears thin Au-foil
- Ball bonding improves the performance of the detector
- Heat capacity is not the limiting factor for the present detector design → bestachieved performance by Olympia
- Au-island leads to faster-decaying pulses

Outlook

Optimization studies applied to Nal!

In collaboration with Rainer Götz, Aliaksandr Bandarenka TUM, TUM School of Natural Sciences, Department of Physics, Physics of Energy Conversion and Storage

Conclusion

Outlook

Optimization studies applied to Nal!

In collaboration with Rainer Götz, Aliaksandr Bandarenka TUM, TUM School of Natural Sciences, Department of Physics, Physics of Energy Conversion and Storage

Thank you!

Other Nal experiments

ANAIS-112

- Room-temperature scintillator experiment
- Three years of data taking → exposure 313.95 kg × y
- No modulation observed
- Incompatible with DAMA/LIBRA results

COSINE-100

• Room-temperature scintillator experiment

- Three years of data taking →exposure 173 kg × y
- Results consistent with both the DAMAobserved modulation and the case of no observed modulation

Cryogenic detectors

- Absorber weakly coupled to a thermal bath + temperature sensor
- Particle interaction produces atomic lattice vibration (phonons)
- The lattice vibrations cause a temperature increase in the absorber
- $\Delta T = \frac{\Delta E}{C}$
- Few keV energy deposition would cause a temperature increase of μK

Read out circuit

- The TES connected in parallel with two shunt resistances
- A energy deposition induces a change in the resistance of the TES→ change in the distribution of the current → change in the magnetic field induced by the input coil
- The change in the magnetic field is magnified and measured by the SQUID
- Output: pulse in voltage versus time

Light Yield

Pulse shape analysis

The temperature increase in the thermometer can be described as:

$$\Delta T_e(t) = \Theta(t) \left[A_n \left(e^{-\frac{t}{\tau_n}} - e^{-\frac{t}{\tau_{in}}} \right) + A_t \left(e^{-\frac{t}{\tau_t}} - e^{-\frac{t}{\tau_n}} \right) \right]$$

non-thermal component thermal component

- τ_n : lifetime of non-thermal phonons

- τ_{in} : intrinsic thermal relaxation time of the thermometer
- τ_t : relaxation time of the absorber

- $\tau_{in}/\tau_n \ll 1 \rightarrow Bolometric Mode:$
 - τ_{in} : rise time of non-thermal
 - τ_n: decay time of nonthermal and rise time of thermal component
 - τ_t: decay time of the thermal component
- $\tau_n / \tau_{in} \ll 1 \rightarrow Calorimetric Mode:$
 - τ_{in} : decay time of non-thermal
 - *τ_n*: rise time of non-thermal
 and thermal component
 - τ_t : decay time of the thermal component

Pulse shape analysis

Detector	Olympia	
Event class	Absorber	
A_n	1.11	
A_t	0.73	
τ_{n}	6.55	
$ au_{in}$	0.51	
τ _t	79.59	

 For both detectors it holds that τ_{in}/τ_n ≪1
 → operated in the bolometric mode

Heat capacities

Detector	Electra (µJ/K)	Olympia (µJ/K)
Si crystal	5.10 · 10 ⁻⁶	5.10 · 10 ⁻⁶
Au-pad	7.98 · 10 ⁻⁶	4.06 · 10 ⁻⁵
Au-wire	1.44 · 10 ⁻⁶	1.44 · 10 ⁻⁶
Au-bond foot	8.31 · 10 ⁻⁸	8.31 · 10 ⁻⁸
Au-bridge/Au-island	1.27 · 10 ⁻⁶	1.27 · 10 ⁻⁶
TES	9.78 · 10 ⁻⁸	9.78 · 10 ⁻⁸
Total	1.85 · 10 ⁻⁵	4.85 · 10 ⁻⁵