The Emergence Proposal with Multiple Moduli Fields

Antonia Paraskevopoulou, TMP Master Student

Supervised by PD Dr. R. Blumenhagen at the Max Planck Institute for Physics. Based on 2305.10490 (R. Blumenhagen, A. Gligovic, AP)

July 12th, 2023

The Swampland Programme

Consistent set of conjectures motivated mainly (but not exclusively) by string theory (see e.g. Palti '19).

- No Global Symmetries Conjecture
- Distance Conjecture [Ooguri, Vafa '06]
- Weak Gravity Conjecture
- (A)dS Distance Conjecture
- Gravitino Conjecture
- The Emergence Proposal [Palti '19]
- The Emergent String Conjecture [Lee, Lerche, Weigand '18]

The Emergence Proposal

Emergence Proposal: In a theory of Quantum Gravity all light particles in a perturbative regime have NO kinetic terms in the UV. These terms appear as an IR effect due to loop corrections induced by towers of light states (strong). Alternatively, the 1-loop kinetic terms are analogous to tree level ones (weak). [e.g. Castellano, Herraez, Ibañez '22]

Comparison with usual renormalization procedure in QFT:

Integrating out light states with $m_{\vec{n}}(\phi^a) = m_{\vec{n}}(\phi^a_0 + \delta \phi^a)$, where ϕ is a scalar (modulus) will produce a correction to the propagator matrix

$$D_{ab}(p^2) = \frac{1}{p^2 - \prod_{ab}(p^2)}, \quad \prod_{ab}(p^2) = \sum_{\vec{n}} \prod_{ab,\vec{n}}(p^2).$$
(1)

1-loop metrics arise similarly to the usual wavefunction renormalization

$$G_{ab}^{(1)} = \sum_{\vec{n}} \frac{\partial \Pi_{ab,\vec{n}} (p^2)}{\partial p^2} \Big|_{p^2 = 0}.$$
 (2)

A. Paraskevopoulou (LMU, MPP)

IMPRS Recruitment Workshop

3/8

The Species Scale

The cut-off of our theory is the species scale. For a 4D theory, that is [Dvali et al. '07]

$$\tilde{\Lambda} \sim \frac{M_{\rm pl}}{N_{\rm sp}^{1/2}},\tag{3}$$

where
$$N_{
m sp} = egin{cases} \# {
m particles with } m < ilde{\Lambda} & ({
m QFT picture}) \ {
m S of minimum black holes} & ({
m BH picture}) \end{cases}$$

Inconsistencies between the two derivations of $\tilde{\Lambda}$?

- Kaluza Klein towers ✔
- String tower:

QFT picture	BH picture
$ ilde{\Lambda}_{ m QFT} \sim \textit{M}_{s}\log(\frac{\textit{M}_{ m pl}}{\textit{M}_{s}})$	${ ilde\Lambda_{ m BH}}\sim {\it M_s}$
$N_{ m sp} = rac{M_{ m pl}^2}{M_s^2} rac{1}{\log^2 rac{M_{ m pl}}{M_s}}$	$N_{ m sp} = \left(rac{M_{ m pl}}{M_s} ight)^2$

Setup

Type IIA superstring compactified on a $\mathbb{Z}_2 \times \mathbb{Z}'_2$ orbifold of a 6-torus $T^6 = T^2 \times T^2 \times T^2$. The mass of the **lightest states** in the **perturbative limit** ($\sigma \gg 1$) is

$$M^{2} = \frac{M_{\rm pl}^{2}}{\sigma^{2}} \left\{ \sum_{l=1}^{3} \left[\left(\frac{m_{1}^{\prime} - v_{l} m_{2}^{\prime} + b_{l} n_{1}^{\prime} + b_{l} v_{l} n_{2}^{\prime}}{u_{l}^{\frac{1}{2}}} t_{l}^{\frac{1}{2}} \right)^{2} + \left(\frac{(m_{2}^{\prime} - b_{l} n_{2}^{\prime}) u_{l}^{\frac{1}{2}}}{t_{l}^{\frac{1}{2}}} \right)^{2} + \left(\frac{(n_{1}^{\prime} + v_{l} n_{2}^{\prime}) t_{l}^{\frac{1}{2}}}{u_{l}^{\frac{1}{2}}} \right)^{2} + \left(n_{2}^{\prime} u_{l}^{\frac{1}{2}} t_{l}^{\frac{1}{2}} \right)^{2} \right] + \kappa^{2} N \right\},$$

$$(4)$$

where $m'_{1,2}$ are KK modes, $n'_{1,2}$ are winding modes and N is the oscillator level.

Moduli content:

- 4D dilaton σ (N = 2 hypermultiplet)
- complex structure moduli v_l , u_l (N = 2 hypermultiplets)
- Kähler moduli t_l , b_l (N = 2 vector multiplets)

Including the superpartner of σ we have 14 real moduli in total!

The hierarchy we get is

Inclusion of only KK (and winding) modes is not enough. We need to include the **exponentially degenerate** string states.

The calculation is possible leading to

$$\frac{\tilde{\Lambda}}{M_s} \sim \frac{2\kappa}{\beta} \log\left(\sigma\right) \,, \tag{5}$$

while for the metrics

$$G_{\mathcal{M}_{a}\mathcal{M}_{b}}^{(1)} \simeq \frac{M_{\mathrm{pl}}^{2}}{2\mathcal{M}_{a}^{2}} \frac{1}{\log^{2}(\sigma)} \,\delta_{\mathcal{M}_{a}\mathcal{M}_{b}}, \quad \text{but} \quad G_{\sigma\sigma}^{(1)} \simeq \frac{M_{\mathrm{pl}}^{2}}{\sigma^{2}} \quad \text{and} \quad G_{\rho\rho}^{(1)} = 0.$$
 (6)

- The results can be made compatible with SUSY. (See e.g. Kiritsis, Kounnas '95)
- Our considerations were extended to the calculation of corrections to the gauge kinetic functions (again with multiplicative logarithm factors).
- The same pattern can be extended to the large t_1 and large u_1 limits, where the same pattern of **12 particle** and **1 tensionless string** contributions is exhibited. Bound states?

- Could the log's be completely unphysical?
- Where would the Emergence Proposal arise in a stringy calculation?

- The results can be made compatible with SUSY. (See e.g. Kiritsis, Kounnas '95)
- Our considerations were extended to the calculation of corrections to the gauge kinetic functions (again with multiplicative logarithm factors).
- The same pattern can be extended to the large t_1 and large u_1 limits, where the same pattern of **12 particle** and **1 tensionless string** contributions is exhibited. Bound states?

- Could the log's be completely unphysical?
- Where would the Emergence Proposal arise in a stringy calculation?

Thank you for your attention!