The role of the Higgs radial mode as a UV completion of the non linear sigma model.

Master thesis project
Giulio Marino (Advisor: Prof. Roberto Contino)
Academic Year 2022/2023

Table of Contents

1 Introduction and motivations.

- Introduction and motivations.
$>$ Linear and non linear sigma model: More general case
- Conclusions.

Introduction

NGB EFT Lagrangian: Weakly or strongly coupled?

Framework:

- Let's consider an effective field theory of only NGB: $\mathcal{G} \rightarrow \mathcal{H}$ (CCWZ Coset Construction);

Introduction

NGB EFT Lagrangian: Weakly or strongly coupled?

Framework:

- Let's consider an effective field theory of only NGB: $\mathcal{G} \rightarrow \mathcal{H}$ (CCWZ Coset Construction);
- Looking at the scattering amplitudes we know that the theory becomes strongly interacting above a threshold energy scale Λ^{*};

Introduction

NGB EFT Lagrangian: Weakly or strongly coupled?

Framework:

- Let's consider an effective field theory of only NGB: $\mathcal{G} \rightarrow \mathcal{H}$ (CCWZ Coset Construction);
- Looking at the scattering amplitudes we know that the theory becomes strongly interacting above a threshold energy scale Λ^{*};
- How can we make the theory weakly coupled?

Introduction

NGB EFT Lagrangian: Weakly or strongly coupled?

Framework:

- Let's consider an effective field theory of only NGB: $\mathcal{G} \rightarrow \mathcal{H}$ (CCWZ Coset Construction);
- Looking at the scattering amplitudes we know that the theory becomes strongly interacting above a threshold energy scale Λ^{*};
- How can we make the theory weakly coupled?
- Answer: Adding by hand new degrees of freedom: NLEM \rightarrow L $\Sigma \mathrm{M}$;

Preliminary concepts

Coset construction!

- Let's take for example the $N_{f}=2$ QCD-like theory with SSB $S U(2)_{L} \times S U(2)_{R} / S U(2)_{V}:$

$$
\begin{gathered}
\Sigma=\exp \left(\frac{2 i}{f} \pi^{a} X^{a}\right), \quad \Sigma \xrightarrow{\mathcal{G}} L \Sigma R^{\dagger}, \quad \Sigma \Sigma^{\dagger}=\mathbb{I}, \quad \operatorname{det} \Sigma=1 \\
\mathcal{L}=\frac{f^{2}}{4}\left(\partial_{\mu} \Sigma^{\dagger} \partial^{\mu} \Sigma\right) \Rightarrow \quad \mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \pi^{a}\right)^{2}+\frac{1}{f^{2}} \pi^{a} \partial_{\mu} \pi^{b} \pi^{c} \partial^{\mu} \pi^{d} f^{a b \gamma} f^{c d \gamma}+\ldots \\
\mathcal{A}(a b \rightarrow c d)=i\left(\delta^{a b} \delta^{c d} \frac{s}{f^{2}}+\delta^{a c} \delta^{b d} \frac{t}{f^{2}}+\delta^{a d} \delta^{b c} \frac{u}{f^{2}}\right) .
\end{gathered}
$$

Preliminary concepts

Coset construction!

- Let's take for example the $N_{f}=2$ QCD-like theory with SSB $S U(2)_{L} \times S U(2)_{R} / S U(2)_{V}:$

$$
\begin{gathered}
\Sigma=\exp \left(\frac{2 i}{f} \pi^{a} X^{a}\right), \quad \Sigma \xrightarrow{\mathcal{G}} L \Sigma R^{\dagger}, \quad \Sigma \Sigma^{\dagger}=\mathbb{I}, \quad \operatorname{det} \Sigma=1 \\
\mathcal{L}=\frac{f^{2}}{4}\left(\partial_{\mu} \Sigma^{\dagger} \partial^{\mu} \Sigma\right) \Rightarrow \quad \mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \pi^{a}\right)^{2}+\frac{1}{f^{2}} \pi^{a} \partial_{\mu} \pi^{b} \pi^{c} \partial^{\mu} \pi^{d} f^{a b \gamma} f^{c d \gamma}+\ldots \\
\mathcal{A}(a b \rightarrow c d)=i\left(\delta^{a b} \delta^{c d} \frac{s}{f^{2}}+\delta^{a c} \delta^{b d} \frac{t}{f^{2}}+\delta^{a d} \delta^{b c} \frac{u}{f^{2}}\right) .
\end{gathered}
$$

- $\exists \Lambda^{*} \sim 4 \pi f$ above which the EFT approach fails.

Preliminary concepts

Coset construction!

- Let's take for example the $N_{f}=2$ QCD-like theory with SSB $S U(2)_{L} \times S U(2)_{R} / S U(2)_{V}:$

$$
\begin{gathered}
\Sigma=\exp \left(\frac{2 i}{f} \pi^{a} X^{a}\right), \quad \Sigma \xrightarrow{\mathcal{G}} L \Sigma R^{\dagger}, \quad \Sigma \Sigma^{\dagger}=\mathbb{I}, \quad \operatorname{det} \Sigma=1 \\
\mathcal{L}=\frac{f^{2}}{4}\left(\partial_{\mu} \Sigma^{\dagger} \partial^{\mu} \Sigma\right) \Rightarrow \quad \mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \pi^{a}\right)^{2}+\frac{1}{f^{2}} \pi^{a} \partial_{\mu} \pi^{b} \pi^{c} \partial^{\mu} \pi^{d} f^{a b \gamma} f^{c d \gamma}+\ldots \\
\mathcal{A}(a b \rightarrow c d)=i\left(\delta^{a b} \delta^{c d} \frac{s}{f^{2}}+\delta^{a c} \delta^{b d} \frac{t}{f^{2}}+\delta^{a d} \delta^{b c} \frac{u}{f^{2}}\right) .
\end{gathered}
$$

- $\exists \Lambda^{*} \sim 4 \pi f$ above which the EFT approach fails.
- Σ has not enough d.o.f. to provide a linear irreducible representation of \mathcal{G}.

Preliminary concepts

Linear Sigma Model

- Linear Sigma Model: We complete the theory introducing by hand new extra radial modes (with the right coupling):

Preliminary concepts

Linear Sigma Model

- Linear Sigma Model: We complete the theory introducing by hand new extra radial modes (with the right coupling):
- In the $N_{f}=2$ QCD-like case the pseudo-reality condition

$$
\operatorname{Mat}(n, \mathbb{C}) \ni \underbrace{\mathscr{H}}_{(\square, \bar{\square})_{\mathcal{G}}}=\Sigma(x) \cdot\left(\frac{f+h(x)}{\sqrt{2}}\right), \quad \mathscr{H}^{*}=\left(i \sigma_{2}\right) \mathscr{H}\left(-i \sigma_{2}\right)
$$

allow us to construct a linear irreps of \mathcal{G} just adding a singlet extra radial mode, "curing" the energy growing behaviour of the scattering amplitudes and making the theory weakly coupled at high energies.

Preliminary concepts

Linear Sigma Model

- Linear Sigma Model: We complete the theory introducing by hand new extra radial modes (with the right coupling):
- In the $N_{f}=2$ QCD-like case the pseudo-reality condition

$$
\operatorname{Mat}(n, \mathbb{C}) \ni \underbrace{\mathscr{H}}_{(\square, \overline{\boxed{ }})_{\mathcal{G}}}=\Sigma(x) \cdot\left(\frac{f+h(x)}{\sqrt{2}}\right), \quad \mathscr{H}^{*}=\left(i \sigma_{2}\right) \mathscr{H}\left(-i \sigma_{2}\right)
$$

allow us to construct a linear irreps of \mathcal{G} just adding a singlet extra radial mode, "curing" the energy growing behaviour of the scattering amplitudes and making the theory weakly coupled at high energies.

- Notice the link:

Linear irreps of $\mathcal{G} \Longleftrightarrow$ Renormalizability \Longleftrightarrow Weakly coupled theory.

Examples

Standard Model and two flavours QCD-like theory.

- Two possible scenarios:

Examples

Standard Model and two flavours QCD-like theory.

- Two possible scenarios:
- Non Linear Sigma Model just as an EFT (ex: QCD, no other resonances intervene to restore perturbative unitarity) \Rightarrow The theory remain strongly coupled.

Examples

Standard Model and two flavours QCD-like theory.

$$
\mathcal{A}=\mathcal{A}_{\pi}+\mathcal{A}_{h} \sim \text { const. } \Rightarrow \text { perfect cancellation. }
$$

- Two possible scenarios:
- Non Linear Sigma Model just as an EFT (ex: QCD, no other resonances intervene to restore perturbative unitarity) \Rightarrow The theory remain strongly coupled.
- $S O(4) / S O(3)$ custodial symmetry for the EW sector in the SM, the Higgs boson radial mode unitarize the SM amplitudes as the WW-scattering \Rightarrow The theory became weakly coupled.

Motivations

What about the more general case?

- What happens in the $N_{f}>2$ case?

Motivations

What about the more general case?

- What happens in the $N_{f}>2$ case
- In this case the linear constraint given by the pseudo-reality condition cannot be used anymore and \mathscr{H} describes $2 N_{\mathbb{R}}^{2}$ degrees of freedom.

Motivations

What about the more general case?

- What happens in the $N_{f}>2$ case?
- In this case the linear constraint given by the pseudo-reality condition cannot be used anymore and \mathscr{H} describes $2 N_{\mathbb{R}}^{2}$ degrees of freedom.
- It seems that the smallest linear representation contains more than one radial mode, is this true? "The answer is not trivial".

Motivations

What about the more general case?

- What happens in the $N_{f}>2$ case?
- In this case the linear constraint given by the pseudo-reality condition cannot be used anymore and \mathscr{H} describes $2 N_{\mathbb{R}}^{2}$ degrees of freedom.
- It seems that the smallest linear representation contains more than one radial mode, is this true? "The answer is not trivial".
- Goal:

Motivations

What about the more general case?

- What happens in the $N_{f}>2$ case?
- In this case the linear constraint given by the pseudo-reality condition cannot be used anymore and \mathscr{H} describes $2 N_{\mathbb{R}}^{2}$ degrees of freedom.
- It seems that the smallest linear representation contains more than one radial mode, is this true? "The answer is not trivial".
- Goal:
- Determine the minimal number of degrees of freedom needed for a linear representation of \mathcal{G}.

Motivations

What about the more general case?

- What happens in the $N_{f}>2$ case?
- In this case the linear constraint given by the pseudo-reality condition cannot be used anymore and \mathscr{H} describes $2 N_{\mathbb{R}}^{2}$ degrees of freedom.
- It seems that the smallest linear representation contains more than one radial mode, is this true? "The answer is not trivial".
- Goal:
- Determine the minimal number of degrees of freedom needed for a linear representation of \mathcal{G}.
- Finding the minimal number of degrees of freedom necessary to unitarize the theory.

Table of Contents

2 Linear and non linear sigma model: More general case
$>$ Introduction and motivations.
$>$ Linear and non linear sigma model: More general case

Conclusions.

Non linear sigma model and coset Construction

2 Linear and non linear sigma model: More general case

- We start studying the following pattern

$$
\mathcal{G}=S U(N)_{L} \times S U(N)_{R} \times U(1) \rightarrow \mathcal{H}=S U(N)_{V}
$$

Non linear sigma model and coset Construction

2 Linear and non linear sigma model: More general case

- We start studying the following pattern

$$
\mathcal{G}=S U(N)_{L} \times S U(N)_{R} \times U(1) \rightarrow \mathcal{H}=S U(N)_{V}
$$

- $\# N G B=\left(N^{2}-1\right)+1$

Non linear sigma model and coset Construction

2 Linear and non linear sigma model: More general case

- We start studying the following pattern

$$
\mathcal{G}=S U(N)_{L} \times S U(N)_{R} \times U(1) \rightarrow \mathcal{H}=S U(N)_{V}
$$

- $\# N G B=\left(N^{2}-1\right)+1$
- $\tilde{\Sigma}=\Sigma e^{i \frac{\eta}{f}}$ which, by construction, has to satisfy $\tilde{\Sigma}^{\dagger} \tilde{\Sigma}=\mathbb{I}$

Non linear sigma model and coset Construction

2 Linear and non linear sigma model: More general case

- We start studying the following pattern

$$
\mathcal{G}=S U(N)_{L} \times S U(N)_{R} \times U(1) \rightarrow \mathcal{H}=S U(N)_{V}
$$

- $\# N G B=\left(N^{2}-1\right)+1$
- $\tilde{\Sigma}=\Sigma e^{i \frac{\eta}{f}}$ which, by construction, has to satisfy $\tilde{\Sigma}^{\dagger} \tilde{\Sigma}=\mathbb{I}$
- $\tilde{\Sigma} \xrightarrow{\mathcal{G}} U L \tilde{\Sigma} R^{\dagger}, \quad U \in U(1), L \in S U(N)_{L}, R \in S U(N)_{R}$

Non linear sigma model and coset Construction

2 Linear and non linear sigma model: More general case

- We start studying the following pattern

$$
\mathcal{G}=S U(N)_{L} \times S U(N)_{R} \times U(1) \rightarrow \mathcal{H}=S U(N)_{V}
$$

- $\# N G B=\left(N^{2}-1\right)+1$
- $\tilde{\Sigma}=\Sigma e^{i \frac{\eta}{f}}$ which, by construction, has to satisfy $\tilde{\Sigma}^{\dagger} \tilde{\Sigma}=\mathbb{I}$
- $\tilde{\Sigma} \xrightarrow{\mathcal{G}} U L \tilde{\Sigma} R^{\dagger}, \quad U \in U(1), L \in S U(N)_{L}, R \in S U(N)_{R}$
- We perform the chiral perturbation theory of the Non Linear Sigma Model

$$
\begin{aligned}
& \mathcal{L}_{n l \sigma m}=\frac{1}{2}\left(\partial_{\mu} \pi^{a}\right)^{2}+\frac{1}{2}\left(\partial_{\mu} \eta\right)^{2}+\frac{\tilde{C}_{\pi}}{6 f^{2}}\left[\left(\pi^{a} \partial_{\mu} \pi^{a}\right)^{2}-\pi^{a} \pi^{a} \partial_{\mu} \pi^{b} \partial_{\mu} \pi^{b}\right]+\ldots \\
& \mathcal{A}(a b \rightarrow c d)=i \tilde{\mathcal{C}}_{\pi}\left(\delta^{a b} \delta^{c d} \frac{s}{f^{2}}+\delta^{a c} \delta^{b d} \frac{t}{f^{2}}+\delta^{a d} \delta^{b c} \frac{u}{f^{2}}\right) . \quad \tilde{\mathcal{C}}_{\pi}=\frac{N}{N^{2}-2}
\end{aligned}
$$

Linear Sigma Model

2 Linear and non linear sigma model: More general case

- Without the pseudo-reality condition, \mathscr{H} contains more then one singlet radial mode and the more general linear irreps could be found in $\mathscr{H} \sim \operatorname{Mat}(N, \mathbb{C}) \Rightarrow 2 N_{\mathbb{R}}^{2}$ d.o.f.

$$
2 N_{\mathbb{R}}^{2}=\underbrace{N^{2}-1}_{\pi^{a}(x)}+\underbrace{1}_{\eta(x)}+\underbrace{N^{2}-1}_{H^{a}(x)}+\underbrace{1}_{h(x)}
$$

Linear Sigma Model

2 Linear and non linear sigma model: More general case

- Without the pseudo-reality condition, \mathscr{H} contains more then one singlet radial mode and the more general linear irreps could be found in $\mathscr{H} \sim \operatorname{Mat}(N, \mathbb{C}) \Rightarrow 2 N_{\mathbb{R}}^{2}$ d.o.f.

$$
2 N_{\mathbb{R}}^{2}=\underbrace{N^{2}-1}_{\pi^{a}(x)}+\underbrace{1}_{\eta(x)}+\underbrace{N^{2}-1}_{H^{a}(x)}+\underbrace{1}_{h(x)}
$$

- Using polar decomposition one can find an useful parametrization of \mathscr{H} :

$$
\mathscr{H}=\tilde{\Sigma}(x) \phi(x)=e^{\frac{2 i}{f} \pi^{a} X^{a}} e^{\frac{i}{f} \eta}\left(1+\frac{H^{a}(x)}{f} X^{a}\right)(f+h(x)) .
$$

Linear sigma model framework

2 Linear and non linear sigma model: More general case

Feynmann Diagrams

Lagrangian

$$
\mathcal{L}=\underbrace{\frac{1}{4} \operatorname{Tr}\left[\partial_{\mu} \mathscr{H}^{\dagger} \partial^{\mu} \mathscr{H}\right]}_{(1)}-\underbrace{V\left(\mathscr{H} \mathscr{H}^{\dagger}\right)}_{(2)}+\underbrace{\operatorname{Pol}(\operatorname{det} \mathscr{H})}_{(3)}
$$

$$
(1) \Rightarrow \mathcal{L}_{4 \pi}+\mathcal{L}_{h \pi}+\mathcal{L}_{H \pi}
$$

$(2) \Rightarrow$ Gives information on m_{h}^{2} and m_{H}^{2}.
$(3) \Rightarrow$ Explicitly breaking of the $U(1)$ abelian symmetry \Rightarrow mass contribution to the η field.

Restoring perturbative unitarity in $\pi \pi$ scattering

2 Linear and non linear sigma model: More general case

- Looking at the two to two $\pi \pi$ scattering we notice that

$$
\begin{gathered}
\mathcal{A}_{t o t}=\mathcal{A}_{4 \pi}+\mathcal{A}_{h}+\mathcal{A}_{H} \\
\mathcal{A}^{\mathrm{tot}}\left(\pi^{a} \pi^{b} \rightarrow \pi^{c} \pi^{d}\right)=\frac{i}{f^{2}}\left(\tilde{C}_{\pi}-\tilde{C}_{h}-\tilde{C}_{H}\right)\left(\delta^{a b} \delta^{c d} s+\delta^{a c} \delta^{b d} t+\delta^{a d} \delta^{b c} u\right) \\
\tilde{C}_{h}=\frac{2}{N}, \quad \tilde{C}_{H}=\frac{N}{N^{2}-2}-\frac{2}{N}
\end{gathered}
$$

Restoring perturbative unitarity in $\pi \pi$ scattering

2 Linear and non linear sigma model: More general case

- Looking at the two to two $\pi \pi$ scattering we notice that

$$
\begin{gathered}
\mathcal{A}_{t o t}=\mathcal{A}_{4 \pi}+\mathcal{A}_{h}+\mathcal{A}_{H} \\
\mathcal{A}^{\mathrm{tot}}\left(\pi^{a} \pi^{b} \rightarrow \pi^{c} \pi^{d}\right)=\frac{i}{f^{2}}\left(\tilde{C}_{\pi}-\tilde{\mathcal{C}}_{h}-\tilde{C}_{H}\right)\left(\delta^{a b} \delta^{c d} s+\delta^{a c} \delta^{b d} t+\delta^{a d} \delta^{b c} u\right) \\
\tilde{C}_{h}=\frac{2}{N}, \quad \tilde{C}_{H}=\frac{N}{N^{2}-2}-\frac{2}{N}
\end{gathered}
$$

- Finally we arrive to the main result:

$$
\tilde{C}_{\pi}+\tilde{C}_{h}+\tilde{C}_{H}=0
$$

ALL THE HIGGS RADIAL MODES ARE INVOLVED IN RESTORING PERTURBATIVE UNITARITY.

Table of Contents

3 Conclusions.

$>$ Introduction and motivations.
$>$ Linear and non linear sigma model: More general case

- Conclusions.

Conclusions.

3 Conclusions.

- In the $N_{f}=2$ case it is sufficient just a singlet radial mode, in order to make the theory weakly coupled. However we proved that, in the general case, we need more extra radial modes ("Adjoint higgses").

Conclusions.

3 Conclusions.

- In the $N_{f}=2$ case it is sufficient just a singlet radial mode, in order to make the theory weakly coupled. However we proved that, in the general case, we need more extra radial modes ("Adjoint higgses").
- We repeated the whole story also for other cosets as $S U(N) / S O(N)$ or $S U(N) / S p(N)$ and the scenario is the same.

Conclusions.

3 Conclusions.

- In the $N_{f}=2$ case it is sufficient just a singlet radial mode, in order to make the theory weakly coupled. However we proved that, in the general case, we need more extra radial modes ("Adjoint higgses").
- We repeated the whole story also for other cosets as $S U(N) / S O(N)$ or $S U(N) / S p(N)$ and the scenario is the same.
- Future applications?

Conclusions.

3 Conclusions.

- In the $N_{f}=2$ case it is sufficient just a singlet radial mode, in order to make the theory weakly coupled. However we proved that, in the general case, we need more extra radial modes ("Adjoint higgses").
- We repeated the whole story also for other cosets as $S U(N) / S O(N)$ or $S U(N) / S p(N)$ and the scenario is the same.
- Future applications?
- One could apply the Linear Sigma Model procedure for new physics models in order to UV complete the theory. (examples: SSB patterns linked to the EWSB or to Dark Matter/Composite dark matter models)

Conclusions.

3 Conclusions.

- In the $N_{f}=2$ case it is sufficient just a singlet radial mode, in order to make the theory weakly coupled. However we proved that, in the general case, we need more extra radial modes ("Adjoint higgses").
- We repeated the whole story also for other cosets as $S U(N) / S O(N)$ or $S U(N) / S p(N)$ and the scenario is the same.
- Future applications?
- One could apply the Linear Sigma Model procedure for new physics models in order to UV complete the theory. (examples: SSB patterns linked to the EWSB or to Dark Matter/Composite dark matter models)
- Warning: Those theories manifest, as well as the Standard Model, the hierarchy problem.

Conclusions.

3 Conclusions.

- In the $N_{f}=2$ case it is sufficient just a singlet radial mode, in order to make the theory weakly coupled. However we proved that, in the general case, we need more extra radial modes ("Adjoint higgses").
- We repeated the whole story also for other cosets as $S U(N) / \operatorname{SO}(N)$ or $\operatorname{SU}(N) / \operatorname{Sp}(N)$ and the scenario is the same.
- Future applications?
- One could apply the Linear Sigma Model procedure for new physics models in order to UV complete the theory. (examples: SSB patterns linked to the EWSB or to Dark Matter/Composite dark matter models)
- Warning: Those theories manifest, as well as the Standard Model, the hierarchy problem.
- Our studies provides new model building tools to extend the UV completion throught the $L \Sigma M$ procedure for more general SSB patterns.

The role of the Higgs radial mode as a UV completion of the non linear sigma model. Thank you for listening!

Any questions?

