Study of $B^+ \to \overline{D}^0 (K^0_{\ s} \pi^0) \pi^+$ **decay at Belle II**

Samikshya Kar

Final Year BS-MS, Dept. of Physical Sciences, Indian Institute of Science Education and Research, Berhampur, India

Date: 12th July 2023

Supervised by Prof. Gagan B Mohanty

Department of High Energy Physics, Tata Institute of Fundamental Research, Mumbai, India

Motivation

Signal: $B^0 \rightarrow K_s^0 \pi^0$

Why $B \xrightarrow{0} K_s \xrightarrow{0} \pi^0$ is significant?

- Key to CP Violation measurements
- Isospin sum rule relation test

Control: $B^+ \rightarrow \overline{D}^0 (K_S^0 \pi^0) \pi^+$

Why $B^+ \rightarrow \overline{D}^0(K_S^0 \pi^0) \pi^+$ as Control channel?

- Similarity in Event topology
- Branching fraction greater than $B^0 \rightarrow K_S^0 \pi^0 \sim 10^2$ order

Main focus:

- Study of possible Data Monte Carlo difference
- Correction for Continuum suppression
- Branching fraction as Consistency check

Analysis Procedure and Data Sample

Selection Criteria

Particle	Selection criterion	Description
$B^+ \rightarrow \overline{D}^0 (K_{\rm S}^{0} \pi^0) \pi^+$	• 0.116 < M_{π} < 0.150 GeV/c ² • p_{π} > 1.5 GeV/c	 π⁰ → γγ Invariant Mass(±3σ) and Momentum
$B^+ \rightarrow \overline{D}^0 (\boldsymbol{K_S}^0 \pi^0) \pi^+$	• $0.489 < M_K < 0.507 \text{ GeV/c}^2$	 K_S⁰→π⁺π⁻ Invariant Mass (±3σ)
$B^+ \rightarrow \overline{D}^0 (K_{\rm S}{}^0 \pi^0) \pi^+$	 dr < 0.5 cm and dz < 2.0 cm PID (K/π) > 0.5 	 Transverse and Longitudinal Impact parameters Binary Particle ID
$B^+ \rightarrow \overline{D}^0(K_{\rm S}^{0}\pi^0)\pi^+$	• $1.82 < M_D < 1.9 \text{ GeV/c}^2$	 Invariant mass (±3σ)
$\boldsymbol{B}^{+} \rightarrow \bar{D}^{0} (K_{\rm S}^{0} \pi^{0}) \pi^{+}$	• $-0.2 < \Delta E < 0.3 \text{ GeV}$ • $5.25 < M_{bc} < 5.29 \text{ GeV/c}^2$	• $\Delta E = E_{B}^{*} - E_{beam}^{*}$ • $M_{bc} = (E_{beam}^{*2} - p_{B}^{*2})^{1/2}$

Samikshya Kar

Background

- Continuum Background: $e^+e^- \rightarrow q\bar{q}$
- Continuum Suppression: Boosted Decision Trees (BDT)
- The BDT distribution output: One more variable to the fit model
- $B\overline{B}$ background: Mis-reconstructed *B* events

 $B^+ \rightarrow D^0(K_s^0\pi^0)\pi^+$

PDF Models and Components

- Three variables: ΔE , M_{bc} , C'_{out}
- For fitting: Probability Density Functions (PDF) are used
- Final fit model: 3D PDF with 4 components
 - G: Gaussian
 - 2G: Double Gaussian
 - AG: Asymmetric Gaussian
 - CB: Crystal Ball
 - Poly(n): Polynomial
 - A: Argus
 - KDE:Kernel Density Estimation

Self Cross-Feed :

- Mis-reconstructed signal events
- SCF/Signal = 3%

Components	ΔE	M _{bc}	C' _{out}
Signal	CB+G	2G	AG+G+G
SCF	AG+ Poly1	A+G	AG+G+G
Continuum	Poly3	А	AG+G+G
BB	KDE	KDE	AG+G

Complete Model for ΔE

Complete Model of $M_{\rm bc}$

Complete Model for C'_{out}

9

Results: Data - MC Correction factors

Parameters	Data	Monte Carlo	Correction factor
Δ <i>E</i> mean (GeV)	-0.0185±0.0017	-0.0163±0.0015	-0.0022±0.0023
Δ <i>E</i> width (GeV)	0.0327±0.0013	0.0334±0.0013	0.9790±0.0545
M _{bc} mean (GeV/c ²)	5.2790±0.0001	5.2792±0.0001	-0.0002±0.0001
$M_{\rm bc}$ width (GeV/c ²)	0.0101±0.0003	0.0098±0.0003	1.0306 ± 0.0440
C' _{out} mean	1.6469±0.0731	1.6591±0.0612	-0.0122±0.0953
C' _{out} width	1.6794±0.0593	1.5694±0.0482	1.0701±0.0501

Correction for Continuum Suppression

 $R = \frac{\text{signal events pass the selection}}{\text{Total signal events (pass + fail the selection)}}$

	Data	МС
Signal	732 ± 28	922 ± 31
Continuum bkg	240 ± 19	284 ± 22
BB bkg	374 ± 24	532 ± 29
R	0.7513 ± 0.0139	0.7531 ± 0.0133

- Data-MC correction for the continuum suppression cut efficiency
- Table lists the number of signal and background events obtained
- SCF/Signal ratio fixed → SCF yield can be calculated from signal yield

$$C_{(Data/MC)} = 0.9976 \pm 0.0254$$

The simultaneous fit for BDT > 0.6

Samikshya Kar

 $B^+ \rightarrow D^0(K_S^0\pi^0)\pi^+$

The simultaneous fit for BDT < 0.6

Samikshya Kar

 $B^+ \rightarrow D^0(K_s^0\pi^0)\pi^+$

Branching Fraction

Data

MC

 $BF(B^+ \to D^0 \pi^+) = (4.17 \pm 0.16) \times 10^{-3}$

$$BF(B^+ \to D^0 \pi^+) = (4.65 \pm 0.17) \times 10^{-3}$$

- $N_{sig} = 732$ (Expected = 833) $N_{BB}^{sig} =$ Number of *BB* events = 387.5 × 10⁶

$$\mathcal{B}(B^+ \to \bar{D}^0 \pi^+) = \frac{N_{\rm sig}}{2f_{+-} \times N_{\rm B\bar{B}} \times \varepsilon \times \mathcal{B}(\bar{D}^0 \to K^0_S \pi^0)}$$

• $N_{sig} = 922$ (Expected = 929)

•
$$N_{BB}^{SS}$$
 = Number of *BB* events = 420 × 10⁶

•
$$BF_{PDG} = (4.68 \pm 0.15) \times 10^{-3} \rightarrow N_{sig} = 929$$

• Scaling 400 to 361.5 gives
$$N_{sig} = 833$$

•
$$f_{+-} = BF(\Upsilon(4S) \rightarrow B^+B^-) = 0.513$$

•
$$\varepsilon$$
 = MC signal efficiency = 0.074295

•
$$BF(D^0 \to K_S^0 \pi^0) = 0.0124$$

Samikshya Kar

 $B^+ \rightarrow D^0(K_s^0\pi^0)\pi^+$

Summary

- $\Box \quad \text{The study was performed on 361.5 fb}^{-1} \text{ Data}$
- □ Possible Data-MC differences were evaluated for $B^+ \rightarrow \overline{D}^0 (K_S^0 \pi^0) \pi^+$
- □ Correction to the Continuum Suppression efficiency was done
- □ The Branching fraction of the $B^+ \rightarrow \overline{D^0}(K_S^0 \pi^0) \pi^+$ decay was calculated

Background

- Two background sources: Continuum and generic *BB*
- Continuum background: Dominant source that comes from e⁻e⁺ to qq
- *BB* background: Generic background from mis-reconstructed *B* events

- It is difficult to model the BDT distribution output analytically
- Logarithmic transformation → Can be modelled with one or more Gaussian functions

PDF functions

Samikshya Kar

 $B^{+} \rightarrow D^{0}(K_{S}^{0}\pi^{0})\pi^{+}$

π^0 momentum systematics

 $B^+ \rightarrow D^0(K_S^0\pi^0)\pi^+$

Other Projects: Summer Project 2021

Summer Project (2021):

- The Vertex detector upgrade of Belle II from Belle \rightarrow Improvement of K_s^{0} reconstruction
- Signal reconstruction efficiency calculation
- Improvement in efficiency is related to K_s^{0} reconstruction
- Signal decay for the analysis: $B^+ \to K_S^{0} \pi^+$

	Belle II	Belle
Efficiency (%)	59.3	49.7

Acknowledgement

- Prof. Gagan Mohanty (TIFR Mumbai)
- Mr. Sagar Hazra (Research Scholar, TIFR Mumbai)
- ✤ TIFR DHEP Belle II Group
- ✤ Belle II Collaboration

