

MAGIC technical challenges, upgrades and final performance

Image Credit: Urs Leutenegger (@urs.leutenegger) Manel Martinez * (IFAE),

On behalf of the MAGIC collaboration

*(martinez@ifae.es)

02-07 October 2023 – 20 MAGIC years –La Palma

MAGIC and Technology

MAGIC founders mindset: exploring uncharted VHE gamma-ray territory by a leap on state-of-the-art technology for IACTs.

Technical challenges:

(1) Building a telescope catching as much Cherenkov photons as possible for lowest energy threshold:

- * Large reflector
- * Highly reflective mirrors
- * Very sensitive camera

(2) Building a telescope as light as possible for fast repositioning for transients -> lightweight structure

02-07 October 2023 – 20 MAGIC years

martinez@ifae.es

MAGIC streamlined timeline

- <u>2003</u>: MAGIC inauguration in October
- <u>2004</u>: First MAGIC data
- <u>2005</u>: First scientific papers
- <u>2007</u>: First MAGIC upgrade (DAQ)
- <u>2009</u>: MAGIC-2 installation and first data
- <u>2011/12</u>: Major MAGIC-1 upgrade (camera, DAQ,

Technical challenges

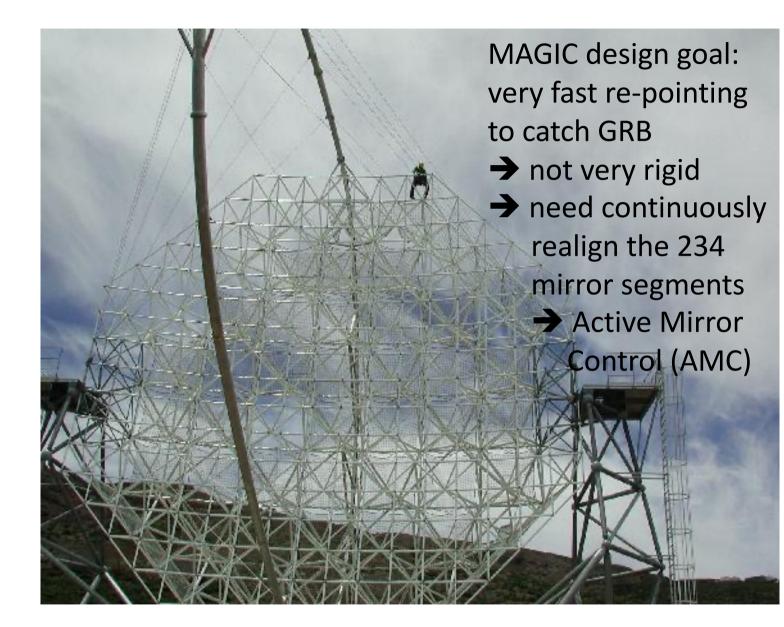
02-07 October 2023 – 20 MAGIC years

martinez@ifae.es

Key technological elements for MAGIC

17 m diameter parabolic reflecting surface (236 m²) Light weight high reflective diamond milled altuminum mirror

> Active mirror control (PSF: 90% of light in 0.1° inner pixel)


-3.5° FOV camera -576 high QE PMTs (QE_{max}= 30%)

Analog signal transport via optical fibers

Light Weight Carbon fiber structure for fast repositioning

2-level trigger system & 300 MHz FADC system

The reflector

- 17 m diameter!!3 x area of 10 m IACTs
- Parabolic: isochronous, allowing for bg reduction
- Tesselated reflector:
 - ◆ ~950 mirror elements
 - ♦ 49.5 x 49.5 cm²
 - All-aluminum, quartz coated, diamond milled, internal heating
 - >85% reflectivity in 300-650nm

The camera

Matrix of 577 PMTs

- Two sections:
 - Inner part: 0.1⁰ PMTs
 - ◆ Outer part: 0.2⁰ PMTs

Pixels

- Bialkali PMTs,
 <QE>~26%
 (330-450 nm)
- Modular Pixels.
- _ Plate of Wiston cones ⇒ Active camera area

The readout

Shower cherenkov light pulses are typically ~ ns long

- Pixel signal transported
 ~100 m over analog
 optical fibre using VCSELs:
 - Signal still short
 - Cable weight, optically decoupled, noise inmune.
- Digitization using 300 MHz-1GHz FlashADCs:
 - γ/h discrimination through signal shape
 - Noise reduction
 - Event buffering, telescope system synchronization...

Upgrades

02-07 October 2023 – 20 MAGIC years

martinez@ifae.es

Upgrades on MAGIC-1:

- After inauguration for Mono:
- * DAQ upgrade, from Siegen FADC to MUX,
- * SumTrigger for MAGIC-1

- After MAGIC-2 already in operation (2011-2012):
- * Camera of MAGIC-1,
- * DAQ from Domino-2 to Domino-4 ring samplers chips

The largest upgrade: MAGIC-2 (2009)

MAGIC-1

Control house

MAGIC-2

Further overal improvements:

- SumTrigger for MAGIC stereo,

- => increase sensitivity at lowest gamma-ray energies
- \rightarrow Detection of Geminga pulsar

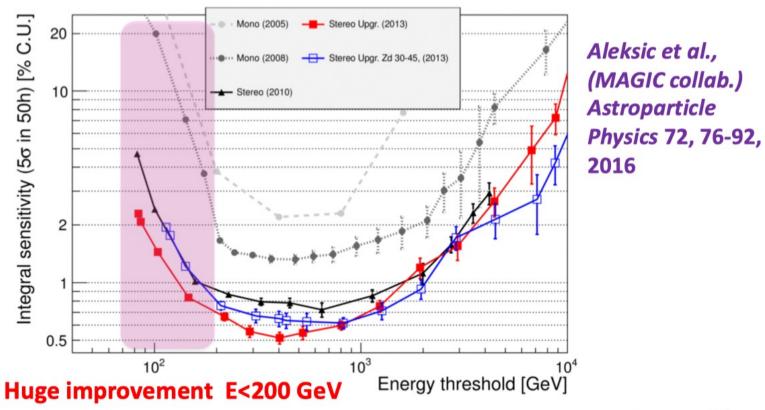
- Very Large Zenith Angle observations

- => increase sensitivity at highest gamma-ray energies
- \rightarrow Detection of Crab at 100 TeV

- LIDAR for monitoring atmosphere,

=> MAGIC currently only IACT using customarily this technique

Final performance


02-07 October 2023 – 20 MAGIC years

martinez@ifae.es

Evolution of the MAGIC Performance 4-fold improvement in sensitivity over the last 20 years

→ More than 10-fold improvement below 200 GeV

ightarrow Obs. time for detection reduced 100 times below 200 GeV

MAGIC @ 20

Better sensitivity + Lower energy threshold = More science !!

Final performance...?

02-07 October 2023 – 20 MAGIC years

martinez@ifae.es

The first CTA-LST (\rightarrow LST-1) is in place

Virtual visit to the CTA-North observatory:

https://tour.klapty.com/NH20OJ5Iae/?deeplinking=true&startscene=0&startactions=lookat(-67.07,23.81,90,0,0)

MAGIC-LST1 proximity allows joint observations for better angular & energy resolution, and better sensitivity (*Soft. and Hard. trigger*)

About 1.3-1.5 better sensitivity \rightarrow reduction of obs. time by ~2.0

Thank you for your attention!

Image credit:: Jayant Abhir

02-07 October 2023 – 20 MAGIC years