

Gamma Ray Bursts [overview and recent facts]

Giancarlo Ghirlanda giancarlo.ghirlanda@inaf.it National Institute of Astrophysics, INAF Osservatorio Astronomico di Brera

Gamma Ray Bursts: an amazing half century

ToC: the last half decade

Multi Messenger

- Multi Wavelength (up to HE, VHE). A. Berti, G. D'Amico, O. Salafia, M. Giroletti, D. Horan, C. Pittori, M. Zha, M. De Nouris, M. Errando ... +CTA
 - Dying or merging?
- Radiation process
 - Exceptional events

2017-

G. Ghirlanda @ MAGIC 2023, La Palma (ES), 4-6 Oct

2023

MultiMessenger: GW/GRB/KN 170817, a Rosetta Stone

10.5 hours

Jet properties

Margutti & Chornock 2021

G. Ghirlanda @ MAGIC 2023, La Palma (ES), 4-6 Oct [see Salafia & Ghirlanda 2022 for a review]

Afterglow physics

Intrinsic + extrinsic

Parameter degeneracies

Multiwavelength: e.g. 190829A

O. S. Salafia, et al, 2022

GRB 190829A

Notable:

- Low prompt efficiency
- 7% acc. Electrons
- Jet orientation <2 deg off

$$\cdot \epsilon_B \sim 10^{-5}$$

G. Ghirlanda @ MAGIC 2023, La Palma (ES), 4-6 Oct

Merging rather than dying: GRB200806A

- •Rest frame duration ~0.5 sec
- •Soft spectrum (L)
- •SN signature (L)
- Ep-Eiso correlation (L)
- •Host (L)

Dying rather than merging: GRB211211A

Radiation process

- 1) $t_{\rm var} \sim 10 100 \ {\rm ms}$
- 2) $L \sim 10^{52} \, \text{erg/s}$
- 3) Non-thermal spectrum

RADIATION

(BZ)

Inefficient cooling

Exceptional Events

GRB 221009A [55 Refereed articled + 180 non ref @ 21/09/2023]

Fluence = $0.2 \text{ erg/cm} 2 = 0.151 \longrightarrow \text{Eiso} -1e55 \text{ erg}$; Liso -1e54 erg/s

Saturated several instruments (talk by Horan & Pittori)

~ 18 TeV photons LHAASO

talks by M. Zha, M. Errando

10 1s ²년 10⁴

 10^{-5}

 s^{-1}]

ν^{Fp} [erg cm⁻² ,

~Once per -thousand years (Malesani et al. 2022; Burns 2023)

~first JWST spec (Levan 2023)

Afterglow model challenges

First ever significant emission line in a GRB at MeV energies (Ravasio, Salafia et al. 2023) 10^{-1}

Exceptional Events

GRB 230307A

Fluence = $3e-3 erg/cm^2$

35 sec

Levan, Gompertz et al. 2023

Conclusions

- 170817 a structure jet can emerge from the dense ejecta produced by the merger
- Afterglow modeling needs MW (+imaging when possible)
- Impostors show the possible variety of physical scenarios
- Prompt emission nature still a puzzle to be solved
- Exceptional events: test cases for model but often complicated by instrumental effects

• Start of MM era: 170817 direct proof of the origin of short GRBs from binary mergers.

