Novce with MAGIC

Alicia López Oramas (Instituto de Astrofísica de Canarias)

20 MAGIC Years Symposium, October 2023

Credit: Superbossa/MPP

• Novae are thermonuclear explosions caused by accumulation of material from a donor star onto the surface of a white dwarf (WD)

Classical novae main sequence star+WD

Credit: ESO / M. Kornmesser

• Novae are thermonuclear explosions caused by accumulation of material from a donor star onto the surface of a white dwarf (WD)

Classical novae main sequence star+WD

Credit: ESO / M. Kornmesser

• Novae are thermonuclear explosions caused by accumulation of material from a donor star onto the surface of a white dwarf (WD)

Symbiotic novae red giant + WD

Credit: Hardy

Classical novae main sequence star+WD

Credit: ESO / M. Kornmesser

- Roche-lobe overflow
- Long (no) recurrency : > 10⁴ years

• Novae are thermonuclear explosions caused by accumulation of material from a donor star onto the surface of a white dwarf (WD)

Symbiotic novae red giant + WD

Credit: Hardy

- Accretion from stellar wind
- Some novae show repeated outbursts within a human lifetime: recurrent novae (RN)

The quest

- The first nova to be detected by Fermi-LAT was the symbiotic system V407 Cyg (Fermi-LAT, Science, 2010)
- Novae established as HE emitters (HE, E>100 MeV)

- The first nova to be detected by Fermi-LAT was the symbiotic system V407 Cyg (Fermi-LAT, Science, 2010)
- Novae established as HE emitters (HE, E>100 MeV)
- Classical novae (WD+low-mass star) are also sources of HE gamma rays (Fermi-LAT, Science, 2014)
- Emission could be explained with either
 pp interaction or leptonic models (IC+Brems.)
- They **show a cut-off** in their SED
 - SED measured up to 6 10 GeV

- 402 optical novae (Schaefer 2022)
 - Estimated eruption rate: 20-70 /year
 - Discovery rate: 5-15 /year (Chomiuk et al. 2021)
- Fermi-LAT average ~1 per year (Cheung, VGGRS VI)
 - Up to know, total of 19 HE novae* (+6 hints)
 https://asd.gsfc.nasa.gov/Koji.Mukai/novae/latnovae.html
 - Most Fermi-LAT novae by detected up to 4.5 kpc
 - subset of bulge detections (up to 8kpc)

- 402 optical novae (Schaefer 2022)
 - Estimated eruption rate: 20-70 /year
 - Discovery rate: 5-15 /year (Chomiuk et al. 2021) ullet
- Fermi-LAT average ~1 per year (Cheung, VGGRS VI)
 - Up to know, total of 19 HE novae* (+6 hints) https://asd.gsfc.nasa.gov/Koji.Mukai/novae/latnovae.html
 - Most Fermi-LAT novae by detected up to 4.5 kpc \bullet
 - subset of bulge detections (up to 8kpc)

Are novae very-high-energy (VHE, E>100 GeV) emitters?

Search for VHE emission: motivation

- HE data alone is not enough to disentangle electron and proton acceleration models •
- Particles are accelerated in nova shock, **non-thermal processes** are at work \bullet
- Protons can reach much higher energies due to lower energy losses •

Ahnen et al. 2015

• IACTs had searched for a VHE component in novae for more than a decade (Aliu et al. 2012, Ahnen et al. 2015)

RS Ophiuchi

RS Ophiuchi

- RS Oph is a recurrent symbiotic nova which displays major outbursts every 14.7 years
 - WD + MO-2 III RG star (Anupama 1999)
 - $M_{WD} = 1.2 1.4 M_{\odot}$ and $M_{RG} = 0.68 0.80 M_{\odot}$
 - Nine eruptions between 1898 and 2021
 - Latest outburst: August 2021
 - Distance: 2.45 kpc (Rupen 2008)
- Type Ia SN progenitor candidate
- 2006 outburst: GeV emitter candidate:
 - 2006 outburst of RS Oph detected by Swift/BAT could not be accounted by the decay of radioactive isotopes
 - Emission could be explained via the production of non-thermal particles by diffuse shock acceleration Tatischeff et al. 2007)

MAGIC detection

- The first four days of MAGIC observations (August 09-12) yield a VHE signal with a significance of 13.2σ (Acciari et al. Nat. Astronomy, 2022)
 - 34 h observed, 21.4 h after quality cuts (zenith angle range: 36° 60°)
 - Energy threshold of the analysis: ~60 GeV \bullet
- Decrease below the VHE detection limit two weeks later
- VHE emission by H.E.S.S. (H.E.S.S. coll, Science, 2022) and LST (CTA-LST Project, Pos(Gamma2022))

Novae established as a new type of source of VHE gamma rays

Acciari et al., Nature Astronomy, 2022 https://doi.org/10.1038/s41550-022-01640-z

MWL view

- The MAGIC observations reveal VHE emission contemporaneous to the Fermi-LAT and optical maxima
- Emission peaked at optical and MeV, but **VHE emission is** consistent with being **constant over the first 4 days**
- First nova detected in the VHE regime

Novae established as a new type of source of VHE gamma rays

Fermi-LAT ligthcurve

- *Fermi*-LAT: 1-day and 3-day LC (E: 0.1-1000 GeV)
 - 1-day LC: exponential decay with halving time of (2.20 \pm 0.18) days

Optical ligthcurve

- During the nova outburst the photospheric emission creates the dominant radiation field
- Photometry
 - TJO and ANS
 - The emission*can be described by the photosphere temperature dropping from $T_{ph} = 10800$ K to 7680 K and radius $R_{ph} = 200 R_{\odot}$
 - Similar to those from 2006 outburst
- Spectroscopy:
 - Varese 0.84 m and Catania 0.91 m telescopes
 - $4500 \pm 250 \text{ km s} 1$ for the ejecta expansion at the earliest stage*

* during first 4 days

17

The physics

- Protons: pp interaction on nova ejecta (with some contribution from RG wind)
- Electrons: IC on thermal radiation of the WD photosphere
- the acceleration time (protons)

• Modeling: particles are injected and either cool down completely (electrons) or we gather their emission during

Gamma-ray modelling

 Joint Fermi-LAT +MAGIC spectrum can be a from 50 MeV to 250 GeV

Joint Fermi-LAT +MAGIC spectrum can be described as a single, smooth component spanning

Gamma-ray modelling

- Joint Fermi-LAT +MAGIC spectrum can be a from 50 MeV to 250 GeV
- Hadronic scenario is favored

Joint Fermi-LAT +MAGIC spectrum can be described as a single, smooth component spanning

Modelling: daily proton acceleration

- Daily SED
 - Hadronic scenario favored

Modelling: daily proton acceleration

- Daily SED
 - Hadronic scenario favored
- Increase of the cut-off energy with time: hint of spectral hardening
 - In line with the expectations from the cooling and acceleration timescales
 - Hadronic scenario favored

RSOph vs other novae

- RS Oph is the nova with the highest flux and brightest nova
 - Almost two orders of magnitude larger than previously-detected eruptions
- Comparison does not reveal any peculiarity in the emission of RS Oph, except for its brightness

Galactic novae and Cosmic Rays

- Accelerated protons will eventually escape the nova shock carrying away most of their obtained energy. Such protons could contribute to the Galactic Cosmic Ray sea
- Using the CR energetic derived for RS Oph (~ 4.4 × 10⁴³ erg):
 <0.2% of the contribution from supernovae
- Despite the small contribution to the overall CR sea, novae would significantly increase the CR density in its close environment: E_density(nova)>E_density(CR)
- In the case of recurrent novae, protons will accumulate in a ~10 pc bubble with enhanced CR density

Extracted from Dulgig, Science 2020

Future prospects

Recurrent novae in the Galaxy

	RN	V _{peak} (mag)	V _{min} (mag)	t ₃ (days)	P _{orb} (days)	Eruption Years		Recurrence Time Scale	Date Next Erupt
	Т Рух	6.4	15.5	62	0.076	1890, 1902, 1920, 1944, 1967	U Sco	10.3	2009
	IM Nor	8.5	18.3	80	0.102	1920, 2002	V745 Sco	21	2010
on?	CI Aql	9.0	16.7	32	0.62	1917, 1941, 2000	V3890 Sgr	25	2015
	V2487	9.5	17.3	8	~1	1900, 1998	V2487 Oph	18	2016
	Oph							30	2017
22	U Sco	7.5	17.6	2.6	1.23	1863, 1906, 1917, 1936, 1945, 1969, 1979,	RS Oph	14.7	2021
						1987, 1999	CI AqI	24	2024
	V394 CrA	7.2	18.4	5.2	1.52	1949, 1987	T CrB	80	2026
ent	T CrB	2.5	9.8	6	228	1866, 1946	IM Nor	41	2043
1	RS Oph	4.8	11	14	457	, 1898, 1907, 1933, 1945, 1958, 1967, 1985,	Т Рух	24	2052:
	·					2006			Schae
	V745 Sco	9.4	18.6	9	510	1937, 1989			
	V3890	8.1	15.5	14	519.7	1962, 1990			
	Sgr								

Schaefer 2010

10 known Galactic RNe

Recurrent novae in the Galaxy

	RN	V _{peak} (mag)	V _{min} (mag)	t ₃ (days)	P _{orb} (days)	Eruption Years			Recurrence Time Scale	Date of Next
	Т Рух	6.4	15.5	62	0.076	1890, 1902, 1920, 1944, 1967			10.3	2009 3+1 0
	IM Nor	8.5	18.3	80	0.102	1920, 2002		V745 Sco	21	2003.311.0
on?	CI AqI	9.0	16.7	32	0.62	1917, 1941, 2000		V3890 Sgr	25	2015
	V2487	9.5	17.3	8	~1	1900, 1998		V2487 Oph	18	2016
	Oph							V394 CrA	30	2017
22	U Sco	7.5	17.6	2.6	1.23	1863, 1906, 1917, 1936, 1945, 1969, 1979,		RS Oph	14.7	2021
						1987, 1999		CI AqI	24	2024
	V394 CrA	7.2	18.4	5.2	1.52	1949, 1987		T CrB	80	2026
nent	T CrB	2.5	9.8	6	228	1866, 1946		IM Nor	41	2043
21	RS Oph	4.8	11	14	457	1898, 1907, 1933, 1945, 1958, 1967, 1985, 2006		Т Рух	24	2052±3 Schaefer 20
	V745 Sco	9.4	18.6	9	510	1937, 1989	• •	New RNe?		
	V3890 Sgr	8.1	15.5	14	519.7	1962, 1990		 Schaefer CO fast recurrer 	mpiled a list a nce rate :	of novae w

Schaefer 2010

10 known Galactic RNe

- pected
 - V4643 Sgr (3.1kpc), V5589 Sgr (4kpc), V1534 Sco (7.4kpc), V1187 Sco (3.2kpc), V2275 Cyg (3.6kpc)

kpc .9 kpc

Inmediate future: T CrB

From T. Cheung (VGGRS VI)

- - Recurrency period of about ~80 years
 - Two peaks+dip
- Optical first peak at mag~2
- 3x closer than RS Oph; naively scale by distance => ~10x brighter?

Inmediate future: T CrB

- Pre-eruption dip already started in March/April (Schaefer et al. 2023, ATel #16107)
- Expected eruption date: 2024.4 ± 0.3 (Schaefer+ 2023)

efer et al. 2023, ATel #16107) 23)

29

Classical novae

- Classical novae are **HE emitters** (Ackermann et al. 2014)
- - What is the maximum particle energy?
 - al. 2016)
- radiative luminosity
 - Slow+fast wind
 - classical novae (Diesing et al. 2023)

Nebulae around recurrent novae?

- Particles accelerated to ~GeV in several novae, TeV emission in RS Oph
- - - to the recurrence period
 - - gamma-ray nebulae around RNe: nova super-remnant (NSR)
 - - other possible target (closer, shorter recurrency period)?

Summary

- Novae outbursts are frequent in the Galaxy, but discovery and identification not always possible
- HE emission from classical and symbiotic novae confirmed since almost a decade ago
- The August 2021 outburst of RS Oph introduces a new class of sources as VHE gamma-ray emitters: (recurrent symbiotic) novae
- Hadronic scenario (proton acceleration) is favored by MAGIC+Fermi-LAT gamma-ray observations
- their close neighborhood creating bubbles of increased density (<10 pc)
- RS Oph is the **brightest and most luminous nova**

Galactic cosmic ray budget: protons can escape the nova shock and contribute to the cosmic ray sea in

Acciari et al., "Proton acceleration in thermonuclear nova explosions revealedby gamma rays", Nature Astronomy, 2022 <u>https://doi.org/10.1038/s41550-022-01640-z</u>

Summary

- Novae outbursts are frequent in the Galaxy, but discovery and identification not always possible
- HE emission from classical and symbiotic novae confirmed since almost a decade ago
- The August 2021 outburst of RS Oph introduces a new class of sources as VHE gamma-ray emitters: (recurrent symbiotic) novae
- Hadronic scenario (proton acceleration) is favored by MAGIC+Fermi-LAT gamma-ray observations
- their close neighborhood creating bubbles of increased density (<10 pc)
- RS Oph is the **brightest and most luminous nova**
 - Open questions:

 - Are **classical** novae also VHE emitters?
 - **Nebulae** around recurrent novae?

nanes

alicia.lopez@iac.es

Galactic cosmic ray budget: protons can escape the nova shock and contribute to the cosmic ray sea in

• Is the VHE emission in RSOph related to is **recurrent** nature?

Acciari et al., "Proton acceleration in thermonuclear nova explosions revealedby gamma rays", Nature Astronomy, 2022 <u>https://doi.org/10.1038/s41550-022-01640-z</u>

Novae with MAGIC

Alicia López Oramas (Instituto de Astrofísica de Canarias)

0

alicia.lopez@iac.es

20 MAGIC Years Symposium, October 2023

Credit: Superbossa/MPP

Chomiuk et al. 2021

Figure 2

higher accretion rates, $M > M_{RG}$, hydrogen will still burn stably, but more slowly than the matter is accreted. The matter will pile up to form a red giant-like structure or it must be carried away in a wind. et al. (2013), but with a central core temperature of 10⁷ K and covering a larger range in accretion rates.

Depending on the WD mass and accretion rate (M), a wide variety of phenomena are theoretically expected. The lower red line is M_{stable} , the lowest accretion rate leading to stable burning for a given WD mass. At Below M_{stable} , burning is unstable, resulting in nova eruptions. Dashed black lines are lines of constant nova recurrence time (labeled in units of years). Nova ejecta masses can be estimated as the product of recurrence time and M. The stability lines are taken from Wolf et al. (2013). Recurrence timescales are calculated using the stellar evolution code MESA (v12115; Paxton et al. 2011) in a similar procedure as that described by Wolf Figure adapted with permission from Wolf et al. (2013); copyright AAS. Abbreviation: WD, white dwarf.

Chomiuk et al. 2021

