Searching for neutrinos across the globe

e

Marcos Santander

University of Alabama - jmsantander@ua.edu - @jmsantander

20 MAGIC Years Symposium - La Palma, Spain, October 2023

IceCube 2021 (arXiv/2111.10299)

M. Santander - Global neutrino network - 20 MAGIC Years Symposium, La Palma, Spain. Oct 6th, 2023.

IceCube, MAGIC, ++ 2018 (arXiv/1807.08816)

3

Low-energy regime

- Background dominated
- Sensitivity roughly \propto PSF²
- Self-clustering and correlation searches

75

-75

45

-60

Data

arch

ustei

Se

IceCube 2021 (arXiv/2111.10299)

M. Santander - Global neutrino network - 20 MAGIC Years Symposium, La Palma, Spain. Oct 6th, 2023.

3

Low-energy regime

- Background dominated
- Sensitivity roughly \propto PSF²
- Self-clustering and correlation searches

-60

-75

Data

Se

IceCube 2021 (arXiv/2111.10299)

M. Santander - Global neutrino network - 20 MAGIC Years Symposium, La Palma, Spain. Oct 6th, 2023.

High-energy regime

- Signal dominated
- Very low event rate (~10 events per year across the full sky)
- Correlation studies
- Realtime follow-ups

IceCube realtime alerts

- Sensitivity roughly \propto PSF²

N N

- Improved sensitivity correlation searche
 - Better angular resolution
 - Better background rejection

Bigher statistics

Baikal NT-200+

Lake Baikal, Russia. 2004/5

▶ 1/2000 km³

► 228 PMTs

Baikal NT-200+

- Lake Baikal, Russia. 2004/5
- ▶ 1/2000 km³
- ► 228 PMTs

France). 2008-2022.

- ▶ 1/100 km³
- ► 885 PMTs

M. Santander - Global neutrino network - 20 years of MAGIC Symposium, La Palma, Spain. Oct 6th, 2023.

ANTARES

Mediterranean Sea (near Toulon,

Baikal NT-200+

- Lake Baikal, Russia. 2004/5
- ► 1/2000 km³
- ► 228 PMTs

France). 2008-2022.

- ▶ 1/100 km³
- ► 885 PMTs

M. Santander - Global neutrino network - 20 years of MAGIC Symposium, La Palma, Spain. Oct 6th, 2023.

ANTARES

IceCube

Mediterranean Sea (near Toulon,

- South Pole glacier. 2010.
- ▶ 1 km³
- ► 5160 PMTs

UPCOMING ICE/WATER CHERENKOV TELESCOPES

P-ONE

KM3NeT

BAIKAL-GVD

TRIDENT HUNT

KM3NET

- Mediterranean Sea, near Portopalo di Capo Pessaro, Sicily, Italy.
- Targeting 1 km³. Will consist of two detector blocks with 115 lines each, 18 detectors per line. 28 are installed and operational at the moment.
- Angular resolution of 0.1° expected for muon tracks. 2° for cascades.
- First results from the 6-22 line detector (up to Dec 2022) presented at the ICRC.

KM3NET

KM3NeT/ARCA Preliminary

KM3NeT ICRC 2023 (Vol 444 1018)

M. Santander - Global neutrino network - 20 years of MAGIC Symposium, La Palma, Spain. Oct 6th, 2023.

- Mediterranean Sea, near Portopalo di Capo Pessaro, Sicily, Italy.
- Targeting 1 km³. Will consist of two detector blocks with 115 lines each, 18 detectors per line. 28 are installed and operational at the moment.
- Angular resolution of 0.1° expected for muon tracks. 2° for cascades.
- First results from the 6-22 line detector (up to Dec 2022) presented at the ICRC.

BAIKAL-GVD

M. Santander - Global neutrino network - 20 MAGIC Years Symposium, La Palma, Spain. Oct 6th, 2023.

ICECUBE-GEN2

- Detector volume of ~8 km³. Strings farther apart than in current IceCube, optimized for high energies.
- Angular resolution improved by x3 wrt current IceCube.
- Strong source detections within reach of the first 10 years of operation.
- Endorsed by the Astro2020 Decadal Survey in the U.S.
- IceCube Upgrade to be installed in the 2025-26 Austral summer (pending updates).

P-ONE

P-ONE Collaboration ICRC 2023 (Vol 444 1197)

- Cascadia basin off the coast of British Columbia, Canada.
- Deployed two pathfinder lines (STRAW-a/b in 2018 and 2020), currently working on the development of a prototype line.
- **Targeting 1 km³**. 7 clusters of 10 lines each, 20 detectors per line.

IKIIFNI

TRIDENT Collaboration (2022, arXiv/2207.04159)

- Projected volume of 7.5 km³ with ~1200 strings.
- Testing for a site for a neutrino telescope in the South China Sea.
- Optimization of detector layout and optical modules.

HUNI

HUNT Collaboration ICRC 2023 (Vol 444 1080)

- Proposed to be built in the South China Sea.
- 2304 strings. Each with 24 optical modules to cover a volume of **30 km³**.
- Main goal is to target PeV neutrino astronomy.
- First pathfinder (2 modules) tested in the sea in Feb 2023.

COMBINING NEUTRINO OBSERVATIONS

KM3NeT, Sicily ONC, Canada

L. Schumacher et al. (arXiv/2107.13534)

- Prompt, well-reconstructed alerts from this network would enable sensitive EM follow-ups.

$PLE \nu M$

An improvement of ~25x in sensitivity could be accomplished by this network (wrt current IceCube).

COMBINING NEUTRINO OBSERVATIONS

Instantaneous detection efficiency, PLE ν M-1

- Significant improvements by combining detectors at different latitudes and longitudes (background suppression). • Acceptance and sky coverage for alerts increased by a factor of ~5.
- Additional telescopes looking to expand statistics at the highest energies (e.g RNO-G, TRINITY, GRAND, TAMBO).

L. Schumacher et al. ICRC 2023 (Vol 444 991)

THE NEXT DECADE(S)

• These telescopes will be operating in a rich multimessenger landscape!

M. Santander - Global neutrino network - 20 MAGIC Years Symposium, La Palma, Spain. Oct 6th, 2023.

- Characterizing potential counterparts requires broadband EM observations.
- Understanding the PSF of neutrino telescopes is challenging!

M. Santander - *Global neutrino network* - 20 years of MAGIC Symposium, La Palma, Spain. Oct 6th, 2023.

15

A PAGE FROM HISTORY

30TH INTERNATIONAL COSMIC RAY CONFERENCE

Neutrino Triggered Target of Opportunity (NToO) test run with AMANDA-II and MAGIC

M. ACKERMANN¹, 5, E. BERNARDINI¹, N. GALANTE², F. GOEBEL², M. HAYASHIDA², K. SATALECKA¹, M. TLUCZYKONT¹, R. M. WAGNER², FOR THE ICECUBE³ AND MAGIC Bernardini et al. (IceCube) astro-ph/0509396 COLLABORATIONS⁴ or screeted objects, with the cut strength adopted for this analysis. In particulation ¹DESY, Platanenallee 6, 15738 Zeuthen sen sky bins contain a fraction of the signal Monte Carlo events, passing the same selection, ²MPPMU, Föhringer Ring 6, 80805 München which varies between about 60% up to about 85%, according to the source declination and the ³See special section of these proceedings assumed spectral index. ⁴http://magic.mppmu.mpg.de/collaboration/members In conclusion, we encourage the long-term and unbiased monitoring at different wavelengths ⁵Now at SLAC, Stanford University, USA of those neutrino candidate sources which show an evident character of variability in the high elisa.bernardini@desy.de

IceCube and MAGIC Collaborations, ICRC 2007 (arXiv/0709.2640)

First VHE gamma-ray follow-up of neutrinos performed by MAGIC and AMANDA-II in 2006!

M. Santander - Global neutrino network - 20 years of MAGIC Symposium, La Palma, Spain. Oct 6th, 2023.

energy gamma-ray emission (Blazars in particular). We also encourage the establishment of working groups to further develop the multi-messenger approach, i.e. to involve neutrino observations within the already effective multi-wavelength campaigns, and, in general, multidisciplinary investigations of objects like the Blazar 1ES1959+650 and similar.

Acknowledgments

upport of the following agonator: National Science Foundation

X-RAY COVERAGE

Neil Gehrels Swift Observatory

XRT sensitivity in the 0.3-10 keV

Fast response, low overhead. 110 cm² ~0.4 deg FoV. Launched in 2004.

SVOM (China-France)

Rapid follow-ups of GRBs Launch date of Spring 2024 0.2-10 keV "Lobster eye" optics with 1 deg FoV

STAR-X (NASA)

Selected (with UVEX) for a **MIDEX Concept Study** x7 FoV of Swift XRT x16 effective area

Einstein Probe (China-ESA)

Late 2023 laun

lobster-eye MPO + CMOS FoV: 3600 sq deg (1.1 sr) band: 0.5 – 5 keV soft X-ray eff. area: ~3 cm² @1keV FWHM: ~ 5', po Wolter-1 type + CCD FoV: 38' band: 0.3-10keV eff. area: 2x 300cm² @1keV angular FWHM: 30"

Soft X-ray Imager (SXI): 0.3 - 5 keV Total FoV of ~0.5 sr with a localization accuracy of <2'

XGIS: 2 keV - 10 MeV with FoV >2 sr with < 15'**GRB** localization

Not selected as of 2023.

Sensitivity in the 0.1-300 GeV Large FoV (all-sky coverage in few days) Launched in 2008.

M. Santander - Multimessenger studies with high-energy neutrinos - Transient & Variable Universe, UIUC, Jun 2023.

COVERAGE IN THE VERY-HIGH-ENERGY RANGE

- detecting sources!
- Neutrino follow-ups and strong AGN science program for CTA.

SWGO

• CTA to provide a x10 improvement in sensivity in the VHE band (>50 GeV). Prototypes telescopes already

• Air shower arrays (HAWC, LHAASO, proposed SWGO) provide large FoV coverage for diffuse/extended sources.

WISHLIST FOR GLOBAL STUDIES OF NEUTRINOS

- On the threshold of neutrino astronomy.
- Increase the number of neutrino events >100 TeV (high astrophysical purity).
- Improve the angular resolution (correlation probability goes with PSF²)
- As neutrino telescopes are 4π instruments, you need wide-field, continuous, broad-band, sensitive coverage across the EM spectrum. Even ULs are useful!
- Streamline the notification of neutrino detections under a unified scheme for all telescopes. Need to enable the computational and software infrastructure to do SO.
- Merging data from multiple neutrino telescopes to reach detection will become a must as detectors go online to enable discoveries.

Credit: Naoko Kurahashi Neilson

Diffuse background measurements (1968-1972)

M. Santander - Global neutrino network - 20 years of MAGIC Symposium, La Palma, Spain. Oct 6th, 2023.

Credit: Naoko Kurahashi Neilson

Diffuse background measurements (1968 - 1972)

M. Santander - Global neutrino network - 20 years of MAGIC Symposium, La Palma, Spain. Oct 6th, 2023.

Credit: Naoko Kurahashi Neilson

Galactic emission and few point sources (COS-B 1975-1982)

Diffuse background measurements (1968 - 1972)

M. Santander - Global neutrino network - 20 years of MAGIC Symposium, La Palma, Spain. Oct 6th, 2023.

Credit: Naoko Kurahashi Neilson

O(10³) points source, spectra, light curves (IACTs, Fermi-LAT, 1989-now)

Galactic emission and few point sources (COS-B 1975-1982)

M. Santander - Global neutrino network - 20 years of MAGIC Symposium, La Palma, Spain. Oct 6th, 2023.

Credit: Naoko Kurahashi Neilson

O(10³) points source, spectra, light curves (IACTs, Fermi-LAT, 1989-now)

Galactic emission and few point sources (COS-B 1975-1982)

