CTA-LST Project

Masahiro Teshima

Max Planck Institute for Physics, Munich, Germany

ORM, La Palma, Spain

4LSTs, 9MSTs

Telescope Design

Telescope Types	SST	MST	LST				
Optics	Schwarzschild-Couder	Davies-Cotton	Parabolic (Isochronous)				
FoV and Camera	10.5 deg SiPM	7.5 deg PMT	4.3 deg PMT				
Mirror Diameter	4.3m	11.5m	23m				
Energy Range	3 TeV - 200 TeV	100GeV - 10TeV	20GeV – 2000GeV				
Science Targets	Galactic Sources PeVatron (UHE CR)	Galactic Sources Nearby AGNs (z<0.5) Dark Matter	Transient Sources AGNs(z<2), GRBs(z <4) Dark Matter				

LST collaboration

Bulgaria

Brazil

Spain

France Croatia

Czechia

Germany

Italy

Japan Poland

Total

Switzerland

Science of CTA is very wide SNRs, PWNe, AGNs, GRBs, Dark Matter

Cosmic Ray Origin

Super Massive Black Holes

Dark Matter Search (Discovery)

- Origin of Cosmic Rays (Big accelerators)
- Black Hole and S.M.B.H.
- Dark Matter Search

+180[°] + 220 high energy sources are discovered. CTA will observe more than 1000 sources.

Extragalactic Sources

Active Galactic Nuclei

Gamma Ray Bursts

Galactic Sources

Super Nova Remnants

LST1 construction and Inauguration (Oct.2018)

cherenkov telescope array

(cta

Regular Observation started in 2020 January

(cta

cta

array

Crab Nebula and Pulsar

Crab Nebula spectrum

- 34.2 hours of data
- Systematic errors: gray points correspond to the effect of +1% background
- Consistent with MAGIC and Fermi-LAT

Crab pulsar

- Significant detection down to few tens of GeV
- Data from Nov 2020 Mar 2022

P2: 7.9σ after 21 hours. Geminga has a very soft spectrum. The LST-1 result confirms an excellent performance in the 15-30GeV regime. This LST result can be compared with MAGIC 6.3σ after 80hrs for P2.

Recurrent Symbiotic Nova RS Ophiuchi Outburst on 8 August 2021 by Y.Kobayashi et al., ICRC2023

- First detection of Nova with IACTs (HESS, MAGIC, and LST1)
- □ Explosions, 1898, 1933, 1958, 1985, 2006, <u>2021</u>
- □ <u>Mag 12.5 (low state)</u> → <u>Mag</u> <u>4.7 (~1000 times)</u>
- Binary System with a White Dwarf and a Red Giant
- Thermonuclear reaction

- LST Observation is consistent with HESS, MAGIC results
- Observation indicates hadronic origin

Galactic Center Large zenith Angle Observation S.Abe et al, ICRC2023

High-quality data of 39 hrs of G.C..
LST1 demonstrated the effectiveness of the Large–Zenith-Angle observation.

- □ The Cherenkov light pool is geometrically expanded.
- □ <u>A one-order-of-magnitude larger collection area</u> is feasible at TeV energies.

Cta telescope array **BL Lac Big Flare on 9 August** S.Nozaki et al., ICRC2023

Aug 9, 2021

LHAASO J2108+5157 The first paper from LST Consortium

- □ An unidentified source in the LHAASO Observation.
- Possible PeVatron, but the origin is not clear.
- □ The multi-wave observation with LST favors <u>the leptonic</u> <u>inverse Compton Bump extending beyond 100TeV.</u>
- □ But there is a possibility that <u>escaping protons from middle-aged SNR collide with molecular clouds.</u>

LST2-4, MST3 location

LST2-4 Schedule: updated

cta

					2tr 1, 2020		Qtr 3,	Qtr 3, 2021			Qtr 1, 2023			Qtr 3, 2024			
	Tack Name	Durat	Chart	Einich	anuary	October	July	April		January	October	July		April	J	anuary	Octo
1	Sign Contract for Short Project			01.08.19	IVI	E D	IVI E	D IVI		D IVI	E D	IVI	E	D		D	IVI
2	Basic project ready for submission	0 days	16 01 20	16 01 20	16.01												
3	All Permissions granted	0 days	12 09 22	12.09.22						12.09		Dor					leo -
4	Sign civil work contract	0 days	31 10 22	31 10 22	-			ľ		31.10		Per	mis	sion -	+CIVI		KS
5	Civil Works start	0 days	02.12.22	02.12.22	-					02.12							
6	IST2 construction starts	0 days	27.06.23	27.06.23						** 2	7.06						\prec
7	LST2 dish and structure united	0 days	05.03.24	05.03.24	-							5.03					
8	LST2 CSS installed	0 days	14.05.24	14.05.24	-							14.05	2				
9	LST2 mirrors installed	0 days	23.08.24	23.08.24								A 2	23.08		:	LS	T2
10	LST2 camera installed	0 days	06.12.24	06.12.24										5.12			
11	LST2 construction completed	0 days	31.12.24	31.12.24									+ 📥 3	1.12			
12	LST2 ready for acceptance	0 days	05.08.25	05.08.25	-										05.08		
13	LST3 construction starts	0 days	25.07.23	25.07.23						}	25.07						
14	LST3 dish and structure united	0 days	18.06.24	18.06.24							-	18.0)6				
15	LST3 CSS installed	0 days	20.08.24	20.08.24								→ → 2	0.08				_
16	LST3 mirrors installed	0 days	29.11.24	29.11.24									29	.11		LS	T3
17	LST3 camera installed	0 days	29.01.25	29.01.25									*	29.01			
18	LST3 construction completed	0 days	21.02.25	21.02.25	1								+	21.02			
19	LST3 ready for acceptance	0 days	26.09.25	26.09.25										1	26.0	09	
20	LST4 construction starts	0 days	22.08.23	22.08.23							22.08				-		
21	LST4 dish and structure united	0 days	08.10.24	08.10.24									08.10	D			
22	LST4 CSS installed	0 days	10.12.24	10.12.24								l l	10	0.12	-		_
23	LST4 mirrors installed	0 days	21.03.25	21.03.25										21.03	3	LS	T4
24	LST4 camera installed	0 days	16.05.25	16.05.25										• 16	.05		
25	LST4 construction completed	0 days	10.06.25	10.06.25											0.06		
26	LST4 ready for acceptance	0 days	13.01.26	13.01.26											- p+@	13.01	

Multi-messenger and Multi-wavelength Astrophysics

ASTRO-PARTICLE PHYSICS

Cosmic Ray Physics

High Energy Astrophysics

Wave AstroPhysics

cta

cherenkov

telescope array

ASTRO-PHYSICS Gamma Ray Bursts, Black holes, Neutron Stars, Space and Time

PARTICLE PHYSICS Dark Matter, Neutrino Energy Frontier

IceCube

Particle Physics

IceCube Array 86 strings including 8 DeepCore strings 5160 optical sensors

ng optimized for lower energies

IceTop 81 Stations 324 optical sensors

Amanda II Array (precursor to IceCube

8 strings-spacing 20 optical senso Eiffel Tower 324 m

MAGIC Highlight, Gamma Ray Burst GRB190114C (z=0.42)

Historical achievement

- □ First Detection of the GRB from ground.
- ~100 Crab flux in the first minutes.
- TeV bump has a similar energetics with KeV-GeV bump

Multi Messenger Astronomy IC170922A / TXS 0506+056

Merger of giant black holes predicted Science 1 Feb 2022, Astro-ph 2201.11633 (N.Jiang et al)

Tick … tick … boom?

SDSS J1430+2303 z = 0.081

Close supermassive black hole binaries with the separation below parsec??

Figure 1: The optical, UV and X-ray light curves of SDSSJ1430+2303. The ZTF g and r band photometric data are shown in blue and red solid circles, with error bars in grey. The black solid diamonds and magenta solid circles represent the XRT count rate in 0.3-10 keV and UVW1 magnitudes from our Swift monitoring, respectively. We have zoomed in the Swift data (the region encircled by dashed box) in the inset for clarity.

Credit: NASA

Complementarity of different approaches Direct, Indirect, and Collider Experiment

- CTA has the best sensitivity above 700GeV

MAGIC Observation Search for the Gamma-Ray Line Spectrum from DM annihilation (T. Inada, PRL, 2023)

- LST1 achieves the designed performance.
- LST2-4 are under construction and will be completed in 2026
- LSTs will play an essential role in the following decades in multi-messenger astronomy.

cherenkov telescope array ORM in September 2023

Credit: Dominik

Boys and Girls, be Ambitious!

A bright future is waiting for you!

Dr. W.S. Clark

Credit: Dominik Elsaesser Modified: Masahiro