Performance of joint LST-1 + MAGIC analysis chain

J. Sitarek, A. Berti, Y. Ohtani, F. Di Pierro, Y. Suda, E. Visentin, R. Menezes,... on behalf of CTA-LST Project, on behalf of MAGIC Collaboration

20 MAGIC years Symposium, 2023.10.06, La Palma

MAGIC and LST-1

- MAGIC:
 - 17m diameter
 - two telescopes
- LST-1:
 - -23m diameter
 - the first of the CTAO's largest telescopes
- The instruments are located just 100m one from another. The proximity allows common analysis of the same gamma-ray showers.

Why joint analysis?

- LST are next generation instruments with an excellent energy threshold, but currently there is only LST-1.
- A single telescope is burdened with a large background at low energies, which limits the current low-energy performance
- The early MC studies showed that joint observations provide better sensitivity, bringing the performance half the way towards 4 x LST

Two instruments, two MCs, two analysis chains...

- LST(-1) is using
 - "regular" Corsika
 - telescope response simulated with sim_telarray
 - ctapipe-based Istchain (Python) for analysis
- MAGIC is using
 - Customized Corsika (mmcs)
 - *MagicSoft* to simulate telescope response
 - Dedicated MARS software (C++)

Need common simulation and analysis framework – "MAGIC ctapipe" (MCP)

Validation of MAGIC part of MCs

- 100 GeV gamma rays were generated at fixed impacts of 30m, 60m, 90m, ... with both chains
- Good agreement in the reconstructed true number of p.e. and trigger efficiency was obtained

Pipeline in a glance

MAGIC data start from calibrated images, LST-1 from image parameters, simulations from waveforms

6

Matching MAGIC and LST-1 events

- MAGIC-I and MAGIC-II events are matched by a common stereo trigger number from the MAGIC stereo trigger system
- MAGIC and LST-1 operate as independent systems, but joint observations can be taken in semi-automatic mode in which the current MAGIC pointing direction is provided to LST-1
- Hardware stereo trigger is currently in development for MAGIC+LST-1 observations, but GPS clocks can be used to match the events by their time stamps
- There are both constant (related to cable lengths) and variable (mostly dependent on the pointing direction) delays, hence the optimal delay between LST-1 and MAGIC is derived for each subrun from a scan.

What's in the data?

- Performance studies are done using MC simulations and 4hrs of Crab Nebula data
- LST-1 is triggering most of the gammaray events that MAGIC sees
- A fraction of MAGIConly events is much higher for background – such events are best to exclude

Туре	MC γ	MC γ	MC p	Observations
	(0.4°)	$(0 - 2.5^{\circ})$		
M1+M2	6.2%	4.8%	20.4%	21.5%
LST-1+M1	7.1%	7.7%	6.2%	5.3%
LST-1+M2	12.5%	12.6%	11.9%	14.2%
LST-1+M1+M2	74.1%	74.8%	61.5%	59.0%

Table 2: Percentage of different event types in different types of MC simulations and in the data. Only images surviving 50 p.e. cut in *intensity* are considered. Observations and MC simulations cover low zenith distance angle (< 30°). Proton MC are reweighted to -2.7 spectral index, while gamma MC to -2.6.

- The joint analysis requires that the event is triggered by LST-1 and **both** MAGIC telescopes, but one of MAGIC images might not survive image cleaning or intensity cut.
- Despite the lack of hardware trigger MCP can provide a higher analysis-level collection area

Energy threshold

- Differential rate plot for a -2.6 slope source at the analysis level (intensity > 50 p.e.) assuming zd<30°
- 15% improvement in the threshold w.r.t. MAGIC
- A factor of 2 improvement in the collection area at 30 GeV

Flux reconstruction

- The data sample is mostly at medium zenith distance, so the spectrum can be reconstructed starting from 80 GeV point
- In agreement with MAGIC and LST-1 curves within 10%
- Due to high signal from the Crab Nebula we can test the systematic uncertainties by investigating stability of the flux – it is comparable to the MAGIConly and LST-1-only analysis

Differential sensitivity (low Zd)

- Joint observations allow detection of 30% (40%) lower flux than MAGIC-alone (LST-1-alone).
- This corresponds to the detection of the same flux in twice (nearly three times) shorter time.
- MAGIC and LST-1 work together better than each instrument alone

Energy & angular resolutions

- MCP chain provides slightly better angular resolution for joint observations than for MAGIC-only observations, however the angular resolution is still comparable to the one obtained with dedicated MARS analysis of MAGIConly data.
- With further optimization
 improved performance can
 be achieved (at the price of collection area)

How to make it even better? Hardware stereo trigger

- Hardware trigger greatly enhances the collection area (especially at the lowest energies)
- The first data with HaST have been already taken (however now it is only available for a part of the sky)

Baxter et al. ICRC 2023

How to make it even better? SiPMs in MAGIC cameras?

- Due to larger mirror area and newer PMTs LST-1 is gathering 2.6 – 3 times more light than each of MAGIC telescopes.
- With a SiPM-based camera MAGIC can get 2.2 times light more, making it comparable to LST-1
- MC studies show that SiPM camera would results in a considerable improvement in the MAGIC sensitivity at the lowest energies
- MAGIC with a SiPM camera can be a good partner for joint observations for more than one LST
- Would the performance gain justify the cost in view of upcoming further LST (and MST) telescopes?

Arcaro et al. 2023

E_{est} [GeV]

Summary

- A joint simulation and analysis chain has been implemented for MAGIC+LST-1 observations.
- The joint observations provide major boost in sensitivity (30% lower fluxes can be detected than with MAGIC), making the two instruments more efficiently working together than separate.
 (MAGIC+LST-1) > (MAGIC) + (LST-1)
- Hardware stereo trigger and/or upgrade of MAGIC camera can make the joint observations desirable also when multiple LSTs are in place.

Backup

MAGIC and LST-1

- LST-1 design follows the general one of MAGIC, but with a number of significant improvements
- The larger mirror area and novel PMTs result in over twice larger light yield in the case of LST-1, but LSTs are still more similar in light yield to MAGIC than to MSTs

Parameter	LST-1	MAGIC I/II	
Diameter	23 m	17 m	
Focal length	28 m	17 m	
Dish shape	parabolic	parabolic	
Camera FoV	4.5°	3.5°	
Pixel FoV	0.1°	0.1°	
Number of pixels	1855	1039	
Peak QE	41%	32-34%	
Sampling speed	1 GHz	1.64 GHz	
Trigger type	mono	stereo	
Typical event rate	10 kHz	0.3 kHz	

Simulations

Sample	Particle type	Zd	E_{\min}	E_{\max}	Impact _{max}	Viewcone
		[°]	[GeV]	[TeV]	[m]	[°]
Train	Gamma	6 – 52	$5 \times \cos^{-2.5} Zd$	$50 \times \cos^{-2.5} Zd$	$900 \times \cos^{-0.5} Zd$	0 - 2.5
mann	Protons	6 – 52	$10 \times \cos^{-2.5} Zd$	$\max(100 \times \cos^{-2.5} Zd, 200)$	$1500 \times \cos^{-0.5} Zd$	$0-8 \times \cos^{0.5} Zd$
	Gamma	10 – 55	$5 \times \cos^{-2.5} Zd$	$50 \times \cos^{-2.5} Zd$	$700 \times \cos^{-0.5} Zd$	0.4
Test	helium	10 - 43	$20 \times \cos^{-1.5} Zd$	$200 \times \cos^{-1.5} Zd$	$1500 \times \cos^{-1} Zd$	0 - 8
	Electrons	10 - 43	$5 \times \cos^{-2.5} Zd$	$50 \times \cos^{-2.5} Zd$	720-1200	0 - 7.5

Comparison with gamma

- We compare MC simulations of gamma rays with the gammaray excess obtained from the data
- Most of the parameters agree rather well
- Small differences in H_{max} and MAGIC-2 width distributions, but gammaness and theta distribution are matching relatively well

Collection area

- MC simulation at zenith distance of 10 degree
- Above ~80 GeV most of the MAGIC events survive stereoscopic reconstruction

