

Intensity interferometry with MAGIC and LST

Juan Cortina (CIEMAT + IAC)

MAGIC 20th anniversary symposium, La Palma, October 2023

Ciemple Centro de Investigaciones Energéticas, Medioambientales

y Tecnológicas

Outlook

- Interferometry: phase vs intensity.
- Intensity Interferometry with MAGIC.
- Extension to CTA/LSTs.
- Science with the interferometer.

Interferometry: phase vs intensity

Phase interferometry

Phase interferometry

Phase interferometry

We measure the phase difference at different telescopes

This allows to infer:Angular distances between astronomical objectsAngular size of objects

Intensity time modulation

Hanbury-Brown & Twiss 1950s

Star photons come from random points of stellar surface , i.e. random angles, different phases and wavelengths.

Intensity interferometry

Intensity interferometry

We measure the time correlation of intensity at different telescopes

Intensity interferometry

MI Intensity = photon fun Baseline d MAGIC-2 MAGIC-1 emitter. 86 m 162 m optical fibers

We measure the time correlation of intensity at different telescopes

This correlation also depends on light distribution of

So we can also infer:

- Angular distances between astronomical objects
- Angular size of objects

Challenges of phase interferometry

- Can't be digitized.
- One must bring light from two telescopes into one place to produce the interference pattern.
- Optical path between telescopes and in the atmosphere must be stabilized to this precision!

... overcome with intensity interferometry

Intensity time modulation: Time scale >~ 10^{-11} s (10 ps) independent of λ !

- Right now with MAGIC we work at the 1 ns scale.
- Atmosphere is negligible down to ~30 ps.
- We can digitize at each telescope!
- Go to blue or even UV.
- Reach km scales.

Intensity interferometry with MAGIC

Cherenkov telescopes

- Easy to use IACTs for intensity interferometry: they come in arrays and have large mirrors and fast time response.
- VERITAS made the first measurements (*Nat. Astr. 4 (2020) 1164*).
- With MAGIC we started in 2019 (*MNRAS* 491 (2020) 1540–1547).

MAGIC interferometry setup

First results with full instrument (2022)

New star diameter measurements

The significance of our detections is consistent with expectations based on our hardware parameters and consistent with the publication in 2019 with a totally different setup.

- Sensitivity 10x better than Narrabri: magnitude limit = 5^m
- Our baseline is <86 m so our angular resolution is ~500 μas.

What's limiting us?

Angular resolution $\propto 1$ / Baseline

Baseline

More telescopes, longer baselines: MAGIC > CTA ²¹

CTA LSTs: Impact on sensitivity

- We expect to increase sensitivity by a factor 10.
- <u>Reach 6^m (for 10% error in</u> diameter in <u>2 hours</u>)
- Granted an ERC starting grant
 to Tarek Hassan (CIEMAT) to
 design and test interferometer
 for MAGIC+LSTs.

Faster photodetectors

- Current PMTs are limited to time resolutions ∼1 ns.
- Faster photodetectors (<100 ps) with photosensitive areas compatible with IACTs (1 cm scale): SiPM and HPDs.
- Sensitivity of MAGIC + LSTs may improve by a factor 4

Faster photodetectors

- Current PMTs are limited to time resolutions ∼1 ns.
- Faster photodetectors (<100 ps) with photosensitive areas compatible with IACTs (1 cm scale): SiPM and HPDs.
- Sensitivity of MAGIC + LSTs may improve by a factor 4

Limit magnitude of B=7.5^m in 2 hours

Complement with shorter baselines

Complement with shorter baselines

- I3T concept (Gori et al, MNRAS, 505-2 (2021) 2328)
- Shorter baselines: 0-17m in MAGIC
- <u>Angular scales:</u>
 <u>3 50 mas</u>.

And longer baselines?

Other large diameter telescopes are available or coming online

At ORM:

- CTA MSTs (12 m)
- GTC (10 m)
- WHT (4.2 m)
- TNG (3.6 m)...

(QUASAR project)

Covering many angular scales

Original plot by M. Daniel, R. Walter

Science

Massive stars

Winds and black hole mass

- LIGO's big surprise: <u>why so many Black</u> <u>Hole pairs with tens</u> <u>of M</u>.
- The fact: very difficult to predict the BH mass!
- Strong effects of metallicity, <u>wind</u> <u>mass loss</u> or binarity.

Be stars or WR stars

- Stars with a slow outflow ("decretion disk").
- Strong emission in H α and H β emission lines.

Be stars and pulsar = VHE γ -rays

γ -ray binaries: observability

	HE	VHE	Class	Components	Porbit	Companion Rmag	Companion Hα mag
PSR B1259-63	yes	yes	PSR binary	Oe + NS	~3.4 yrs	10.03	
LS I +61 303	yes	yes	PSR binary	B0 Ve + NS	26.5 d	10.19	
HESS J0632+057	yes	yes	?	B0 pe + ?	317.3 d	9.5	7.8
PSR J2032+4127	~yes	yes	PSR binary	B0 Ve + PSR	~50 yrs	11.2	
HESS J1832-093	yes	yes	?	B8V - B1.5V + ?	86.3 d	J=15	
LS 5039	yes	yes	PSR binary (?)	ON6.5V + PSR?	3.9 d	11.04	
1FGL J1018.6–5856	yes	yes	?	O6V + ?	16.5 d		
LMC P3	yes	yes	?	O5III + ?	10.3 d		
4FGL J1405.1-6119	yes	no	?	O6.5 III + ?	13.7 d	H=14	

Pol Bordas, Gamma2022, Barcelona

/AGIC+LST vith HPDs

Colliding wind binaries

HE and VHE γ -ray sources:

- Eta Car
- γ² Velorum

Both very bright in visible.

Cyg OB 9, simulation of bow shock. Credit: Australian National Univ./E. R. Parkin and Univ. of Liege/E. Gosset

Newest type of VHE source: **novas**

Recurrent nova RS Oph detected at VHE:

> H.E.S.S., Science, 376-6588 (2022) 77

MAGIC, Nat. Astr. 6 (2022) 689

Novas: speed of expanding shell

Novas: anisotropy of expanding shell

Nova remnant images in visible range **years** after nova explosion

Supernovae: observability

- V<5^m, observable with current MAGIC in 50h: roughly 35% of galactic SNe.
- 5<V<8m, observable with ORM array (50-500 uas) and MAGIC-Butterfly (5-50 mas): fraction increases to 50%.
- Same as with novas: study expansion speed and asymmetry.

Betelgeuse

Imaging Betelgeuse

Shadow of exoplanets

CTA-S alpha HD 189733 b

Or a combination of MAGIC, LSTs and GTC at Roque?

Conclusions

- Intensity interferometry optimal for short wavelengths and long baselines.
- IACTs are already using this technique to study bright stellar objects in the 0.5 – 1.5 mas angular scale.
- Adding the four LSTs: ~200 μas and $6^m.$
- Faster photodetectors: go to weaker objects (~8^m).
- With MSTs and optical telescopes at ORM: higher angular resolutions ~50 μas.
- Strong impact on stellar astrophysics and Multimessenger: improve our understanding of BH progenitors, VHE γ-ray emitters based on stellar winds, novas or supernovas.

Thank you for your attention!

02-07 October 2023 – 20 MAGIC years

Image credit:: Jayant Abhir

Go to longer wavelengths

- With this precision it's much easier to bring the signal together to interfere.
- And it can be saved to tape or digitized!

Rapid development

VLA, New Mexico, 1973.

- 50 GHz 73 MHz
- Baseline up to 35 km
- Down to 40 mas angular resolution

VLBA, 1993

- 300 MHz 100 GHz
- Baseline up to 8600 km
- Down to 40 mas angular resolution

Data are stored and processed offline

Event Horizon Telescope

Pre-existing telescopes, made to work together

- 1.3 mm (230 GHz) 0.65 mm (450 GHz)
- Baseline up to 20,000 km
- Down to 50 μas angular resolution

EHT: amazing observations

Imaging of area surrounding the supermassive black hole in M87

Imaging of innermost region of Cen A jet

Phase interferometry in VISIBLE

More accurate optics, including active optics, lasers, precision mechanics, faster electronics, more efficient photodetectors....

CHARA in Mt. Wilson: 6x 1 m telescopes, connected to correlator. Baseline <331 m. 200 μas resolution in visible (V,R) for V<10^m.

GRAVITY in VLT, Chile: 4x 8 m telescopes, connected to correlator. Baseline <130 m. 2 mas resolution in IR for K<17^m, 50 μas astrometry

Phase interferometry in VISIBLE

More accurate optics, including active optics, las mechanics, faster electronics, more efficient pk

CHARA in Mt. Wilson: 6x 1 m telescopes, connected to correlator. Baseline <331 m. 200 μas resolution in visible (V,R) for V<10^m.

GRAVITY in VLT, Chile: 4x 8 m telescopes, connected to correlator. Baseline <130 m. 2 mas resolution in IR for K<17^m, 50 μas astrometry

Longer baselines

Large diameter telescopes are available or coming online:

- CTA (3 12 23 m)
- GTC (10 m)
- VLT (8 m)
- E-ELT (39 m)
- GMT (25 m)

ORM, La Palma: we are developing instrumentation to correlate MAGIC/LST, GTC and TNG (QUASAR project)

Can reach limit magnitude 8^m using many spectral channels.

MAGIC / LST Butterfly's Eye

Supernovae

A galactic supernova would be the **Ultimate Multimessenger event**:

- Prompt emission of low energy (<u>MeV</u>) <u>neutrinos</u>, and <u>gravitational waves</u> if the explosion is (at least fractionally) asymmetric.
- Even prompt <u>axions</u> (M. Meyer et al., PRL 118 (2017) 011103)
- After a few days it may shine up in <u>VHE γ -rays</u> and <u>HE neutrinos</u>.
- After a few years it may enter into a phase where <u>PeV cosmic rays</u> are produced. Distance would allow to study to map the cosmic ray density using γ-rays.

A galactic supernova is long overdue...

Novas: observability with interferometers

Nova typical ranges in speed and distance:

- ejecta speed: 200 7000 km/s
- distance: 0.5 5 kpc

Diameter angular expansion rate (mas/day)	0.5 kpc	5 kpc
200 km/s	0.5 mas/d	0.05 mas/d
7000 km/s	17.5 mas/d	1.75 mas/d

Massive stars <-> black hole mergers

In general, progress in our understanding of massive stars is key for gravitational wave astronomy, because massive stars are the <u>precursors of black holes</u>.

More specifically, interferometers could help in:

- 1. Establishing how many massive stars are binaries.
- 2. Studying stellar winds.

Winds and black hole mass

- When LIGO came up with the first GW events, one of the big surprises was the Black Hole mass distribution: nobody expected to see so many BH pairs with tens of M_☉.
- No wonder because it's very difficult to predict the BH mass. There are strong effects from metallicity, wind mass loss or binarity.
- Here is e.g. the initial-remnant mass relation for single stellar evolution and two wind prescriptions.

Proto-supernovas: Betelgeuse & Antares

- α Ori (Betelgeuse) or α Sco (Antares) are red supergiants and very nearby (<200 pc) supernova progenitors. A supernova may happen any time soon.
- They have a large angular extent (~50 mas).
- They are actually very dynamic: strong convection and mass ejection. The recent dimming of Betelgeuse is associated to surrounding dust recently ejected from the star.
- Understanding their pre-supernova behaviour is important.
- With interferometry:
 - We can study how the star generates the circumstellar medium. That medium has strong implications in VHE γ -ray and neutrino emission.
 - We can make coarse images and movies of the atmosphere.

Study stellar winds with interferometry

- The wind is probably inhomogeneous ("clumpy") and this inhomogeneity evolves in time
- The star produces a spectral continuum while the stellar wind produces emission lines.
- Let's observe only the **emission lines** (which in fact increases our sensitivity).
- 1. Rough image of the wind.
- 2. "movies" with time evolution.

