Multimessenger Astronomy with MAGIC

Katsuaki Asano (Institute for Cosmic Ray Research, Univ. Tokyo)

"Typical" Multi-messenger Event

Blazars are not dominant source

Blazar <7%

GRB < **1**%

	T _{start}	T _{stop}	TS	n _s	γ	р
PSv2 (2017)	56937.81	57096.22	30.34	14.39	2.20	7e-5
NTv5 (2022)	56927.86	57091.33	18.7	9.21	2.24	1e-3

ICRC2023

Neutrino Source: tension in pp model (hidden?)

Neutrinos from Seyfert, beyond one-zone model

NGC1068 IceCube Collab. 22

Gamma-rays are absorbed. Compact region for neutrino source Different spectrum from the neutrino background.

Other Seyferts

CR acceleration in accretion disk

Jet model Winter & Lunardini20

Clusters of Galaxies

Cosmic rays are deposited in clusters.

Mega Halo:LOFAR detected giant radio structure

Electrons are accelerated by turbulence. Electrons are probably injected as secondary of pp collision.

Coma cluster

Nishiwaki+ 21 Coma

Simulations of Cluster Merger

Nishiwaki & Asano 22

Contribution to IceCube neutrino from clusters

Nishiwaki+23

GeV-TeV stacking?

 $E_{\nu_{\mu}}$ [GeV]

Another messenger: Gravitational wave

GW170817 (KHz GW)

Difficult to detect TeV photons from NSNS mergers

Different frequency

by NANOGrav 15 yr observation

SMBH binary with sub-pc separation

Population study by Agazie+ **23** Contribution of **10**⁹ M_{sun} BH binary with sub-pc separation. Binary fraction is small (?)

SMBH with kpc separation

Chen+ 22

SMBH merger

Magnetized binary

$$L_{\text{Poynt,peak}} \approx 3 \times 10^{43} \text{ erg s}^{-1} \left(\frac{B_0}{10^4 \text{ G}}\right)^2 \left(\frac{M}{10^8 \text{ M}_{\odot}}\right)^2$$

How much fraction for TeV?

time (hours)

0

5

Galactic Neutrinos

IceCube+LHAASO+Tibet

Converted to neutrino flux

LHAASO TeVPA23 Spectral Break

Direct Detection

Proton spectrum Close to the Knee?

Note: how to distinguish diffuse and sources?

Slow electron escape from pulsar wind nebula typically a few hundreds Kyr Important for study of escape with TeV Obs.

Pulsar component consistent with positron CRs

Future AMS data for positrons

AMS-02 ICRC2023

Check with PWN obs. with TeV

Summary

- Neutrinos from Seyfert, TDE, Galaxy Cluster
- Gravitational wave from SMBH binary
- CR protons and PeV gamma-rays
- CR positrons and Escape process from PWN

cherenkov telescope

