Search for direct pair production of sleptons and charginos decaying to two leptons and neutralinos with mass splittings near the W-boson mass in $\sqrt{s} = 13 \text{ TeV } pp$ collisions with the ATLAS detector

arXiv:2209.13935v1 [hep-ex]

Richard Hildebrandt, 19.06.23

Supervisor: Michael Holzbock

Outline:

- 1. Motivation
- 2. Theoretical Background
- 3. Event Selection
- 4. Background Estimation
- 5. Uncertainties
- 6. Results

New Physics Motivation Muon g-2 Anomaly

- *g*-factor in $\mu = g \frac{e}{2m}$ S dimensionless proportionality factor between spin magnetic moment and spin angular moment
- Anomalous magnetic moment $a_{\mu} = \frac{g-2}{2}$
- Recent measurements at Fermi-Lab
- Muons decay into positrons and neutrinos
- Measuring the rate and energy of positrons allows computing the g-factor
- $\frac{g-2}{2}$

https://vms.fnal.gov/asset/detail?recid=1950114

New Physics Motivation Muon g-2 Anomaly

- combined experimental results differ from SM predictions by 4.2σ
- non sufficient SM corrections hint at new physics

New Physics Motivation Muon g-2 Anomaly

- Different theoretical approaches to compute corrections to a_{μ}
- Lattice QCD calculations can be closer to the experimental result, but vary a lot throughout different attempts

https://www.nature.com/articles/s41586-021-03418-1/figures/3

New Physics Motivation Dark Matter

- Observable matter decreases rapidly with increasing radius in galaxies
- Inconsistent with constant rotation speed
- → There need to be unobservable stable particles that make up the "Dark Matter"
- SM does not provide a suitable candidate
 → needs extension

http://www.astro-photography.net/images/ NGC%206503%20rotation%20curve%20annotated.jpg

Supersymmetry (SUSY)

- Predicts a set of new particles
- Minimal Supersymmetric Standard Model (MSSM) introducing minimal number of additional particles
- Mirror image of SM relating bosons and fermions \rightarrow partners differ in spin by 1/2
- Unbroken SUSY would predict particles with same mass as SM counterparts
- \rightarrow SUSY has to be softly broken to allow higher masses

Supersymmetric partners ĝ ũ ĉ gluino d ŝ photino b ν̃_e Ñ, Ñ, zino ẽ wino W μ н higgsino 🔵 squarks sleptons & sneutrinos neutralinos ^x⁰ & charginos ^x[±]

https://ific.uv.es/sct/images/susy_particles.png

MSSM Requirements

- In SUSY it is possible to add baryon- and lepton-number violating terms, which can lead to short time proton decays (experimentally ~10³⁴ years)
- Typically R-Parity conservation is required via a new quantum number: $P_R = (-1)^{3(B-L)+2s}$, yielding 1 for SM and -1 for SUSY particles
- Implications:
 - SUSY particles can only be produced in pairs
 - Lightest supersymmetrical particle (LSP) is stable

https://cds.cern.ch/record/2214349/files/

Relevant SUSY Particles

- MSSM requires two higgs-doublets (down-type and up-type)
- Particles we focus on:
 - Sleptons (selectron and smuon)
 - Chargino (mix of charged winos and higgsinos)
 - Neutralino (mix of neutral binos, winos and higgsinos)
- and higgsinos) winos

Considered SUSY Scenarios

• 2 supersymmetric simplified models: slepton: $pp \to \tilde{\ell}\tilde{\ell} \to \ell\ell + \tilde{\chi}_1^0 \tilde{\chi}_1^0$

chargino: $pp \to \tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} \to \ell \ell + \nu \nu + \tilde{\chi}_1^0 \tilde{\chi}_1^0$

Considered SUSY Scenarios

- The visible final state consists of two leptons in both models, electrons and muons are considered
- Lepton flavour conservation requires same flavour lepton final state for the slepton model but allows both same and different flavor leptons for the chargino model \rightarrow different analysis strategies for each model
- Sparticle masses are only free parameters, focus on mass splittings $m(\tilde{\ell}) - m(\tilde{\chi}_1^0)$ and $m(\tilde{\chi}_1^{\pm}) - m(\tilde{\chi}_1^0)$ near m(W)

Already Examined Regions Slepton Search

- Colored regions are searches from previous papers
- Regions with light neutralinos mostly analyzed already
- Still a gap at ~50GeV

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/ SUSY/ATLAS_SUSY_EWSummary_directsleptons/ ATLAS_SUSY_EWSummary_directsleptons.png

Unexamined Regions Motivation

- Hatched bands display mass regions compatible with the g-2 anomaly
- Worthwhile to close the gap
- This paper takes the same Run 2 dataset and aims to improve the sensitivity at the border region

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-019/fig_15.png

Important Kinematic Variables **Stransverse Mass**

- Useful for events with two invisible particles
- Transverse mass: $m_T^2 = 2p_T q_T (1 \cos(\Delta \phi))$
- $m_{T2}(\mathbf{p}_{T,1}, \mathbf{p}_{T,2}, \mathbf{p}_{T}^{\text{miss}}) = \min_{\mathbf{q}_{T,1}+\mathbf{q}_{T,2}=\mathbf{p}_{T}^{\text{miss}}} \{ \max[m_{T}(\mathbf{p}_{T,1}, \mathbf{q}_{T,1}), m_{T}(\mathbf{p}_{T,2}, \mathbf{q}_{T,2})] \}$
- Gives an upper bound on the mass of the parent of the pair produced particles
- Masses of invisible particles are free parameters and set to 100 GeV, so one is using a variable denoted as $m_{\rm T2}^{100}$

https://arxiv.org/pdf/hep-ph/9906349.pdf

Other Kinematic Variables

- $\cos \theta_{\ell\ell}^* = \tanh(\Delta \eta_{\ell\ell}/2)$ is a measure for the polar angle between incoming quark and the produced sparticle
- identification inefficiencies

• $E_{\rm T}^{\rm miss}$ significance helps to discriminate between events with $E_{\rm T}^{\rm miss}$ arising from invisible particles or poorly measured particles, the \mathbf{p}_{T} resolution and

SM Backgrounds

- Irreducible backgrounds with prompt leptons
 - Dominated by $t\bar{t}$ and diboson (VV) events
- Reducible backgrounds from fake/non-prompt (FNP) leptons

Event Selection Preselection

- LHC Run 2 data set with single lepton trigger thresholds (around 20-300 GeV)
- Oppositely charged signal leptons with GeV and invariant mass $m_{\ell\ell} > 11$ GeV
- Same Flavour (SF) and Different Flavour (DF) event categorization
- SF events: $|m_{\ell\ell} 91 \text{ GeV}| > 15 \text{ GeV}$, reducing VZ and Z+jets backgrounds
- No more than one jet

$$p_{T,\ell_1} > 27 \text{ GeV}, p_{T,\ell_2} > 9$$

Event Selection Slepton Model

- Requirements:
 - SF opposite charge leptons
 - No b-tagged jets (to reduce $t\overline{t}$ and single-top backgrounds)
 - Signal regions (SR) divided into 0J and 1J (multiplicity of non b-tagged jets)
- SR binned in m_{T2} , increases sensitivity to different mass splitting scenarios

Signal region (SR)	SR-0J	SR-1J
$\left. \begin{array}{c} n_{b-\mathrm{tagged jets}} \\ E_{\mathrm{T}}^{\mathrm{miss}} \mathrm{ significance} \end{array} \right $	= (>7)
nnon-b-tagged jets	= 0	= 1
$p_{\mathrm{T}}^{\ell_{1}}$ [GeV]	> 140	> 100
$p_{\mathrm{T}}\ell_{2}$ [GeV]	> 20	> 50
$m_{\ell\ell}$ [GeV]	> 11	> 60
$p_{\rm T \ boost}^{\ell\ell}$ [GeV]	< 5	-
$ \cos\theta_{FF}^* $	< 0.2	< 0.1
$\Delta \phi_{\ell,\ell}$	> 2.2	> 2.8
$\Delta \phi_{p_{\mathrm{T}}^{\mathrm{miss}},\ell_{1}}$	> 2.2	-
Binned SRs		
	∈[100,	105)
	∈[105,	110)
	∈[110,	115)
m^{100} [GeV]	∈[115,	120)
m _{T2} [007]	∈[120,	125)
	€[125,	130)
	∈[130,	140)
	∈[140,	∞)
Inclusive SRs		
	∈[100	,∞)
m ¹⁰⁰ [CeV]	∈[110	,∞)
	∈[120,∞)	
	∈[130	,∞)
	€[140	,∞)

Classification of Chargino Events BDT Classifier Training

- Decision trees used to classify events into signal, background VV, background top and background other with a certain probability based on a set of kinematic variables $(p_T^{\ell_1}, p_T^{\ell_2}, E_T^{\text{miss}}, m_{T2}, m_{\ell\ell}, \Delta\phi_{\text{boost}}, \Delta\phi_{p_T^{\text{miss}}, \ell_1}, \Delta\phi_{p_T^{\text{miss}}, \ell_2}, \cos\theta_{\ell\ell}^*, E_T^{\text{miss}})$
- Gradient Boosted Decision Trees (BDT) uses a machine learning technique where a chain of trees tries to minimize the error of the previous tree
- MC samples of signal and SM background are split into training and test set and further categorized into SF and DF events, the BDT classifier is trained on the two training sets and tested on the statistically independent test sets

Event Selection Chargino Model

- Both SF and DF opposite-charge lepton signals are allowed
- Requirements:
 - Veto against b-tagged jets (reducing) $t\bar{t}$ and t backgrounds)
 - Also non-b-tagged jet veto

Signal region (SR)	SR-DF	SR-SF
nb-tagged jets	= 0	I
nnon-b-tagged jets	= 0	1
$E_{\rm T}^{\rm miss}$ significance	>8	
m _{T2} [GeV]	>5	0
BDT-other		< 0.01
Binned SRs		
	€(0.81,0.8125]	€(0.77,0.775]
	€(0.8125,0.815]	€(0.775,0.78]
	€(0.815,0.8175]	€(0.78,0.785]
	€(0.8175,0.82]	€(0.785,0.79]
	∈(0.82,0.8225]	∈(0.79,0.795]
	€(0.8225,0.825]	€(0.795,0.80]
	€(0.825,0.8275]	∈(0.80,0.81]
BIYE signal	€(0.8275,0.83]	∈(0.81,1]
DD I-Signal	€(0.83,0.8325]	
	€(0.8325,0.835]	
	€(0.835,0.8375]	
	€(0.8375,0.84]	
	€(0.84,0.845]	
	€(0.845,0.85]	
	€(0.85,0.86]	
	€(0.86,1]	
Inclusive SRs		
	∈(0.81,1]	€(0.77,1]
	∈(0.81,1]	
BDT-signal	€(0.82,1]	
	∈(0.83,1]	
	∈(0.84,1]	
	€(0.85,1]	
		€(0.77,1]
		€(0.78,1]
		∈(0.79,1]
		€(0.80,1]

Background Estimation Slepton Model FSB

- Data-driven technique
- SF channel (e^+e^- , $\mu^+\mu^-$) and DF channel ($e\mu$)
- Slepton model only produces SF opposite sign (SFOS) signatures
- Main background processes produce SF and DF leptons with same probability
- Flavour Symmetric Background (FSB) estimation uses DF channel to predict background in the SF channel

Background Estimation Slepton Model

- FSB used to estimate SF Background
- FNP background are estimated via detection efficiencies of prompt leptons in different Control Regions (CR) via the "matrix method"
- Validation Region (VR) uses same selection as SR, but with inverted $\cos\theta_{a}^{*}$
- Data is consistent with expectation

Background Estimation Chargino Model

- Control regions (CR) enriched in the two dominating backgrounds VV and top are used to normalize MC
- CR-top allows b-jet to enrich in top-quark processes
- CR-VV requires higher BDT-VV
- Moving into VRs via increasing signal BDT requirement or reestablishing b-jet veto

Control reg

 $E_{\rm T}^{\rm miss}$ signi $m_{\rm T2}$ [GeV] $n_{\rm non-b-tagge}$

Leptons fla *n*_{*b*-tagged jet} BDT-other BDT-signa BDT-VV BDT-top

Validation

 $E_{\rm T}^{\rm miss}$ signi $m_{
m T2}$ [GeV]

nnon-b-tagge

n_{b-tagged jet} BDT-other BDT-signa BDT-VV BDT-top

gion (CR)		CR-VV			CR-top	
ificance				> 8		
]			:	> 50		
ed jets				= 0		
avour	DF		SF		DF	
ts	= 0		= 0		= 1	
:	-		< 0.01		-	
վ	€ (0.2, 0.65]	•	€ (0.2, 0.65]	∈ (0.	5, 0.7]	∈ (0.
	> 0.2		> 0.2		-	
	< 0.1		< 0.1		-	
region (VR)	VR-VV-DF	VR-VV-SF	VR-top-DF	VR-top-SF	VR-top0J-DF	VR-to
ificance			> 8	3		
]			> 5	0		
ed jets			= 0)		
ts	= 0	= 0	= 1	= 1	= 0	
	-	< 0.01	-	< 0.01	-	
ป	€ (0.65, 0.81] €	(0.65, 0.77]	$\in (0.7, 1]$	€ (0.75, 1]	€ (0.5, 0.81]	€ (0.
	> 0.2	> 0.2	-	-	< 0.15	
	< 0.1	< 0.1	-	-	-	
					이 같은 것은 것을 알려야 할 수 있는 것을 것을 것을 것을 했다.	

Systematic Uncertainties Slepton Model

- Dominating contributions: Region
 - Statistical uncertainty (limited event counts)
 - Flavour symmetric background (FSB) estimation
 - FNP estimation

Region m_{T2} [GeV]

Total backgrou

MC and FSB s FSB estimate FNP leptons $Z/\gamma^* (\rightarrow \ell \ell) + f$ E_T^{miss} modellin Jet energy scal Jet energy reso *b*-tagging Lepton modell

Total systemat

	SR-0J ∈[100,∞)	SR-1J ∈[100,∞)	
und expectation	76	78	
statistical uncertainties	14%	13%	
	9%	9%	
	5%	4%	
jets theoretical uncertainties	< 1%	3%	
ng	2.3%	< 1%	
le	< 1%	< 1%	
olution	< 1%	1%	
	< 1%	< 1%	
ling	1%	< 1%	
tic uncertainty	17%	17%	

Systematic Uncertainties Chargino Model

- Dominant contributions:
 - Modelling $E_{\rm T}^{\rm miss}$ (Pile-Up etc.)
 - Modelling and extrapolating diboson events
 - Modelling of jet energies

Region	$SR_{-SF BDT-signal \in (0.81,1]}^{-DF BDT-signal \in (0.81,1]}$
Total background expectation	630
$E_{\rm T}^{\rm miss}$ modelling	9.1%
Diboson theoretical uncertainties	5.8%
Jet energy scale	5.2%
VV normalization	3.6%
Jet energy resolution	1.7%
MC statistical uncertainties	1.7%
Lepton modelling	1.2%
Top theoretical uncertainties	1%
$t\bar{t}$ normalization	1%
FNP leptons	0.8%
<i>b</i> -tagging	0.7%
$Z/\gamma^* (\rightarrow \ell \ell)$ +jets theoretical uncertainties	0.04%
Total systematic uncertainty	12%

Slepton Results

- Dashed lines give signal expectation for different sparticle masses
- Large discrepancies strictly correlated with statistical fluctuation in DF events used for FSB estimation
- Consistent with SM prediction

Chargino Results

 No significant deviation from SM Background Predictions

Conclusion

- Only small unexplored region developed
- Data consistent with SM
- Slepton masses up to 150 GeV with mass splittings of 50 GeV are excluded with 95% CL

March 2023

PUB-2023-005/fig_15.png

Chargino Search Areas

 Chargino masses up to 140 GeV with mass splittings as low as 100 GeV are excluded with 95% CL

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2023-005/fig 12.png

Smuon Search respectively

 No further exploration of the band regions

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2023-005/fig_16.png

Backup Slides

Old Chargino Searches

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2020-013/ fig_14.png

FSB Estimation Formula

•
$$N_{\rm SF}^{\rm expected} = 0.5 \cdot \left(\kappa + \frac{1}{\kappa}\right) \cdot \alpha \cdot N_{\rm DF}$$
 with $\kappa = 4$

MC Process

https://www.researchgate.net/figure/Illustration-of-the-LHC-simulation-chain-The-forward-direction-is-discussed-in-Secs-2_fig1_370186980