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Motivation

With an increase of beam energy, the size and cost of modern high energy
particle accelerators reach the limit (break down+power)

Plasma can sustain very large electric fields, a few orders of magnitude higher
than the fields in metallic structures

The plasma accelerators (laser driven-LWFA or beam driven-PWFA) developed
rapidly in last 20 years, 50-100GV/m accelerating gradients have been
demonstrated in labs

The novel plasma accelerators can potentially minimize the size and cost of
future machines

Very high energy proton beams are available nowadays, why not use these
proton beam to excite wakefield for electron acceleration?

It will be the PWFA experiment in Europe and first PDPWA experiment around
the world.
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PWFA and PDPWA

Pros. of PWFA

Plasma electrons are expelled by space charge of beam, a nice
bubble will be formed for beam acceleration and focusing.

The short electron beam is relatively easy to have (bunch
compression).

Wakefield phase slippage is not a problem.

Cons. of PWFA

One stage energy gain is limited by transformer ratio, therefore
maximum electron energy is about 100 GeV using SLC
beam.

Easy to be subject to the head erosion due to small mass of
electrons

Pros. of PDPWA

Very high energy proton beam are available today, the energy
stored at SPS, LHC, Tevatron, HERA

SPS (450 GeV, 1.3ell p/bunch) — 10 kJ
LHC (1 TeV, 1.15el11 p/bunch) —~ 20 kJ
LHC (7 TeV, 1.15el11 p/bunch) —~ 140 kJ
SLAC (50 GeV, 2e10 e-/bunch) — 0.1 kJ

g
Cons. of PDPWA =
Flow-in regime responds a relatively low field vs. blow-out regimewg
Long proton bunches (tens centimeters), bunch compressionis R

10 4
5

0 ]

difficult. Al

Wave phase slippage for heavy mass proton beam (small y factor)
especially for a very long plasma channel
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Short proton driver

e A magnetic chicane for bunc

a) Initial phase space
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G. Xia, A. Caldwell et al., Proceedings of PAC09



Short bunch driver

e Self-modulation via plasma wakefield (the transverse two-
stream instability modulates the long bunch into many ultra
short beamlets at plasma wakelength®*.
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Demonstration experiment at CERN

Accelerator chain of CERN (operating or approved projects)
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Demonstration experiment at CERN

e PDPWA has the potential to accelerate electron beam to the TeV scale in a
single stage. As a first step, we would like to demonstrate the scaling laws
of PDPWA in an experiment with an existing beam.

» kick-off meeting-PPAO9 held at CERN last December
e A spare SPS tunnel is available for demonstration experlment

With no bunch compression in thebeglnnlng

PPA@CERN

SPS proton beam

10" p per bunch

Energy: 300-450 GeV
Emittance: 6 nm (450 GeV)
Bunch length: 12 cm (rms)
Rel. energy spread: 3 x 10

http://indico.cern.ch/conferenceDisplay.py?confld=74552
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PS vs. SPS
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Simulation shows that SPS beam can drive a higher
plasma wakefield compared to the PS beam. This is largely
due to the smaller emittance of the SPS beam. The lower
emittance of SPS beam allows the instability to develop
before the beam diverges due to the angular spread.
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Codes benchmarking

TaBLE 1. PS, SPS and LHC parameter sets. The different symbols are
defined in the text. SPS-LHC means the standard parameters of bunches
in the SPS for injection into the LHC. SPS-Totem means the special pa-
rameters for bunches for use by the Totem experiment.

Parameter PS | SPS-LHC | SPS5-Totem | LHC
Ep (GeV) 24 450 450 7000
Np (1019 13 11.5 3.0 11.5
opp (MeV) | 12 135 80 700
0.0 (cm) 20 12 8 7.6
o (pm) 400 200 100 100
c/wp (M) 2.3 4.0 3.2 6.3
ogp (mrad) | 0.25 0.04 0.02 0.005
Ly (m) 1.6 5 5 20

¢ (mm-mrad) | 0.1 0.008 0.002 5-107*

Various particle-in-cell (PIC) codes are used to benchmark the results
based on same parameter set. Presently they show very good agreement



Seeding the instability

Seed the instability via laser or electron beam prior to the proton beam (the
instability will not start from random noise, rather from a well-defined
seeded field

The instability is seeded via half-cut beam (beam density abruptly increases)
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For SPS half-cut beam, at plasma density n =10"* cm- (A ~3.33 mm)
A strong beam density modulation is observed,

A nice wakefield structure is excited and

the wakefield amplitude is around 100 MV/m at 5 m plasma.

VLPL results from A. Pukhov




Simulations of SPS beam-driven PWFA

]

o

Elc/w

gle/w,]

500
200
300 E
200 £
100 |

s=48m

600 E

X[c/w]

X[c/w,]

Beam density modulation

QuickPIC results from C. Huang

Half-cut

SPS beam
@4.8m plasma
(n,=10"* cm)

Full SPS beam
@ 10m plasma

(n,=10"* cm-)

s=48m
E ||||||||| |||II;§;III|| |||||||| E .
600 _ —— _E 004 T
500 E— —— —i h:ﬂ
I — =— = 177002 3
? 400 E = 3 é
-~ — 371000 5
O, 300 g = — E ()
an E = E B =
200 E = = j 002w
£ = D
100 E = |l -0.04 S
0 E |||||||| | ||||||||| | ||||||||| | |||||||| é
-2 1 0 1 2
Xle/wl
-Iﬁﬂ
z
x[e/ wy, ]

Maximum longitudinal e field is ~120 MV/m



Ez (MV/m)

Simulations of SPS beam-driven PWFA

Simulation from 2D OSIRIS
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Plasma density variation
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~ 900 MV/m field propagates
stably for 200 m!

Increasing the plasma density properly at the moment of developed instability, the wave
shift with respect to the main body of the beam will be stopped and one can obtain a
stable bunch train that propagates in plasma for a long distance



Electron acceleration

Longitudinal electron phase space

SPS beam sigma=0.1mm, plasma wavelength 1.2 mm
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Demonstration experiment at CERN

Scientific Goal of Experiments:
e Initial goal is to observe the energy gain of 1 GeV in 5 m plasma.

e A plan for reaching 100 GeV within 100 m plasma will be developed based on
the initial round of experiments

Experimental Setup:

Foils for coherent transition

Electro-optical radiation (CTR)

li t .
Sampiing system Dipole magnet

10Tm
Proton bunch i
Np =~ 10" S
Modulated ,
150 GeV proton bunch -
g & 12 cm A=1—-3mm Beam profile /
o, ~ 1 mm _ measurement
o-~1—5mm Dump
E = 449 — 451 GeV Perhaps streak
camera to also
get time
dependence

Expected Results:

= A long SPS drive beam (without compression) will be used in the first
experiment. a self-modulation of the beam due to two-stream instability
which produces many ultrashort beam slices at plasam.

e The modulation resonantly drives wakefield in the 200-500 MV/m with CERN
SPS beam.

e Simulation shows with the optimum beam and plasma parameters, =2 1 GV/m
field can be achieved in the experiment.



Status and outlook

O We have very strong simulation teams around the worlid
(UCLA, LANL, BINP, Dusseldorf Univ. IST)

0 Phone conferences biweekly to exchange the results

O A face-to-face meeting next year in London to discuss what
to put in the Letter of Intent

0 The PDPWA demonstration experiment will be proposed as
a future project

U Simulation shows that working in self-modulation regime,
SPS beam can excite the field around 1 GV/m with a high
density plasma.

O Future experiment will be carried out based upon the first
round experiments.



Status of the FCD Experlment

The proton spectra have been i ? e It
measured without the gas cell. *-ﬁj TP‘
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Next Step: New gas feedthroughs
with 3 times larger diameters are The Frictional Cooling Demonstration
being manufactured, after which Experiment is searching for a new

the Frictional cooling data will be method of efficiently reducing the
taken. beam emittance



International Linear Collider-ILC

The next big thing. After LHC,
a lepton Collider of over 30 km

length, will probably be needed,
to complement the LHC.

Max. COM. energy 500 GeV
Peak Luminosity ~2x10%* | 1/cm?3s
Beam Current 9.0 mA
Repetition rate 5 Hz
Aver. accelerating gradient 31.5 MV/m
Beam pulse length 0.95 ms
Total Site Length 31 km
Total AC Power ~230 MW

Consumption




Machine layout

damping

et source __
& prelinac

& e source
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e bunch e* bunch

compressor e linac —» — < e linac compressor
< ; <= g transport line \

/ e* transport line = ‘

Subsystems:

e+, e- sources, damping rings, main linacs, beam delivery
systems, IPs, beam dumps

Features:

e Two linear accelerators, with tiny intense beams of
electrons and positrons colliding head-on-head

e Total length — 30 km long (comparable scale to LHC)
e COM energy = 500 GeV, upgradeable to 1 TeV



R&D Goals for Technical Design

Accelerator Design and Integration (AD&I)

e Studies of possible cost reduction designs and
strategies for consideration in a re-baseline In
2010

f SCRF

e High Gradient R&D - globally coordinated program
to demonstrate gradient by 2010 with 50%6 yield;

ATF-2 at KEK

e Demonstrate Fast Kicker performance and Final
Focus Design

Electron Cloud Mitigation — (CesrTA)

e Electron Cloud tests at Cornell to establish
mitigation and verify one damping ring is sufficient.




Why change from RDR design?

e Timescale of ILC demands we continually update the
technologies and evolve the design to be prepared to
build the most forward looking machine at the time of
construction.

e Our next big milestone — the technical design
(TDR) at end of 2012 should be as much as

possible a ““construction project ready” design
with crucial R&D demonstrations complete and
design optimised for performance to cost to risk.

e Cost containment vs RDR costs is a crucial
element. (Must identify costs savings that will
compensate cost growth)



Technical Design Phase and Beyond

change control process

mé?DR Baseline I T SB2009 evolv> TDP Baseline

Technical Design

TDP-2

TDP-1 |

Chahge
Request

—

ERDR Alternate concepts

doysiom bulliag
doys3Jom NY3D

R&D Demonstrations

\ A 4

AD&I studies %
= m

2009 2010 2011 2012 - 2013




Proposed Design changes for TDR

L=

e Single Tunnel for main linac-
approved!

*Move positron source to end
of linac

 Reduce number of bunches
factor of two (lower power)

* Reduce size of damping
rings (3.2km)

* Integrate central region

*Single stage bunch
compressor



Single tunnel configuration
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The ILC SCRF Cavity

Figure1.2-1: A TESLA nine-cell 1.3 GHz superconducting niobium cavity.

» Achieve high gradient (35MV/m); develop multiple

vendors; make cost effective, etc

» Focus is on high gradient; production yields; cryogenic
losses; radiation; system performance



SCRF cavity production yield

Standard Yield Plot (Pass ll)

TDP/R&D plan release 5

yield [%]
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Electron cloud studies at CESR-TA
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Summary

Proton driven plasma wakefield accelerator has potential to
take electron beam to the energy frontier in a single stage
of acceleration

We will propose an experimental study of PDPWA and will
use the existing proton beam from the CERN SPS

Simulation shows that working in the self-modulation
regime, we could achieve 1 GeV energy gain within 5 m
plasma

Muon cooling experiment is still ongoing in lab and we
expect more result will come in this year. We will measure
the equilibrium energy of protons will be measured in
various conditions, e.g. gas pressure, electric fields

ILC, enters the TDR phase, and currently more effort has
been put on the design optimization and cost reduction.
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