Multi-loop results for the anomalous magnetic moment of the muon

Christian Sturm

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Föhringer Ring 6 80805 München

- I. Introduction & Motivation
- П. Outline of the calculation
- 111 **Results & Discussion**
- IV. Summary & Conclusion

In collaboration with: P.A. Baikov and K.G. Chetyrkin Nucl. Phys. B183 (Proc.Suppl.) + work in preparation ...

Generalities; Anomalous magnetic moment of a lepton: a_{ℓ}

- Magnetic moment of any system:
 - I.) Motion of el. charges

- II.) Intrinsic mag. moments of elementary particles
- Dirac theory predicts for a lepton $\ell = e, \mu, \tau$:

$$ec{\mu_\ell} = g_\ell \left(rac{e}{2m_\ell}
ight) ec{S}, \quad g_\ell = 2$$
 (free, non-interacting)

• Quantum fluctuations: \rightsquigarrow deviation from $g_{\ell} = 2$: parametrized by

 $g_\ell = 2(1 + \frac{a_\ell}{a_\ell})$ \rightsquigarrow precises test of QFT

Introduction

Generalities; Anomalous magnetic moment of the muon: a_{μ}

More formally:

$$= \bar{u}(p_1) \left[\gamma^{\mu} F_E(p^2) + i \frac{\sigma^{\mu\nu} p_{\nu}}{2m_{\mu}} F_M(p^2) \right] u(p_2)$$

- In the static limit $(p^2 \rightarrow 0)$: $F_E(0) = 1$, $F_M(0) = a_\mu$
- Muon very interesting:

Quantum fluctuations due to heavier particles M:

$$rac{\delta a_\ell}{a_\ell} \propto rac{m_\ell^2}{M^2} \qquad (M>>m_\ell)$$

M heavy SM or BSM particle

ratio: m_{μ}/m_e ~200

Higher sensitivity to physics beyond SM

- \rightarrow Consider anomalous magnetic moment of muon
- Loop calculations not only mathematical task to increase precisions ~→ also allow to access energy regimes not yet reachable by collider experiments through virtual particles

Higher order corrections are classified into 3 classes:

$$m{a}^{ extsf{SM}}_{\mu} = m{a}^{ extsf{QED}}_{\mu} + m{a}^{ extsf{EW}}_{\mu} + m{a}^{ extsf{Hac}}_{\mu}$$

- The QED part is known to 4-loops (and leading terms in 5 loops!) (next slides)
- The EW part is known to 2-loops R. Jackiw, S. Weinberg; G. Altarelli et al.; I. Bars, M. Yoshimura; A. Czarnecki et al.
- The hadronic part is known but with limited accuracy Bouchiat, et al.; M. Gourdin, et al.; Brodsky, de Rafael; Hagiwara et al.; Alemany et al.; Davier et al.; Passera et al. Dominant theoretical uncertainties to the muon anomaly Effects at present not from first principles

Introduction

Theory: QED contributions to a_{μ}

Introduction Experiment

Introduction

Experiment

http://www.g-2.bnl.gov/

muon momentum: 3.094 GeV, Radius: 7.112 m, field: 1.45 T

Multi-loop results for the anomalous magnetic moment of the muon C. Sturm

The value

The present experimental value is terrifically accurate!:

 $a_{\mu}^{ ext{exp}} = 116592080(63)\cdot 10^{-11}$

E821: Final Report: PRD73 (2006)

with statistical error(54 \cdot 10 $^{-11}) and systematic error(33 <math display="inline">\cdot$ 10 $^{-11})$

→ Improvement of a factor of 14 compared to the classic CERN experiment

• QED four-loop contributes as much as $380.8 \cdot 10^{-11}$ (compared to the exp. uncertainty of $\sim 60 - 70 \cdot 10^{-11}$)

•1 $a^{\rm SM}_{\mu} = 116591834(2)(41)(26) \cdot 10^{-11}$

The current theory prediction shows an "interesting but not yet conclusive discrepancy" of $\sim 3.2\sigma$ (or $\sim 1.9\sigma$ if one uses τ -data to describe the hadronic effects) •² Update, new data (KLOE, BABAR): e^+e^- based: 3.6σ , τ -data: 2.4σ

Calculation

...back to theory, some diagrams...

- 12672 diagrams
- 6 classes (I VI), 32 gauge invariant subsets
- (For simplicity external photon omitted)

•: Kinoshita et al.

Calculation

٧

logarithmically enhanced contributions

There are 2 sources of numerically leading enhanced logs of large ratio $\frac{M_{\mu}}{m_{e}} = 206.7682838$ pure QED contributions: $(\frac{\lambda}{\pi})^{3} \left(\frac{2\pi^{2}}{3}\ln\left(\frac{M_{\mu}}{m_{e}}\right) + ...\right),$ $(\frac{\lambda}{\pi})^{2} \left(\frac{1}{3}\ln\left(\frac{M_{\mu}}{m_{e}}\right) + ...\right)$ UBL: light by light scattering

 \rightarrow We will consider mixed VP insertions: photon propagator composed from electron loops and photon exchanges only!

$$a_{\mu} = \frac{\alpha}{\pi} \int_{0}^{1} dx (1-x) \left[\frac{d_{R}}{d_{R}} \left(\frac{-x^{2}}{1-x} \frac{M_{\mu}}{m_{e}}, \alpha \right) - 1 \right] \text{ B. Lautrup, de Rafael}$$
with $d_{R}(q^{2}/m^{2}, \alpha) = 1/(1 + \alpha \Pi^{\text{os}}(q^{2}/m^{2}_{e}, \alpha^{\text{os}}))$
 Π^{os} proper photon VP in OS-scheme
$$m_{e}$$

$$\Pi(q^2) \sim \underbrace{\overset{q}{\longrightarrow}}_{q} \ldots \ldots$$

Vacuum polarization function

Required ingredients for the calculation:

- Vacuum polarization function
 - High-energy limit \rightarrow massless propagators The value of $\overline{\Pi}(Q^2, m = 0, \overline{\alpha})$ is known at 4-loops with Baicer (P. Baikov, 2000-2008) in MS-scheme

P.A. Baikov, K.G. Chetyrkin, J.H. Kühn

Traditionally in calculations of a_{ℓ} everybody uses the classical on-shell scheme:

 α and all lepton masses are on-shell (OS) and:

$$\Pi^{\rm OS}(\mathbf{Q}=\mathbf{0},\boldsymbol{m},\boldsymbol{\alpha}^{\rm OS})=\mathbf{0}$$

 \rightsquigarrow Transform massless propagator from $\overline{\text{MS}} \rightarrow \text{on-shell scheme}$

■ <u>Need:</u> $\overline{MS} \leftrightarrow$ on-shell relation at 4-loop for fine structure constant conversion: $\overline{\alpha} \rightarrow \alpha^{os}$

■ In QED MS in OS-schemes are related through:

$$\frac{\alpha^{\text{os}}}{1 + \Pi^{\text{os}}(Q, m, \alpha^{\text{os}})} = \frac{\overline{\alpha}}{1 + \overline{\Pi}(Q, \overline{m}, \overline{\alpha})}$$

scheme invariant concept of the invariant charge

$$\underline{\text{Required:}} \Pi(Q = 0, \overline{m}, \overline{\alpha})
 \overline{\Pi}(q^2) \sim \underbrace{\overset{q}{=}}_{\substack{m_{e} \\ q \neq m_{e}}} \underbrace{\overset{q}{=}}_{\substack{m_{e} \\ q \neq m_{e}}}
 \text{Inversion} \rightsquigarrow \overline{\alpha} = \alpha^{\text{os}} \left(1 + \sum_{i \geq 1} C_{\overline{\alpha}\alpha}^{(i)} \left(\frac{\alpha^{\text{os}}}{\pi}\right)^{i}\right)$$

■ <u>Need:</u> $\overline{\text{MS}} \leftrightarrow \text{On-shell relation for conversion of lepton mass <math>m_{\ell}$ at 3-loop Steinhauser, Chetyrkin; Melnikov, van Ritbergen

Result

MS-OS-relation for conversion of fine structure constant

$$\overline{\alpha} = \alpha^{\mathsf{OS}} \left(1 + \sum_{i \ge 1} \mathsf{C}_{\overline{\alpha}\alpha}^{(i)} \left(\frac{\alpha \mathsf{OS}}{\pi} \right)^i \right)$$

$$\begin{split} \mathbf{C}_{\alpha\alpha}^{(4)} &= \frac{14327767}{9331200} + \frac{8791}{3240} \pi^2 + \frac{204631}{259200} \pi^4 - \frac{175949}{4800} \zeta_3 + \frac{1}{24} \pi^2 \zeta_3 + \frac{9887}{480} \zeta_5 - \frac{595}{108} \pi^2 \ln 2 \\ &- \frac{106}{675} \pi^4 \ln 2 + \frac{6121}{2160} \pi^2 \ln^2 2 - \frac{32}{135} \pi^2 \ln^3 2 - \frac{6121}{2160} \ln^4 2 + \frac{32}{225} \ln^5 2 - \frac{6121}{90} a_4 - \frac{256}{15} a_5 \\ &+ \ell_{\mu m} \left[-\frac{383}{31104} + \frac{23}{108} \pi^2 - \frac{41}{144} \zeta_3 - \frac{2}{9} \pi^2 \ln 2 \right] + \frac{43}{144} \ell_{\mu m}^2 + \frac{13}{108} \ell_{\mu m}^3 + \frac{1}{81} \ell_{\mu m}^4, \\ \ell_{\mu m} &= \ln \frac{\mu}{m}, \quad a_n = \mathrm{Li}_n \left(\frac{1}{2} \right) \end{split}$$

Important: $\Pi(q^2/m^2, \alpha) = \Pi^{\infty}(q^2/m^2, \alpha) + \mathcal{O}(m^2/q^2)$ then the resulting error in a_{μ} will be:

$$\mathbf{a}_{\mu} = \frac{\alpha}{\pi} \int_{0}^{1} d\mathbf{x} (1 - \mathbf{x}) \left[d_{R}^{\infty} \left(\frac{-\mathbf{x}^{2}}{1 - \mathbf{x}} \frac{M_{\mu}}{m_{e}}, \alpha \right) - 1 \right] + \mathcal{O} \left(\frac{m_{e}}{M_{\mu}} \right)$$

of order m_e/M_μ with $d_R^\infty = 1/(1 + \alpha \Pi^\infty)$

The resulting contributions to a_{μ} coming from 4-loop terms in the photon propagator read :

$$\begin{aligned} a_{\mu}^{\text{asymp.}} &= \sum_{i \ge 2} a_{\mu}^{\text{asymp.}(i)} \left(\frac{\alpha}{\pi}\right)^{i} \\ a_{\mu}^{\text{asymp.}(5)} &= -\frac{296496193}{41990400} + \frac{45709}{58320} \pi^{2} + \frac{212701}{518400} \pi^{4} - \frac{4488523}{259200} \zeta_{3} + \frac{35}{144} \pi^{2} \zeta_{3} + \frac{4}{3} \zeta_{3}^{2} + \frac{10909}{720} \zeta_{5} \\ &+ \frac{35}{8} \zeta_{7} - \frac{55}{24} \pi^{2} \ln 2 - \frac{53}{675} \pi^{4} \ln 2 + \frac{6121}{4320} \pi^{2} \ln^{2} 2 - \frac{16}{135} \pi^{2} \ln^{3} 2 - \frac{6121}{4320} \ln^{4} 2 \\ &+ \frac{16}{225} \ln^{5} 2 - \frac{6121}{180} a_{4} - \frac{128}{15} a_{5} + \ell_{\mu e} \left[\frac{1416095}{279936} + \frac{41}{972} \pi^{2} - \frac{1855}{432} \zeta_{3} - \frac{10}{3} \zeta_{5} - \frac{2}{9} \pi^{2} \ln 2 \right] \\ &+ \ell_{\mu e}^{2} \left[-\frac{1507}{1944} + \frac{8}{81} \pi^{2} + \frac{4}{3} \zeta_{3} \right] - \frac{83}{243} \ell_{\mu e}^{3} + \frac{8}{81} \ell_{\mu e}^{4} + \mathcal{O}(\frac{m_{e}}{M_{\mu}}), \quad \ell_{\mu e} = \ln \frac{M_{\mu}}{m_{e}}, \ a_{n} = \text{Li}_{n} \left(\frac{1}{2}\right) \\ \hline \frac{\text{Numerically:}}{(\text{compared to} \left(\frac{\alpha}{\pi}\right)^{5} 62.2667 = 0.42105 \cdot 10^{-11} \\ (\text{compared to} \left(\frac{\alpha}{\pi}\right)^{5} 663(20)) \end{aligned}$$

Comparison

Subset	analytical	numerical	
I(j)	-1.21429+ $O(\frac{m_e}{m_{\mu}})$	-1.24726(12)	~
l(i)	$+0.25237+\mathcal{O}(\frac{m_{\theta}}{m_{H}})$	-	
l(g) + l(h)	+1.50112+ $O(\frac{m_{\theta}}{m_{\mu}})$	+1.56070(64)	~
<i>l(f)</i>	+2.89019+ $\mathcal{O}(\frac{m_{e}}{m_{u}})$	+2.88598(9)	~
l(e)	$-1.33141 + O(\frac{m_{\theta}^{\mu}}{m_{\mu}})$	-1.20841(70)	~
<i>l</i> (<i>d</i>)	+7.44918+ $\mathcal{O}(\frac{m_{\theta}^{2}}{m_{H}})$	+7.45270(88)	~
<i>l(c)</i>	+4.81759+ $\mathcal{O}(\frac{m_{\theta}^{\mu}}{m_{\mu}})$	+4.74212(14)	~
l(b)	+27.7188+ $\mathcal{O}(\frac{m_{\theta}^{2}}{m_{\mu}})$	+27.69038(30)	r
l(a)	+20.1832+ $O(\frac{m_{\theta}}{m_{\mu}})$	+20.14293(23)	~

-Numerics from: T. Aoyama, M. Hayakawa, T. Kinoshita, M. Nio, N. Watanabe (2008) M. Nio, T. Aoyama, M. Hayakawa, T. Kinoshita (2007) and T. Kinoshita. M. Nio (2006)

I(f)

I(a)

-Remaining differences should come from power suppressed corrections to the asymptotic result of $\mathcal{O}(m_e/M_{\mu})$

-Agreement with Kataev, where available

- Analytical and numerical methods successfully help each other in computing the QED contribution to a_μ
- The conversions formula for α^{OS}/α^{MS} is evaluated to 4-loops
 ⇒ one could reexpress any QED order α⁵ result in terms of the running α^{MS} or vice versa
- The asymptotic contribution to the vacuum polarization part of *a_μ* in order α⁵ (5-loop) is computed
 ⇒ completely supports the numerical result of the Kinoshita group

