Indirect Dark Matter Searches with Gamma-Ray Lines

Christoph Weniger

Max-Planck-Institut für Physik, München

Project Review MPP 2010

Based on **JCAP 1003 (2010) 024** and **arXiv:1011.3786** (with Chiara Arina, Mathias Garny, Thomas Hambye, Alejandro Ibarra, David Tran) and on ongoing work with **Gilles Vertongen** (to appear soon)

20 Dec 2010

Outline

I. Introduction

II. Theory

Three decaying dark matter scenarios

III. Experiment

Searching for gamma-ray lines with Fermi LAT

IV. Conclusions

I. Introduction

Evidence for non-baryonic Dark Matter

The "WIMP Miracle"

Annihilation never stopped and is potentially observable in the cosmic-ray signals today e.g. via $XX \rightarrow b\bar{b}, \gamma Z, ...$

A Weakly Interacting Massive Particle (WIMP), initially in thermal equilibrium with the rest of the Universe, freezes out with a relic density given by

$$\Omega_X \propto rac{1}{\langle \sigma v \rangle} \sim rac{M_X^2}{lpha^2}$$
 $M_X \simeq 100 \; {
m GeV} \Rightarrow \Omega_X \sim 0.1$

==> WIMPs naturally reproduce the observed relic density.

WIMPs and gamma-ray lines

Gamma-ray line

→ new physics

(no astrophysical background)

MSSM neutralino annihilates into gamma-ray lines only **at one loop** via

$$\chi_1^0 \chi_1^0 \to \gamma \gamma, Z \gamma$$

→ difficult to observe

[Rudaz et al. (1991), Bergstrom et al. (1997), ...]

[Gustafsson et al. (2010)]

Many scenarios with enhanced lines exist:

- Singlet Dark Matter [Profumo et al. (2010)]
- Hidden U(1) dark matter [Mambrini (2009)]
- Effective DM scenarios [Goodman et al. (2010)]
- "Higgs in Space!" [Jackson et al. (2010)]
- Inert Higgs Dark Matter [Gustafsson et al. (2010)]
- Kaluza-Klein dark matter in UED scenarios [Bertone et al. (2009]

Decaying Dark Matter and Gamma-ray lines

II. Theory Three decaying dark matter scenarios

A) Gravitino Dark Matter

Gravitino dark matter with R-parity violation

- Gravitinos: spin-3/2 fermions predicted in super-gravity
- Gravitino LSPs are very good non-WIMP dark matter candidates
- If reheating temperature of Universe is high (e.g. thermal leptogenesis scenarios), overclosure bound implies $m_{3/2}\gtrsim 10{
 m GeV}$
 - → this gives rise to long-lived NLSPs in conflict with BBN
- The NLSP problem can be solved by allowing a small violation of R-parity

[Buchmüller et al. (2007)]

$$W \simeq \lambda_{ijk} L_i L_j e_k^c$$
 $10^{-14} \lesssim \lambda \lesssim 10^{-7}$

- I) Allows decay of NLSP before onset of BBN
- II) Implies that gravitino is unstable with cosmological lifetimes

Decay channels of NLSP (e.g. stau):

$$\tilde{\tau}_1 \to \tau \nu$$

(LHC) ◀

[Takayama et al. (2000), Bertone et al. (2007)]

Decay channels of gravitino:

$$\psi_{3/2} \rightarrow \gamma \nu$$

(cosmic rays)

Linked by strength of R-parity violation

 $\psi_{3/2} o W^\pm \ell^\mp$ [Ibarra, Tran (2008)]

B) The "dim-6 miracle" of DM decay

Is there a generic reason for a DM lifetime close to experimental limit ($\sim 10^{27}$ s)?

If the symmetry stabilizing dark matter is violated by **dim-6 operators at** the **Grand Unification scale**, the corresponding DM lifetime is automatically in the ball park of what is **accessible by cosmic-ray experiments!**

$$\tau_{\rm DM} \sim 8\pi \frac{M_*^4}{M_{\rm DM}^5} \simeq 3 \times 10^{27} \text{ s} \left(\frac{M_*}{2 \times 10^{16} \text{ GeV}}\right)^4 \left(\frac{1 \text{ TeV}}{M_{\rm DM}}\right)^5$$

[Eichler (1989), Arvanitaki et al. (2009), ...]

Example: SU(2)_x Vector Dark Matter

Setup: SM + hidden SU(2)_x gauge group with hidden higgs

$$\mathcal{L} = \mathcal{L}^{SM} - \underbrace{\frac{1}{4g_{\phi}^{2}} F^{\mu\nu} \cdot F_{\mu\nu} + (\mathcal{D}_{\mu}\phi)^{\dagger} (\mathcal{D}^{\mu}\phi) - \mu_{\phi}^{2}\phi^{\dagger}\phi - \lambda_{\phi}(\phi^{\dagger}\phi)^{2}}_{\text{connection SM/HS}} - \underbrace{\lambda_{m}\phi^{\dagger}\phi H^{\dagger}H}_{\text{connection SM/HS}}$$

- SU(2) $_{_{\mathrm{X}}}$ breaks when hidden higgs condenses: $~\mu_{\phi}^2 < 0$
- A custodial $SO(3)_{\chi}$ symmetry survives $\rightarrow SU(2)_{\chi}$ vector bosons remain stable and are WIMP dark matter
- Custodial symmetry in general broken by higher dim. operators:

$$\frac{1}{\Lambda^2} \mathcal{D}^{\mu} \phi^{\dagger} \phi \mathcal{D}_{\mu} H^{\dagger} H \qquad \frac{1}{\Lambda^2} \mathcal{D}_{\mu} \phi^{\dagger} \mathcal{D}_{\nu} \phi F^{\mu\nu Y} \qquad \frac{1}{\Lambda^2} \phi^{\dagger} F^a_{\mu\nu} \frac{\tau^a}{2} \phi F^{\mu\nu Y}$$

Decay channels include tree-level gamma-ray lines

$$A_i \rightarrow \gamma \eta, \gamma h, Z \eta, Z h, W^+W^-, \nu \bar{\nu}, e^+e^-, \dots$$

[Arina, Hambye, Ibarra, CW (2009)]

Exemplary gamma-ray spectrum

$$\frac{1}{\Lambda^2} \, \mathcal{D}_{\mu} \phi^{\dagger} \mathcal{D}_{\nu} \phi \, F^{\mu\nu Y}$$

 $M_A = 1550 \,\text{GeV} \ M_\eta = 1245 \,\text{GeV} \ M_h = 153 \,\text{GeV} \ \sin \beta \approx 0.25$

C) Models motivated by PAMELA anomaly

Ad-hoc decay channel:

$$\psi_{\rm DM} \to \mu^+ \mu^- \nu$$

$$M_{\rm DM} \simeq 3.5 \; {\rm TeV}$$

$$\tau_{\rm DM} \simeq 1.1 \times 10^{26} \, \mathrm{s}$$

Other possible explanations

- Dark Matter annihilation
- Nearby Pulsars
- Non-standard cosmic-ray propagation
- ...

[lbarra, Tran, CW (2009)]

Gamma-Ray Lines: Closing the loop

Monochromatic gamma rays can be produced on one-loop level.

 Experiments are very sensitive to gamma-ray lines → this can potentially compensate the loop-suppression of the decay

One-loop decay:

III. Experiment

Searching for gamma-ray lines with Fermi LAT

The Fermi Large Area Telescope

Fermi Large Area Telescope (LAT) Overview:

- Pair conversion detector
- The LAT is the main instrument of on board of the Fermi Gamma-Ray Space Telescope
- Main energy range: 30 MeV 300 GeV
- Good energy resolution: ~10%
- Large field of view: FOV ~ 2.4sr
- Is taking data since Aug 2008

Data as well as analysis software <u>publicly</u> available!

Where to look for gamma-ray lines?

<u>Target region</u> should maximize the signal-to-noise ratio S/N, depending on angular profile of expected signal

Data analysis

Calculating limits mainly statistical problem

- Astrophysical backgrounds can be locally modeled by simple power-law
- Spectral shape of line signal completely determined by detector response to monochromatic photons

Model for BG (2 d.o.f.) and Line (1 d.o.f.):
$$\frac{dJ}{dE} = \alpha E^{-\gamma} + \beta \mathcal{D}(E, E_{\gamma})$$

Significance of line

- can be calculated by profile-likelihood method
- e.g. 5-sigma line requires:

$$-2\log\frac{L_{\beta=0}^{\max}}{L_{\beta>0}^{\max}} \gtrsim 25$$

No Line found between 1 and 500 GeV at 5σ level \rightarrow we show limits at 2σ

Limits on WIMP annihilation $\chi_1^0 \chi_1^0 \rightarrow \gamma \gamma$

Limits on dark matter masses from 1 to 500 GeV

- Previous Fermi LAT results are extended to higher and lower energies
- Previous EGRET results at energies <10 GeV improved by a factor of a few

Lower limits on DM inverse decay width into $\gamma\nu$ (halo region)

Limits on dark matter masses from 2 GeV to 1 TeV

- Previous Fermi LAT results are extended to higher and lower energies
- New limits below masses of 60 GeV are relevant for gravitino dark matter:
 lower limits on gravitino lifetime → upper limits on R-parity violation

Gravitino dark matter with stau NLSP

Lower limits on stau NLSP decay length:

Long lived stau at LHC

- shows up as ionizing track
- decay visible via displaced vertex, decay lengths up to few km can be detected (since some particles decay inside collider) [Ishiwata et al. (2008)]
- Fermi LAT bounds \rightarrow for typical masses and light (~10 GeV) gravitinos decay lengths down to O(10 m) possible

Beyond 500 GeV: Gamma-ray lines at CTA?

Beyond 500 GeV Air Cherenkov Telescopes become important

- High energies relevant for DM interpretation of PAMELA positron anomaly
- Observing gamma-ray signals from DM <u>decay</u> is very difficult: DM signal is mostly isotropic ↔ difficult to reject cosmic-ray background

• Future **Cherenkov Telescope Array** (CTA) might improve limits considerably [Garny, Ibarra, Tran, CW (2010)]

IV. Conclusions

Conclusions

- Gamma-ray lines are very clean indirect dark matter signatures
- Sizable lines are predicted in many dark matter models
- Decaying dark matter examples include: Gravitinos,
 SU(2) vector dark matter, lines at one-loop level
- Analysis of Fermi LAT data shows no significant lines between 1 and 500 GeV; 2σ limits on DM cross section and lifetime were derived
- Gravitino dark matter scenario: Fermi LAT implies minimal NLSP decay lengths of O(10m) and below → accessible at the LHC

Conclusions

- Gamma-ray lines are very clean indirect dark matter signatures
- Sizable lines are predicted in many dark matter models
- Decaying dark matter examples include: Gravitinos,
 SU(2) vector dark matter, lines at one-loop level
- Analysis of Fermi LAT data shows no significant lines between 1 and 500 GeV; 2σ limits on DM cross section and lifetime were derived
- Gravitino dark matter scenario: Fermi LAT implies minimal NLSP decay lengths of O(10m) and below → accessible at the LHC

Thank you & merry Christmas