Searches for Leptoquarks at the ATLAS Detector

Daniel Buchin

LHC Seminar

Max Planck Institute for Physics, Munich

26th June, 2023

MAX PLANCK INSTITUTE FOR PHYSICS

Leptoquark Introduction

- Theoretically motivated by e.g. Grand Unified Theories
- Appealing solutions to observed flavour anomalies in e.g. B-Factories
- Couple simultaneously to leptons and quarks:
 - \rightarrow Carry both colour and electric charge
 - \rightarrow **Baryon** and **lepton number** both non-zero
 - \rightarrow Typically decay into lepton-quark pair

Wide variety of candidates!

- Scalar or vector boson
- Different electric charges possible \rightarrow 1/3, 2/3, 4/3, 5/3
- Couplings λ_{ij} to any combination of fermion generations allowed

Scalar Leptoquarks:

- Scalar leptoquarks and their interactions can be added to the Standard Model (SM)
- No larger theoretical framework needed (simple addition of Yukawa terms to the Lagrangian of the SM) $\mathcal{L} \supset \lambda_{eu} \operatorname{LQ}_{eu} (E^c U^c)^* + \text{h.c.}$

Vector Leptoquarks:

- Vector leptoquark models introduce new gauge interaction, always in need of UV completion
- These UV completing theories yield more heavy-mass particles even in the minimal scenario
 - \rightarrow E.g.: colouron g' and heavy "Z" Z'
- Coupling to other gauge bosons also depends on UV completion ("Yang-Mills" vs "Minimal Coupling")

Leptoquarks in Lepton Flavour Violation

- Multiple experiments have shown tensions to the SM in measurements of the Lepton Flavour Universality (LFU)
- LHCb recently announced new results of the measurement of the $R(D^{(*)})$:

$$R(D^{(*)}) = \frac{\mathcal{B}(B \to D^{(*)}\tau v_{\tau})}{\mathcal{B}(B \to D^{(*)}lv_l)}$$

• Current global average: **3.2** σ above SM prediction, hint

 $D^{(*)0}, D^{(*)+}$

towards lepton flavour violation in B decays

Leptoquark with stronger couplings to the τ Daniel Buchin - ATLAS Leptoquark Searches

26 June 2023

Leptoquark Production @ LHC

Four possible production modes for leptoquarks:

Drell-Yan Production Daniel Buchin - ATLAS Leptoquark Searches

Single Production

LQ

g

q

Leee

q

LQ

Leptoquark Production @ LHC

Four possible production modes for leptoquarks:

Leptoquark Production @ LHC

Four possible production modes for leptoquarks:

Pair Production

- PP independent of the LQ-to-fermion couplings λ (except for high couplings)
- Only dependent on strong coupling g_s (LQ has colour charge and hence couples to gluons) and LQ mass
- In terms of parameters beyond the SM, only the LQ mass is relevant!
- Final state consists of two lepton-quark (jet) pairs

26 June 2023

Single Production

- SP involves one production vertex with LQ-to-fermion coupling λ
- Production rate dependent on LQ mass and LQ-to-fermion coupling
- Final state consists of one lepton-jet pair from the LQ decay and an additional lepton

Drell-Yan Production

- DY involves two production vertices with LQ-to-fermion coupling λ , LQ in t-channel
- Production rate dependent on LQ mass and LQ-to-fermion coupling like SP, but stronger coupling dependency and non-resonant
- Interference with SM Z/γ t-channel

26 June 2023

Resonant Production

- RP involves one production vertex with LQ-to-fermion coupling λ •
 - \rightarrow Lepton from the proton needed, possible due to quantum fluctuations within the proton \rightarrow Lepton PDFs!
- Production rate dependent on LQ mass and LQ-to-fermion coupling like SP ٠
- Final state only one lepton-jet pair from LQ decay 26 June 2023

Existing Searches and Models

Pair Production:

- Search for either $LQ^u = LQ^{2/3}$ or $LQ^d = LQ^{1/3}$
- These have two possible decay modes, involving either a charged lepton or a neutrino
- → Parameter space: **branching ratio** of these decay modes and **LQ mass**

Existing Searches and Models

Pair Production:

- Search for either $LQ^u = LQ^{2/3}$ or $LQ^d = LQ^{1/3}$
- These have two possible decay modes, involving either a charged lepton or a neutrino
- → Parameter space: branching ratio of these decay modes and LQ mass NB: Signatures with charged leptons can be interpreted as coming from $LQ^{4/3}$ or $LQ^{5/3}$,

where the branching ratio can be set to 1

Existing Searches and Models

Pair Production:

- Search for either $LQ^u = LQ^{2/3}$ or $LQ^d = LQ^{1/3}$
- These have two possible decay modes, involving either a charged lepton or a neutrino
- → Parameter space: **branching ratio** of these decay modes and **LQ mass**

Single Production:

- Decide for model with **one** decay mode
- Parameter space: LQ-to-fermion coupling λ and LQ mass

Sensitivity of different Strategies

Complementarity of different search strategies:

λ

LQ Mass

Sensitivity of different Strategies

Complementarity of different search strategies:

Existing ATLAS Searches

PP of 3rd Generation Leptoquarks

Ap. Ag > it

- LFV in the $R(D^{(*)})$ measurement causes large focus on 3rd generation couplings!
- As an example: CERN-EP-2022-267, submitted in March 2023
 - Look for **2 tau, 2 bottom** signature \rightarrow two signal regions, targeting full hadronic $\tau_{had}\tau_{had}$ and semi-leptonic $\tau_{lep}\tau_{had}$ tau signatures
 - At least two jets required, of which one or two need to be b-tagged

Parametrised Neural Network (PNN):

 $L0^{u,4/3}$

50^{u,4}/

- LQ mass additional parameter!
- Trained with kinematic/angular observables of above objects
- E.g. sum of above object p_T's: s_T
- Discriminate against main top-quark background

PP of 3rd Generation Leptoquarks

- Background estimation using control regions (CRs):
 - Defined top CR to determine s_T -dependent reweighting factors to normalise MC to data (top backgrounds are over-estimated by MC at high top p_T)
 - CR to estimate rate of non-tau jets being misidentified as taus (fake factor) → multi-jet background
 - Z+jets CR to normalise MC to data
- Resulting exclusion limits:

→ Excluded scalar LQs up to 1.49 TeV, vector LQs up to 1.69 (1.96) TeV for minimal (Yang-Mills) coupling 26 June 2023 Daniel Buchin - ATLAS Leptoquark Searches 19

Branching ratio of LQ^u to $b\tau$

PP with other Generations

Ap. Ay > it

q,*c*,*b*

e/μ

e/μ

- Searches for LQs with couplings to 1st and 2nd generation fermions part of the ATLAS program, too
- Latest example: JHEP10 (2020) 112 looking into PP of scalar LQs with electrons or muons in the final state
 - Preselection requires $e^+e^-/\mu^+\mu^-+ \ge 2$ jets
 - Find LQ candidates through two lepton-jet pairs closest in invariant mass
 - Main search variable is the average of the two invariant masses

 $\rightarrow m_{li}^{Av} = (m_{li}^{max} + m_{li}^{min})/2$

LO

LO

26 June 2023

PP with other Generations

 \rightarrow Limits for electron (muon) coupling at 1.8 (1.7) TeV, only slightly weaker for heavy quarks

26 June 2023

PP as SUSY Reinterpretation

ΠΔp. Δg≥±t

invisible

- Leptoquark searches can be combined with Supersymmetry (SUSY) searches!
- E.g. use stop/sbottom searches: scalar new particle decaying into invisibles plus top/bottom

PP + SP + DY Search

- Very recent search covers both PP and SP (and DY + jet) diagrams (submitted as arXiv:2305.15962)
- Look for **2** tau, \geq **1** bottom signature \rightarrow as in previous analysis separate $\tau_{had} \tau_{had}$ and $\tau_{lep} \tau_{had}$ SRs
- Split each SR in high/low- p_T b-jet region targeting non-resonant/resonant LQs
- Previously defined p_T -sum variable s_T as main observable

 Background estimation using dedicated CRs for top backgrounds and Z + heavy flavor (HF), fake factor method used for multi-jet background

PP + SP + DY Search

26 June 2023

- TAp. Dg > it
- Very recent search covers both PP and SP (and DY + jet) diagrams (submitted as arXiv:2305.15962)
- Derived exclusion limits illustrative example of interplay of different production modes

Daniel Buchin - ATLAS Leptoquark Searches

24

Summary Plots

PP Summary 3rd Generation Scalars

PP Summary Mixed Decays Scalars

Outlook: Resonant Production

Resonant Production Search

- First ATLAS search for the resonant production currently ongoing
- Possibility to conduct this search since publication of lepton PDFs in 2020 [(JHEP 08 (2020) 019)]

PRL 125 (2020) 23

JHEP 03 (2021) 279

26 June 2023

Resonant Production Search

PDFs in 2020 [(JHEP 08 (2020) 019)]

- First ATLAS search for the resonant production currently ongoing
- Possibility to conduct this search since publication of lepton

PRL 125 (2020) 23

26 June 2023

Resonant Production Search

LQ

- First ATLAS search for the resonant production currently ongoing ٠
- Possibility to conduct this search since publication of lepton •

Ap. Ag>it

- Search will take into account NLO corrections made available in 2022
- Search for decays to electrons/muons + light quarks
 - \rightarrow Current PP limits at 1.8 (1.7) TeV LQ mass for electron (muon) final states

- Search will take into account NLO corrections made available in 2022
- Search for decays to electrons/muons + light quarks
 - \rightarrow Current PP limits at 1.8 (1.7) TeV LQ mass for electron (muon) final states

- Search will take into account NLO corrections made available in 2022
- Search for decays to electrons/muons + light quarks
 - \rightarrow Current PP limits at 1.8 (1.7) TeV LQ mass for electron (muon) final states

$$\begin{array}{ccc} \lambda_{ue} & \lambda_{u\mu} & \lambda_{u\tau} \\ \lambda_{ce} & \lambda_{c\mu} & \lambda_{c\tau} \\ \lambda_{te} & \lambda_{t\mu} & \lambda_{t\tau} \end{array} \end{array}$$

$$\begin{pmatrix} \lambda_{de} & \lambda_{d\mu} & \lambda_{d\tau} \\ \lambda_{se} & \lambda_{s\mu} & \lambda_{s\tau} \\ \lambda_{be} & \lambda_{b\mu} & \lambda_{b\tau} \end{pmatrix}$$

- Search will take into account NLO corrections made available in 2022
- Search for decays to electrons/muons + light quarks

 $\Lambda_{u\tau}$

 \rightarrow Current PP limits at 1.8 (1.7) TeV LQ mass for electron (muon) final states

 $\Lambda_{u\mu}$

чue

$$\begin{pmatrix} \lambda_{de} & \lambda_{d\mu} & \lambda_{d\tau} \\ \lambda_{se} & \lambda_{s\mu} & \lambda_{s\tau} \\ \lambda_{be} & \lambda_{b\mu} & \lambda_{b\tau} \end{pmatrix}$$

s
$$l$$
 LQ
 γ l Q
 q LQ

а

- Main variable is the invariant mass of the highest p_T lepton and jet
- Next steps:
 - Produce NLO MC samples with ATLAS simulation
 - Background estimation (CRs or fit the background using a smoothly falling distribution?)

Conclusion

- Leptoquarks are an important part of unifying the interactions of the SM
- Flavour anomalies in B-meson physics possibly hints towards Leptoquarks
- ATLAS has a very diverse and extensive search programme when it comes to Leptoquarks
 - Main focus until now on pair and single production → exclusion of Leptoquark masses between 1 TeV and 2 TeV
 - Drell-Yan and resonant production will be considered in coming searches

ATLAS Heavy Particle Searches* - 95% CL Upper Exclusion Limits

ATLAS Preliminary

Status: March 2023

 $\int \mathcal{L} dt = (3.6 - 139) \text{ fb}^{-1}$ $\sqrt{s} = 1000 \text{ fb}^{-1}$

 \sqrt{s} = 13 TeV

	Model	<i>ℓ</i> ,γ	Jets†	E ^{miss} T	∫£ dt[fb	-1]	Limit		Reference
Γa	Scalar I O 1 st gen	2.0	>2i	Vac	120	LO mass	1.8 ToV	$\beta = 1$	2006 05972
	Scalar LO 2 nd gen	2.	>2i	Vae	139	LO mass	1.7 TeV	$\beta = 1$ $\beta = 1$	2006.05872
	Scalar LO 3rd gen	1 7	2 h	Vee	139	LQ" mass	1.49 TeV	$\beta = 1$ $\beta(LO_{y}^{v} \rightarrow b\tau) = 1$	2303.01294
	Scalar LO 3rd gen	0 e. u	>2 i. >2 t) Yes	139	LQ ³ mass	1.24 TeV	$\mathcal{B}(LO_{2}^{v} \rightarrow tv) = 1$	2004.14060
	Scalar LO 3rd gen	$\geq 2 e, \mu, \geq 1$	$\tau \ge 1$ j, ≥ 1 k) -	139	LQ ³ mass	1.43 TeV	$\mathcal{B}(LO_{2}^{d} \rightarrow t\tau) = 1$	2101.11582
	Scalar LQ 3rd gen	$0 \ e, \mu, \ge 1$	0-21,2	b Yes	139	LQ mass	1.26 TeV	$\mathcal{B}(\mathrm{LO}_2^d \to bv) = 1$	2101.12527
	Vector LQ mix gen	multi-channe	el ≥1 j, ≥1 b) Yes	139	LQ ⁰ mass	2.0 TeV	$\mathcal{B}(\tilde{U}_1 \rightarrow t\mu) = 1$, Y-M coupl.	ATLAS-CONF-2022-052
	Vector LQ 3rd gen	2 e, μ, τ	≥1 b	Yes	139	LQ ^V mass	1.96 TeV	$\mathcal{B}(LQ_3^V \to b\tau) = 1$, Y-M coupl.	2303.01294

26 June 2023

BACKUP

PP of 3rd Generation Leptoquarks

- As an example: CERN-EP-2022-267, submitted in March 2023
 - Look for **2 tau, 2 bottom** signature \rightarrow two signal regions, targeting full hadronic $\tau_{had}\tau_{had}$ and semi-leptonic $\tau_{lep}\tau_{had}$ tau signatures
 - Training of PNN (arXiv:1601.07913) to discriminate against main top backgrounds

	$ au_{\text{lep}} au_{\text{had}}$ channel	$ au_{ m had} au_{ m had}$ channel		
e/μ selection	= 1 'signal' <i>e</i> or μ $p_{\rm T}^{e} > 25,27 {\rm GeV}$ $p_{\rm T}^{\mu} > 21,27 {\rm GeV}$	No 'veto' e or μ		
$ au_{had-vis}$ selection	$= 1 \tau_{\text{had-vis}}$ $p_{\text{T}}^{\tau} > 100 \text{GeV}$	= 2 $\tau_{\text{had-vis}}$ $p_{\text{T}}^{\tau} > 100, 140, 180 (20) \text{ GeV}$		
Jet selection	$\geq 2 \text{ jets}$ $p_{\rm T}^{\rm jet} > 45 (20) \text{ GeV}$ $1 \text{ or } 2 b\text{ -jets}$			
Additional selection	Opposite charge e, μ, τ_{had} and τ_{had} $m_{\tau\tau}^{MMC} \notin 40 - 150 \text{ GeV}$ $E_{T}^{miss} > 100 \text{ GeV}$ $s_{T} > 600 \text{ GeV}$			

Preselection

100 Ge/ ATLAS Scalar I Q (1 4 TeV) x 50 140 - vs = 13 TeV 139 ft Eake T $\tau_{had} \tau_{had}$ Events / · Fake τ. 120 Post-fit Single ton 100 Incertaint 20 Data/Pred 1000 1100 1400 150 s₊ [GeV]

PNN Inputs

Variable	$ au_{ m lep} au_{ m had}$ channel	$ au_{ m had} au_{ m had}$ channel
$ au_{ m had-vis} p_{ m T}^0$	1	✓
s _T	\checkmark	1
N_{b-jets}	1	✓
$m(\tau, \text{jet})_{0,1}$		1
$m(\ell, \text{jet}), m(\tau_{\text{had}}, \text{jet})$	✓	
$\Delta R(\tau, \text{jet})$	✓	1
$\Delta \phi(\ell, E_{\mathrm{T}}^{\mathrm{miss}})$	✓	
$E_{\rm T}^{\rm miss} \phi$ centrality	1	1

PP with other Generations

- Latest example: JHEP10 (2020) 112 looking into PP of scalar LQs with electrons or muons in the final state
 - Preselection requires $e^+e^-/\mu^+\mu^-+\geq 2$ jets

Preselection

Side-Band Region and Top CR

