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AMS-100

Design requirements
• Geometric acceptance of 100 m2 sr 

→ 1000 times the acceptance of AMS-02

• Max. detectable rigidity of 100 TV
• Measurement of cosmic nuclei with energies 

up to the cosmic-ray knee

Planned design
• 3mm high temperature superconducting solenoid 

→ 0.5 T  in a Volume of 75 m3

• Compensation coil
• Sun Shield
• Electric propulsion
• Radiator
• SciFi tracker
• Silicon tracker
• Time of flight system
• Calorimetry

Schael et al. (2022)[1]
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HTS-Tape:

• Will be damaged at temperatures above 473K and mechanical loads over 600MPa

High Temperature Superconducting Tape
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Coil Parameters

• Length of 6 m

• Diameter of 4 m

• Operating at 55 K

• Current 10 kA

• Layers of 12 mm HTS

• 5 km Kabel length

• 1 Layer Kabel

• Non-Isolated

• Aluminium U-Profile

Highly protected against 
damage caused by 
quenching

Fujikura Ltd. (2022) [6]

J. van Nugteren (2016) [7]

Quench: Schael et al. (2022)[1]



Sensors

Clemens Dittmar 6

Limited weight budget

• Platinum resistors or strain gauges unsuitable as additional wiring is required for each sensor

Distributed temperature and strain monitoring with Rayleigh scattering and optical fibers

Core

Cladding

Coating ThorLabs [9]



Optical Frequency Domain Reflectometry (OFDR)

• Light in an optical fiber 
can scatter at 
spectral index changes 
due to inhomogeneities 
(“Rayleigh Scattering”)

• Each segment of an optical fiber 
has an individual Rayleigh 
scattering spectrum

• OFDR compares the 
changes between spectra for 
the same unloaded and loaded 
fiber segment

7
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Non-Linear Model

Linear standard model for minor temperature changes at room temperature
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New non-linear model which considers all temperature influences: Theoretical prediction:
• Strain sensitivity is 

temperature dependent

• Temperature sensitivity 
depends on doping and is also 
temperature dependent

Temperature Sensitivity Strain Sensitivity

What can be measured?

Temperature changes

Thermomechanical changes

Mechanical changes
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Strain Sensitivity

Test-Setup and conditions:

• Tensile test at 300 K and 77 K

• Two fibers glued in one groove 
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Results:
• Slope corresponds to the literature for FBGs
• Strain sensitivity is temperature dependent

, Free Fiber

Clemens Dittmar



Temperature Sensitivity Germanium

Test-Setup and conditions

• Warm-up (77 – 290 K, 18h)
• Climate chamber, 6 steps (233 – 335 K)
• Mechanical part considered by 

determining the thermal expansion of Al-6060 
with calibrated strain gauges and 
the determined strain sensitivity

Clemens Dittmar 12

Results
Germanium-doped fibers:
• Quadratic temperature dependence
• Signal also at 77K



Temperature Sensitivity Boron

Test-Setup and conditions

• Warm-up (77 – 290 K, 18h)
• Climate chamber, 6 steps (233 – 335 K)
• Mechanical part considered by 

determining the thermal expansion of Al-6060 
with calibrated strain gauges and 
the determined strain sensitivity

Clemens Dittmar 13

Results
Boron-doped fibers: 
• Not sensitive to temperature < 150 K



Results
• Germanium-doped fibers: linear temperature sensitivity
• Expected temperature sensitivity at 55 K: 0.5E-6 [1/K]
• Boron-doped fibers: not sensitive to temperature < 150 K

Temperature Sensitivity

Test-Setup and conditions

• Warm-up (77 – 290 K, 18h)
• Climate chamber, 6 steps (233 – 335 K)
• Mechanical part considered by 

determining the thermal expansion of Al-6060 
with calibrated strain gauges and 
the determined strain sensitivity
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Test of Calibration: Germanium-doped Fiber
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Results:
• Well described across the total temperature range (77 K – 353 K)
• Consistent with literature parameterization

Test-Setup and conditions:
• Ring shaped Aluminum body
• 5 cm high, 15 cm diameter
• Both fibers glued in 

one Aluminum groove
• Warm-up (77 – 300 K, 18 h)
• Climate chamber, 6 steps (233 – 353 K)
• Shape similar to AMS-100 test coils

Calibration Test Germanium Fiber



Test of Calibration: Boron-doped Fiber

Clemens Dittmar 16

Results:
• Systematic drift at low temperatures
• Deviation within the prediction range

Calibration Test Boron FiberTest-Setup and conditions:
• Ring shaped Aluminum body
• 5 cm high, 15 cm diameter
• Both fibers glued in 

one Aluminum groove
• Warm-up (77 – 300 K, 18 h)
• Climate chamber, 6 steps (233 – 353 K)
• Shape similar to AMS-100 test coils



HTS – Test Coil
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Test-Setup and conditions:
• HTS-Coil with 2.5 windings
• 10 cm high, 12 cm diameter
• 2 windings fiber under HTS-Tape glued in Aluminum
• Peek tubes for guiding the fibers into the structure

Clemens Dittmar
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Test-Setup and conditions:
• HTS-Coil with 2.5 windings
• 10 cm high, 12 cm diameter
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HTS – Test Coil
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Test-Setup and conditions:
• HTS-Coil with 2.5 windings
• 10 cm high, 12 cm diameter
• 2 windings fiber under HTS-Tape glued in Aluminum
• Peek tubes for guiding the fibers into the structure

Clemens Dittmar

Results:
• Temperature profile with maximum of 0.7 K
→ Current flows through Aluminum structure

• Magnetic field measurements: current flow of 800 – 900 A
through the Aluminum structure at 1200A applied current

1200A applied current



HTS – Test Coil: Dynamic T. Measurement
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Test-Setup and conditions:
• HTS-Coil with 2.5 windings
• 10 cm high, 12 cm diameter
• 2 windings fiber under HTS-Tape glued in Aluminum
• Peek tubes for guiding the fibers into the structure

Clemens Dittmar

Results:
• Temperature curve follows the current curve
• Changing current flows can be measured



Decoupling of Thermal & Mechanical Load
• Combining two different fibers into one measurement

• Signal difference is due to the temperature sensitivity 
difference

• Newton method for function inversion

Test-Setup and conditions:
• Ring shaped Aluminum body
• 5cm high, 15cm diameter
• Both fibers glued in one Aluminum groove
• Warm-up measurement (77 – 300 K, 18 h)  

Clemens Dittmar 21
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Test-Setup and conditions:
• Ring shaped Aluminum body
• 5cm high, 15cm diameter
• Both fibers glued in one Aluminum groove
• Warm-up measurement (77 – 300 K, 18 h)  

Result:
Temperature resolution: 
2.6 K for 77 – 100 K

Clemens Dittmar

Deviation to Pt1000 temperature



Summary

• OFDR works at 77 K with optical fibers integrated into a 
structure.

• Germanium-doped SM fibers are sensitive to temperature 
changes down to 77 K and probably down to 55 K.

• Local heat sources and temperature profiles can be measured, 
and the sensitivity is highly dependent on the substrate.

• Decoupling with two differently doped fibers is possible, 
allowing temperature measurement with 2.6 K uncertainty.

• Published paper:
Girmen and Dittmar, 2023, "Young's modulus independent determination of fibre-parameters for 
Rayleigh-based optical frequency domain reflectometry from cryogenic temperatures up to 
353K"

• Paper in preparation:

"New Measurement Principle for Decoupling Mechanical and Thermal Signals in OFDR 
Measurements for integrated Fibres"

23Clemens Dittmar



Thank you for listening!

Are there any questions?

Clemens Dittmar 24
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HTS – Test Coil: Measurement 2
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Test-Setup and conditions:
• HTS-Coil with 2.5 windings
• 10 cm high, 12 cm diameter
• 2 windings fiber under HTS-Tape glued in Aluminum
• Peek tubes for guiding the fibers into the structure

Clemens Dittmar

1200A applied current

• 3 additional Pt1000 and Kapton tape



HTS – Test Coil: Measurement 2 

28

Test-Setup and conditions:
• HTS-Coil with 2.5 windings
• 10 cm high, 12 cm diameter
• 2 windings fiber under HTS-Tape glued in Aluminum
• Peek tubes for guiding the fibers into the structure
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Results:
• Temperature profile with maximum of 0.8 K

• Mean temperature higher as without Pt1000
• Pt1000 position detectable

1200A applied current

• 3 additional Pt1000 and Kapton tape



AMS-02

• The only operating particle detector 
with a magnet in space

• measure charge, mass and 
velocity of charged particles

• Rigidity (momentum per unit charge) 

• Can therefore distinguish 
particles from antiparticles

• Measures precisely cosmic ray 
fluxes with an accuracy of 2%-4% 
at 100 GV

• Installed on the ISS since 2011

The Alpha Magnetic Spectrometer

Schael (2020)[2]
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Ex.: Positron Flux – Search for Dark Matter

Diffuse term:
Low-energy part of the flux 
dominated by the positrons 
produced in the collisions of ordinary 
cosmic rays with the interstellar gas

Source term: 
Origin through pulsars or dark matter 
anihilation or an unknown source

Aguilar (2019, adapted)[3]
30Clemens Dittmar



High Temperature Superconducting Coil
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Coil Parameters

• Length of 6 m

• Diameter of 4 m

• Operating at 55 K

• Current 10 kA

• Layers of 12 mm HTS

• Non-Isolated

• Aluminium U-Profile

Highly protected against 
damage caused by 
quenching

Schael et al. (2022)[1]



HTS-Coil: Quench
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Thermal-electromagnetic quench simulation by Tim Mulder

Start Parameters:
• Current 10kA
• Windings: 376

• Layers: 18 layers HTS
• Temperature: 51K
• 200 W heater at three neighboring 

winding sections

Schael et al. (2022)[1]
Clemens Dittmar



HTS-Coil: Quench
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Schael et al. (2022)[1]
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Quench detection and structural monitoring are still 
required
• To prevent structural damage and thus damage 

to the HTS tapes
• For position stabilization (both coils have a 

dipole moment)



Quench of a non-isolated HTS-coil
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Description:

Loss of superconductivity over the entire coil with conversion of the stored magnetic field energy into heat

Reasons:

Local or global heating:

• External source
• Cooling failure, heat input due to damaged detectors or damaged sun shield

• Current passing through the aluminum structure
• Due to an internal local failure of the superconductivity by e.g. mechanical damage

Process:

• High heat input or extensive damage to the superconductor
• Quench within a few seconds

• Low heat input which is greater than the cooling can remove
• If local, current can bypasses non-superconducting region through aluminium structure

• Coil can remain stable

• When the current skips a whole turn, the effective number of turns carrying current changes, which induces current and heat 
throughout the coil, causing the coil to quench.



Temperature Sensitivity

Test-Setup and conditions

• Warm-up (77 – 290 K, 18h)
• Climate chamber, 6 steps (233 – 353 K)
• Mechanical part considered by 

determining the thermal expansion of Al-6060 
with calibrated strain gauges and 
the determined strain sensitivity

Clemens Dittmar 35



Strain Sensitivity

Test-Setup and conditions:

• Tensile test at 300 K and 77 K

• Two fibers glued in one groove 

36Clemens Dittmar



Strain Sensitivity

Test-Setup and conditions:

• Tensile test at 300 K and 77 K

• Two fibers glued in one groove 
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Tensile Test Germanium Fiber Data



Tests with local thermal signals

Results:
• 1 cm external heating signals in LN2 can be measured
• Fiber temperature sensitivity depends on the CTE 

of the carrier material [CTE(PEEK) ≥ 2*CTE(Al)]
Clemens Dittmar

Test-Setup and conditions:
• Heater on linear Aluminum and Peek structure in LN2
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HTS – Test Coil
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Test-Setup and conditions:
• HTS-Coil with 2.5 windings
• 10 cm high, 12 cm diameter
• 2 windings fiber under HTS-Tape glued in Aluminum
• Peek tubes for guiding the fibers into the structure

Clemens Dittmar

Results:
• Temperature profile with maximum of 0.7 K
→ Current flows through Aluminum structure

• Magnetic field measurements: current flow of 800 – 900 A
through the Aluminum structure at 1200A applied current



Strain Gauge Measurements
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Resolution
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Germanium Boron

Noise 0.8 0.6



Magnetic Field Measurement
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Magnetostriction
• Mechanical deformation in external magnetic field
• Dysprosium has a high mechanical deformation below 

180K
• Epoxy dysprosium-powder mixture should have similar 

properties
• A bonded fiber should therefore be sensitive to 

magnetic fields at 77K
• 3 samples with nickel powder (test powder), 

dysprosium + nickel and dysprosium
• Measurement with and without homogeneous 

magnetic field
• Rotation in the magnetic field



Pt1000 Temperature Sensor
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Back to the application
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Conclusion:
Structure monitoring and quench protection is possible 

with the OFDR and multiple fibers.



Groove Width

Clemens Dittmar 45



OFDR Analysis

OBR-4613

Gauge length 

Fiber constants

463/20/2023 Clemens Dittmar
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Coil Model
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Strain Sensitivity: Germanium doped fiber
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Strain Sensitivity: Boron doped fiber
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Temperature Sensitivity: 233 K – 353 K
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Reference Temperature check Germanium Fiber
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Parameter A Parameter B
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Reference Temperature check Boron Fiber
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