Studying the ρ (770) Resonance with COMPASS $\pi^{-}\pi^{+}\pi^{-}$ Data Using the Freed-Isobar Method

Martin Bartl

IMPRS Recruiting Workshop November 13th, 2023

General Information

- 190 GeV/ $c \pi^-$ beam
- Inelastic scattering off proton target $\Rightarrow \pi^-$ excited to higher state X^-
- Decay via strong interaction to $\pi^-\pi^-\pi^+$ final state
- World's largest data sample: 163×10^6 exclusive events
- So far, focus on 3π resonances
 - Most detailed partial-wave analysis

Isobar Model & Partial Waves

Isobar Model

- X^- decays into ξ and π^-
- Intermediate isobar state ξ decays further in $\pi^-\pi^+$

Isobar Model

- X^- decays into ξ and π^-
- Intermediate isobar state ξ decays further in $\pi^-\pi^+$

Definition of Partial Waves i

• Unique combination of quantum numbers for $X^- : J_{X^-}^{PC} M^{\epsilon}$ and $\pi^- \pi^+$ isobars $\xi : J_{\xi}^{PC}$

Isobar Model

- X^- decays into ξ and π^-
- Intermediate isobar state ξ decays further in $\pi^-\pi^+$

Definition of Partial Waves i

- Unique combination of quantum numbers for $X^- : J_{X^-}^{PC} M^{\epsilon}$ and $\pi^- \pi^+$ isobars $\xi : J_{\varepsilon}^{PC}$
- Short Notation:

 \Rightarrow 1⁺⁺0⁺[$\pi\pi$]₁-- π S

Modelling the Intensity Distribution

- Bin data in $(m_{3\pi}, t')$ cells
- For each cell:
 - Sum over partial wave amplitudes A_i
- Model full decay dynamics of X⁻
 - Angular distribution from first principles
 - Dynamic amplitude of isobar is fixed ⇒ introduces model bias

$$\mathcal{I}(\tau, m_{3\pi}, t') = \left| \sum_{i \in \mathsf{waves}} \mathcal{A}_i(\tau, m_{3\pi}, t') \right|^2$$

Conventional Partial-Wave Analysis (PWA)

- Our goal: Extract 2π resonance states
- But: 2π resonances states only model input in conventional PWA \Rightarrow apply freed-isobar PWA
 - No assumptions in "freed" dynamic isobar amplitudes
 - Fit to $\pi^-\pi^+$ amplitude possible
 - \Rightarrow extract 2π resonances
- This work:
 - Test assumptions of the conventional PWA model
 - First study of the $\rho(770)$ with this novel approach \Rightarrow proof-of-principle analysis

- Replace fixed dynamic isobar amplitudes with step-like functions ("freed isobars")
- 2π binning approach, from physical amplitude (left) to freed result (right)

Studying the $\rho(770)$ Resonance

• Measure the same $\pi^-\pi^+$ subsystem with $J_{\xi}^{PC} = 1^{--}$ from different sources \Rightarrow different $m_{3\pi}$ and t' in multiple 3π systems with different $J_{\chi^-}^{PC}$:

 \Rightarrow multiple measurements within a single analysis

- Fit $m_{2\pi}$ dependence for each source with resonance model
 - \Rightarrow extract ρ (770) parameters
 - \Rightarrow study their source dependence
 - \Rightarrow check self-consistency with ourselves

Elaborate Resonance Model

- Relativistic Breit-Wigner
 ⇒ intrinsic limitations
- Elaborate model based on the Gounaris-Sakurai parametrization of the pion form factor
- Extracted resonance parameters less process-dependent than for Breit-Wigner

Independent Fits in $(t', m_{3\pi})$ Cells: $1^{++}0^{+}[\pi\pi]_{1^{--}}\pi S$ Wave

- χ^2 fit of the model to measured amplitudes for a given wave
- $\rho(770)$ parameters should be the same for each $(m_{3\pi}, t')$ cell \Rightarrow independent fit in each cell

Intensity of model and data: Reasonably good agreement

Elaborate Resonance Model

- Model parameters not directly resonance parameters
 ⇒ additional steps needed for physical
 - \Rightarrow additional steps needed for physical parameters
- Uncertainty propagation with Monte Carlo approach (point clouds)

Elaborate Resonance Model

- Model parameters not directly resonance
 parameters
 - \Rightarrow additional steps needed for physical parameters
- Uncertainty propagation with Monte Carlo approach (point clouds)
- Systematic uncertainties (boxes)

Independent Fits in Individual $(t', m_{3\pi})$ Cells: $1^{++}0^{+}[\pi\pi]_{1^{--}}\pi S$ Wave

- Left; Breit-Wigner model: Systematic dependence of $m_
 ho$ on $m_{3\pi}$
- Right; Elaborate model: Smaller effect \Rightarrow improvement
- Both models: No systematic t' dependence

Martin Bartl

Studying the $\rho(770)$ Resonance

Combined Fit of All $(m_{3\pi}, t')$ Cells

- Simultaneous extraction of resonance parameters for all $(m_{3\pi}, t')$ cells
- Fit for all 8 waves
 ⇒ most in agreement

- Established framework for fitting of 2π resonance models to results of freed-isobar PWA
- Performed first analysis for ρ like isobars with $J^{PC} = 1^{--}$ from different sources in single measurement (proof-of-principle)
- ρ (770) pole parameters extracted from $\pi^{-}\pi^{+}\pi^{-}$ final state for the first time
- Elaborate model shows less source dependence of $\rho(770)$ parameters than a Breit-Wigner model
- Most waves yield comparable $\rho(770)$ pole parameters results

Backup

Independent Fits in Individual $(t', m_{3\pi})$ Cells: $1^{++}0^{+}[\pi\pi]_{1^{--}}\pi S$ Wave

- Left; Breit-Wigner model: Systematic dependence of $\Gamma_{
 ho}$ on $m_{3\pi}$
- Right; Elaborate model: Smaller effect \Rightarrow improvement
- Both models: No systematic t' dependence

Martin Bartl

Studying the $\rho(770)$ Resonance