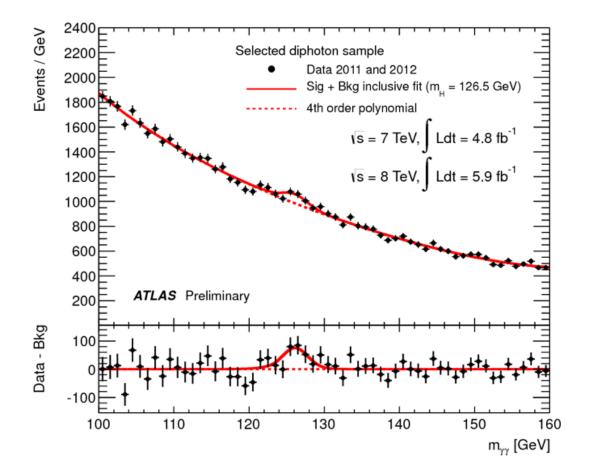


Trigger Optimization studies at the ATLAS search for $hh \rightarrow b\bar{b}\tau^{-}\tau^{+}$ channel

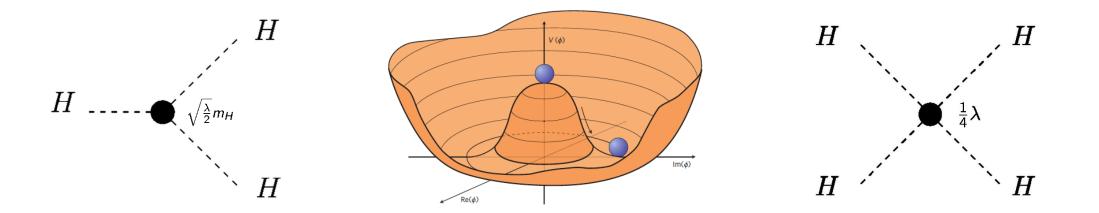
Athul Dev Sudhakar Ponnu

Supervised by

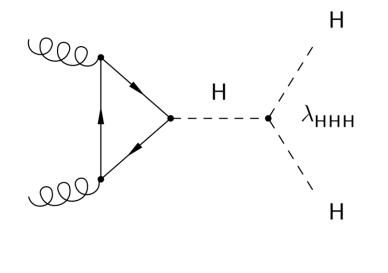

Stan Lai

The Higgs Boson

- A Spin 0 scalar particle in the Standard Model, theorized in the 1960s
- Observed in 2012 at the Large Hadron Collider
- Responsible for generating the mass of fundamental particles without local gauge symmetry violation

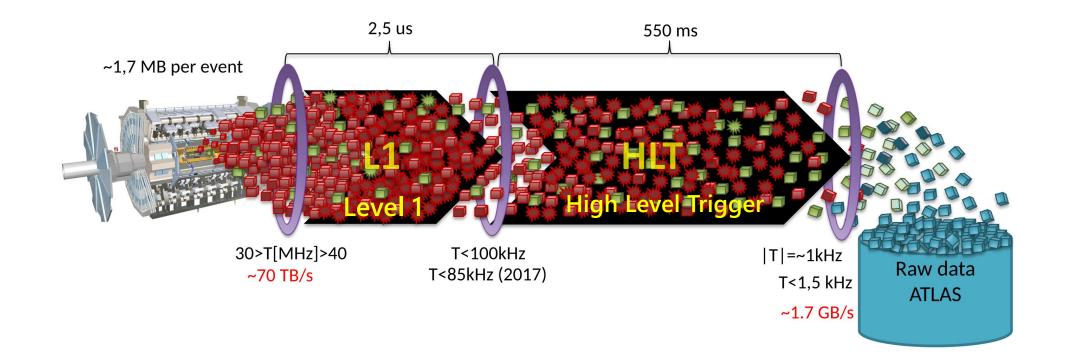


Why Di Higgs ?


$$V_{SM}(\Phi) = -\mu^2 (\Phi^* \Phi) + \lambda (\Phi^* \Phi)^2$$
$$V_{SM}(\Phi) \stackrel{\phi \to \nu + h}{\supset} \frac{1}{2} m_H^2 h^2 + \sqrt{\frac{\lambda}{2}} m_H h^3 + \frac{1}{4} \frac{\lambda}{\lambda} h^4$$

Di Higgs at LHC

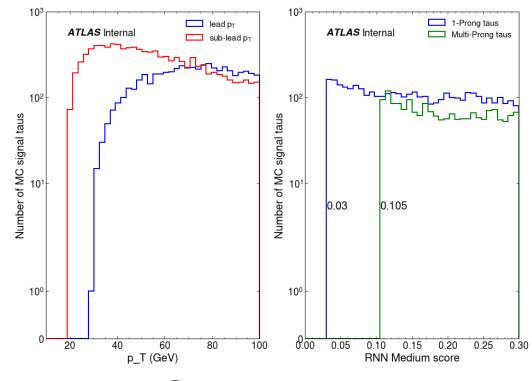
 $\sigma^{SM}_{ggf} pprox 31.05^{+1.41}_{-1.99} {
m fb}$


	bb	WW	ττ	ZZ	ΥY
bb	34%				
ww	25%	4.6%			
ττ	7.3%	2.7%	0.39%		
zz	3.1%	1.1%	0.33%	0.069%	
ΥY	0.26%	0.10%	0.028%	0.012%	0.0005%

 $bb\tau\tau$: Moderate Background and Branching fraction

Managing The Data Avalanche

Focus on $b\bar{b}\tau_{had}^{-}\tau_{had}^{+}$ triggers for this analysis



Sifting Di Higgs with HLTL1Topo

HLT_tau30_mediumRNN_tracktwoMVA_tau20_mediumRNN_tracktwoMVA_03dRAB30_L1DRTAU20ITAU12I-J25

- p_T (GeV) thresholds of the lead(sub-l) au
- RNN Working points of the τ_s
- Angular separation ΔR between the τ_s
- Efficiency : 0.5272
- Background Rate : 42.36 Hz (Lumi = $1 \times 10^{34} cm^{-2}s^{-1}$)

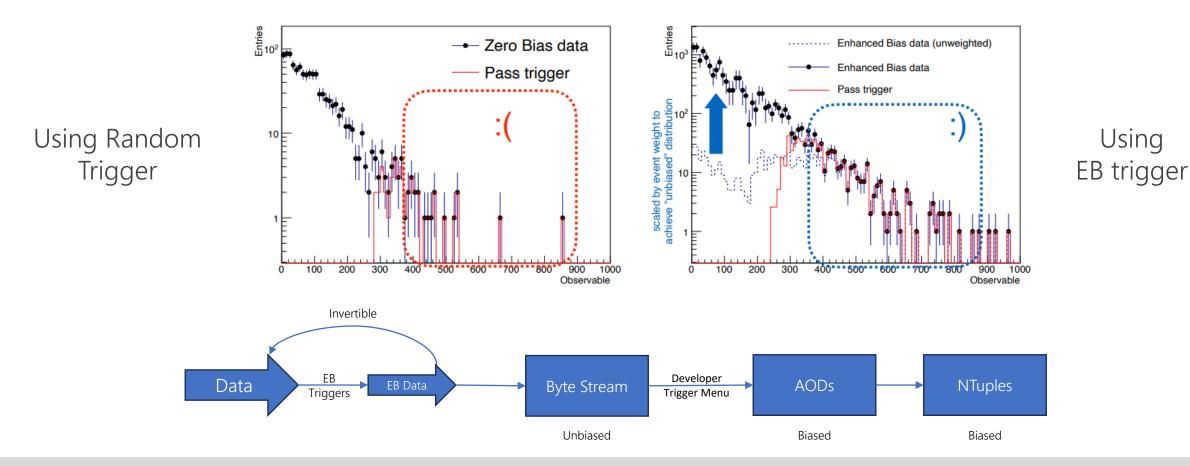
Room for improvement?

Efficiency Emulation

• Use MC sample of the signal events (Signal events contain only the MC simulation of the physics process of concern, in this case $hh \rightarrow b\bar{b}\tau_{had}^-\tau_{had}^+$)

• Make a reasonable selection of the signal events

• Emulate the HLT triggers


• See what fraction of selection events pass the emulated triggers. $\epsilon = \frac{HLT_{pass} events}{Selection_{pass} events}$

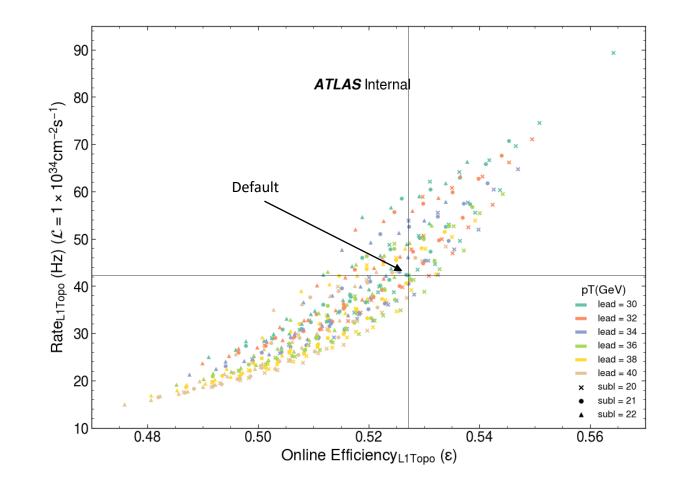
Rates Emulation

Use Enhanced Bias Sample

13-Nov-23

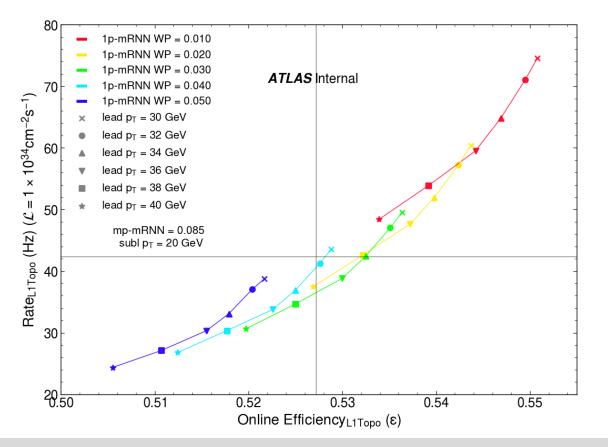
Rates Emulation

- Emulate chains tighter than the standard trigger in the menu
- We know the rates of the Standard trigger chain from weekly reprocessing
- Use the standard rate and events passed by the standard chain to scale the events of the emulated chain


$$\mathsf{Rate}_{\mathsf{emu}} = \frac{\mathsf{Rate}_{\mathsf{std}}}{N_{\mathsf{std}}} \times N_{\mathsf{emu}}$$

Efficiency vs Rates – L1Topo

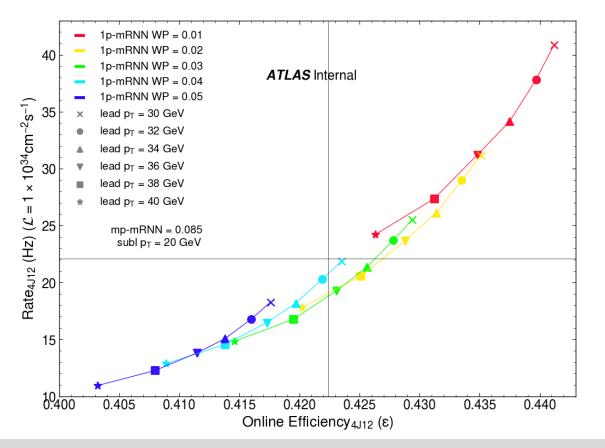
- Intersection point: *Default*
 - $p_T lead = 30 \text{GeV}$
 - $p_T subl = 20 \text{GeV}$
 - Medium RNN 1 p Working Point = 0.03
 - Medium RNN multi-p Working Point = 0.105
- Emulation:
 - $p_T lead = [30, 40]$ steps of 2GeV
 - $p_T subl = [20, 22]$ steps of 1GeV
 - mRNN 1p WP = [0.01,0.05] steps of 0.01
 - mRNN mp WP= [0.085, 0.125] steps of 0.01



Efficiency vs Rates – L1Topo

HLT_tau30_mediumRNN_tracktwoMVA_tau20_mediumRNN_tracktwoMVA_03dRAB30_L1DRTAU20ITAU12I-J25

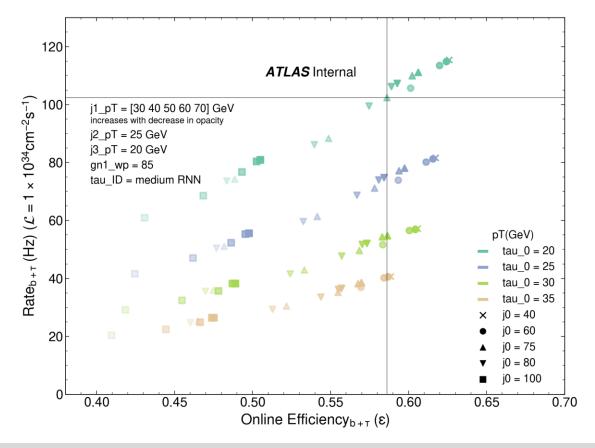
Fix subl p_T to 20GeV & mp-mRNN WP to 0.085


Marker	lead p _T (GeV)	1p-mRNN WP	Efficiency (wrt default)	Rate (wrt default)
•	36	0.03	0.53% ↑	8.30%↓
	34	0.03	1.00% 1	0.16% ↑
-	38	0.02	0.94% ↑	0.58% ↑

Efficiency vs Rates – 4J12

HLT_tau30_mediumRNN_tracktwoMVA_tau20_mediumRNN_tracktwoMVA_03dRAB_L1TAU20IM_2TAU12IM_4J12p0ETA25

Fix subl p_T to 20 GeV & mp-mRNN WP to 0.085


Marker	lead p_T (GeV)	1p-mRNN WP	Efficiency (wrt default)	Rate (wrt default)
	34	0.03	0.75% ↑	3.35%↓
•	32	0.03	1.27% 1	7.20% ↑
•	36	0.02	1.15% î	7.17% ↑
	38	0.02	0.64% ↑	6.96%↓

Efficiency vs Rates – b+ τ

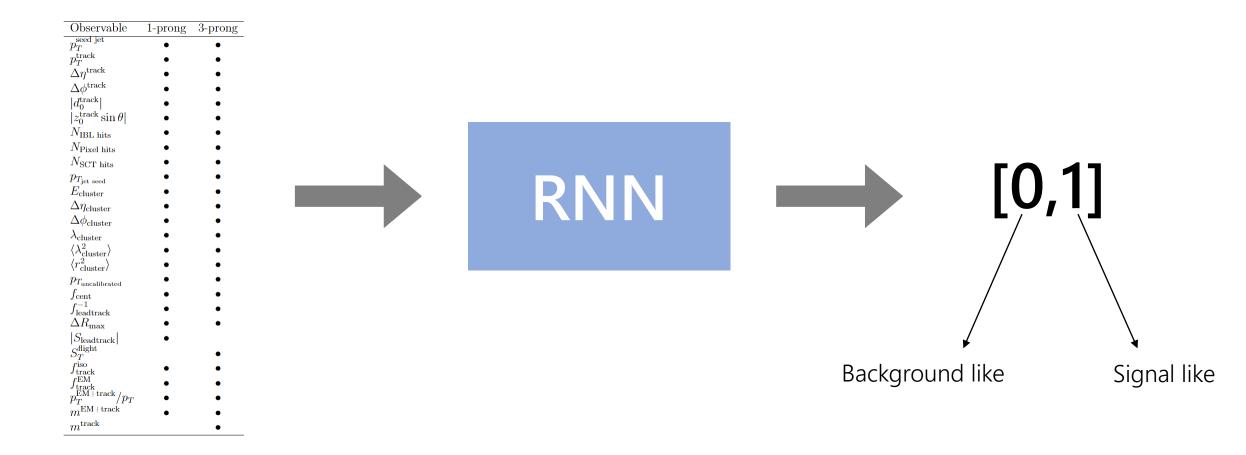
HLT_tau20_mediumRNN_tracktwoMVA_j75c_020jvt_j50c_020jvt_j25c_020jvt_j20c_020jvt_SHARED_j20c_020jvt_bgn180 _pf_ftf_presel3c20XX1c20b85_L1J45p0ETA21_3J15p0ETA25

Fix j_{pT}^2 to 25 GeV j_{pT}^3 to 20 GeV τ_{RNN}^0 to medium gn1 WP to 85

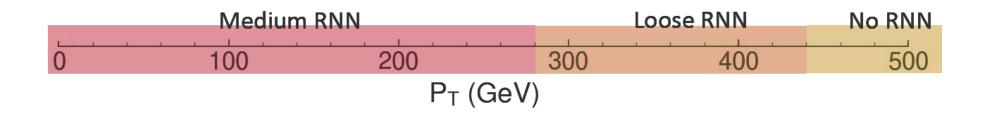
- Tighten the $\tau_{P_T}^0$
- Loosen $j_{P_T}^0$ and $j_{P_T}^1$

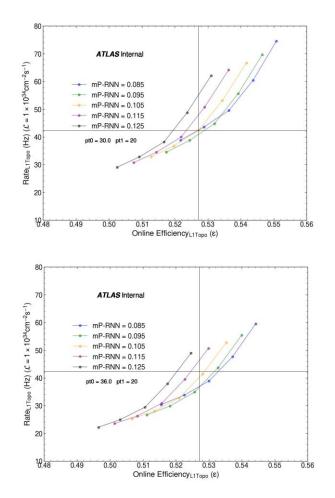
.:	-=++**########	==			
:-+*###	****	ŧ####*+			
:+########	#################HL	_T########=.			
.=############	****	*#############			
.+################	**	*##############			
.+#################	+-::-	.:-+################			
:#####ATHUL####=:		:=#############+			
-############		-##############			
-############		+#############			
-###########		-#############			
.###########.		-############			
+##########.		+############			
.##########=		.##########+			
=###########		+#############			
##########	=++##:	-###IMPRS###-			
.##########	#@	.###########			
:##ATLAS####:	.%#	###########			
:##########	*%+-	###########			
:##########	**	.###########			
.##########=	-=	:##########:			
##########	+	=###########			
=############.		*#####b+t##+			
.###########	**	-############			
=###########		.##########			
*###########		.###########			
.####L1Topop#+		:############			
:##############		.=############			
·*##############		:+############			
	=######################################				
	##+====+*##				
• • • • • • • • • • • • • • • • • • • •	****				
• • • • • • • • • • • • • • • • • • • •	*****				
• • • • • • • • • • • • • • • • • • • •	#TRIGGER########				
.:=+*####################################					
		-*################			
		.=######HIGGS###*			
:+#####################################					
		.=*################			

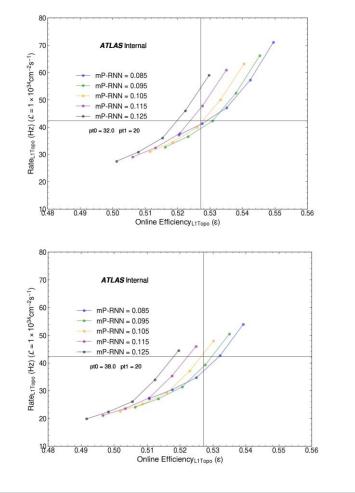
.....

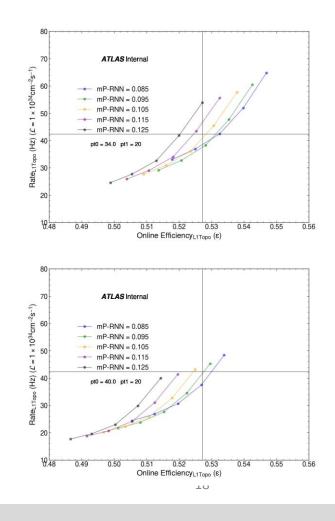


Backup


Recurrent Neural Network


RNN Regions





L1Topo - Fix pt1 to 20 GeV

