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Motivation

Phase transitions in the early universe could provide an explanation for the observed
baryon asymmetry [1, 2]. Such an investigation requires intricate knowledge of

(non-perturbative)
tunneling phenomena QFTin finite temperatureat .

usual instanton method
is not fully understood

requires us to incorporate
the decay of excited states

Goal: Examine the decay of excited states using functional methods.

[2] Garbrecht (2020), Prog. Part. Nucl. Phys. vol. 110
[1] Sakharov (1967), Pisma Zh. Eksp. Teor. Fiz. vol. 5
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Generic tunneling potential
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Extracting decay rates
There exist numerous methods of attributing a meaningful imaginary part to the local
energies En

(loc), fitting into roughly two categories:

Wave function techniques based
on (approximate) solutions to the
Schrödinger equation [3, 4, etc.]

Functional techniques based on the
(Euclidean) propagator, employing
path integrals [5, 6, etc.]

directly extendable to field theory

[4] Bender & Wu (1973), PRD vol. 7(6)
[3] Gamow (1928), Z. Physik vol. 51(3)

[6] Ai, Garbrecht & Tamarit (2019), JHEP vol. 12
[5] Callan & Coleman (1977), PRD vol. 16(6)
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Method of steepest descent

Want to approximate the parameter integral

F (~) =
∫ ∞
−∞

exp
[
− f(x)

~

]
dx

∼
∑
xmin

√
2π~

f ′′exp(xmin)︸ ︷︷ ︸
fluctuations

around minima

exp
[
− f(xmin)

~

]
︸ ︷︷ ︸
leading contribu-
tion from minima

in the limit ~→ 0.

For complex f one decomposes the integration
contour C into parts on which Im(f) is constant
−→ Picard-Lefschetz theory [7, 8, etc.]
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[8] Witten (2011), AMS/IP Stud. Adv. Math. vol. 50
[7] Pham (1983), Singularities, Proc. Symp. Pure Math. vol. 40(2)
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Laplace method for the Euclidean propagator

In a similar manner, one can express the leading order behavior for the Euclidean
propagator

KE
(
xT , T ;x0, 0

)
=

∫ x(T )=xT

x(0)=x0

DEJxK exp
{
− 1
~

∫ T

0

mẋ(τ)2

2 + V
[
x(τ)

]
dτ︸ ︷︷ ︸

Euclidean action SEJxK

}
.

In the absence of (quasi-)zero modes one finds

KE
(
xT , T ;x0, 0

)
∼
√
m

π~

∑
xmin(τ)

detζ

{
− d2

dτ2 +
V ′′
[
xmin(τ)

]
m

}− 1
2

exp
(
− SEJxminK

~

)
.

Structure: zero mode factor Z = 1, fluctuation factor, leading exponential contribution
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Late-time behavior of the Euclidean propagator

Observe that one can project out the ground state energy from the late-time behavior of
the Euclidean propagator

KE
(
xT , T ;x0, 0

)
=

∞∑
n=0

ψ
(glob)
n (x0)ψ(glob)

n (xT ) exp
[
−E

(glob)
n T

~

]
,

which leads to the exact relation

E
(glob)
0 = −~ lim

T→∞

{
T−1 ln

[
KE
(
xFV, T ;xFV, 0

)]}
.

One hereby chooses x0 = xT = xFV for convenience [5, 9].

[9] Schwartz, et al. (2017), PRD vol. 95(8)
[5] Callan & Coleman (1977), PRD vol. 16(6)
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Critical trajectories for large T
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Coleman’s conjecture

We require information about E0
(loc), so how is the relation

E
(glob)
0 = −~ lim

T→∞

{
T−1 ln

[
K

(shot)
E (T )︸ ︷︷ ︸

dominant

+K
(FV)
E (T ) +K

(bounce)
E (T )︸ ︷︷ ︸

exponentially suppressed

]}

of any use?

Dropping the steepest descent contour
associated with the shot solution [6, 9],
one conjectures the identity

E
(loc)
0 = −~ lim

T→∞

{
T−1 ln

[
K

(FV)
E + 1

2K
(bounce)
E

]}
.

Re(ξ)

Im(ξ)

zshot(t)

zbounce(t)

zFV(t)

J (glob)
bounce

J (glob)
FV J (glob)

shot

[9] Schwartz, et al. (2017), PRD vol. 95(8)
[6] Ai, Garbrecht & Tamarit (2019), JHEP vol. 12
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Final expression

Taking care of certain caveats yields the ground state decay width Γ0 as

Γ0 =

√
SE

q
x

(T=∞)
bounce

y

2π~

∣∣∣∣∣∣∣∣∣
det′ζ

{
− d2

dτ2 +V ′′
[
x

(T=∞)
bounce (τ)

]}
detζ

{
− d2

dτ2 +V ′′
[
xFV(τ)

]}
∣∣∣∣∣∣∣∣∣
−1

2

exp
{
− 1
~
SE

q
x

(T=∞)
bounce

y}
.

Structure: zero mode factor, determinant ratio, leading exponential term

Important: By virtue of analogy, this formula can be transferred to field theory!
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Generalized ansatz

Proceed similarly as in the previous case by considering En
(glob) given by

E(glob)
n = −T−1~ ln

[∫
R2
ψ

(glob)
n (xT ) ψ(glob)

n (x0)KE
(
xT , T ;x0, 0

)
dx0dxT

]
.

To extract En
(loc), one employs the following two substitutions [10, 11]:

1 ... omit shot-like contributions.
2 ... replace ψn(glob)(x) by ψn(loc)(x).

E(loc)
n = − ~

T
ln
{∫

R2
ψ

(loc)
n (xT ) ψ(loc)

n (x0)
[
K

(FV)
E

(
xT , T ;x0, 0

)
+ 1

2 K
(bounce-like)
E

(
xT , T ;x0, 0

)]
dx0dxT

}
.

[11] Liang & Müller-Kirsten (1995), PRD vol. 51(2)
[10] Liang & Müller-Kirsten (1994), PRD vol. 50(10)
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Local wave function

Two naturally arising candidates for ψn(loc)(x):
1 Harmonic oscillator states — good approximation near xFV
2 Traditional WKB ansatz — correct estimate inside the barrier
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Methods of evaluation

There are two ways of computing the expression∫
R2
ψ

(loc)
n (xT ) ψ(loc)

n (x0)
[∫ x(T )=xT

x(0)=x0

DEJxK exp
(
−SEJxK

~

)]
J (loc)

FV/bounce

dx0dxT .

Sequential semi-classical evaluation
of all integrals involved

Rewriting the expression into a
single composite path integral
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Critical paths

Sequential evaluation∫
R2
ψ(xT )ψ(x0)

[∫ xT

x0

DJxK exp
(
−SEJxK

~

)]
dx0dxT

Composite path integral∫
C∞
(
[0, T ]

)DJxKψ
q
x(T )

y
ψ

q
x(0)

y
exp
(
−SEJxK

~

)

Bounce-like critical trajectory satisfies Ecrit = 0, thus one can show

exponent = ψ(loc)
exp
[
x

(crit)
0

]
+ ψ(loc)

exp
[
x

(crit)
T

]
+ SE

q
x

(T )
bounce

y
= SE

q
x

(T=∞)
bounce

y
.

Obtain the family xclassical
(x0, xT , T )(τ) of

critical trajectories to the Dirichlet
boundary conditions of the propagator

Additional conditions on the endpoints
x0, T

(crit) from weight functions ψ(x)

The stationarity condition of the full
exponent reads
δ

δx(t)

[
ψ(loc)

exp
q
x(0)

y
+ψ(loc)

exp
q
x(T )

y
+SEJxK

]
!= 0

t = 0, T yield endpoint restrictions
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Final result

Sequential evaluation∫
R2
ψ(xT )ψ(x0)

[∫ xT

x0

DJxK exp
(
−SEJxK

~

)]
dx0dxT

Composite path integral∫
C∞
(
[0, T ]

)DJxKψ
q
x(T )

y
ψ

q
x(0)

y
exp
(
−SEJxK

~

)

Both procedures reproduce the known result [14, 15]

Γn = −2
~

Im
[
E

(loc)
n

]
= 1
n!

(
2mωA2

~

)n√
mω3A2

π~
exp

{
− 1
~
SE

q
x

(T=∞)
bounce

y}
.

[15] Weiss & Häffner (1983), PRD vol. 27(12)
[14] Levit, Negele, & Paltiel (1980), PRC vol. 22(5)

[13] Kirsten & McKane (2004), J. Phys. A vol. 37
[12] Gel’fand & Yaglom (1960), J. Math. Phys. vol. 1(1)

We have three Gaussian integrations,
thus three fluctuation factors.
Soft and negative modes get traded
between the different integrals.

Only a single determinant factor with
altered boundary conditions. This is
easily encompassed by the
Gel’fand-Yaglom theorem [12, 13].
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Concluding remarks

Key conclusion: Solving a composite path integral is in many situations advantageous
to sequentially approximating the involved integrals.

The former computation should serve as a first step towards resolving the role of
instantons in tunneling:

real time dynamics of a
particle trapped inside a
meta-stable FV region ?

direct relation instanton solutions in
imaginary time

Thanks for your attention!
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Traditional WKB procedure
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Direct method

Use the probability PTV(t) ∼ 1− e−Γt of the particle to be located inside the true
vacuum region to deduce

Γ = − d
dt

{
ln
[
1− PTV(t)

]}
≈ PTV(t)

t
for t� Γ−1 .

Now one can employ the (endpoint-weighted) path integral representation

PTV(t) =
[∫
C∞
(
[−τ, τ ′]

)DθJzK ψt=0
q
z(τ ′)

y
ψt=0

q
z(−τ)

y

× exp
(
iSθJzK

~

)
Θ
q
z(0)− xturn

y]
τ,τ ′ > 0
τ = +eiθt
τ ′=−eiθt

.
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What makes the bounce special?

The bounce entails three caveats, two of them are tied to the fluctuation determinant

detζ

{
− d2

dτ2 +
V ′′
[
xbounce(τ)

]
m

}− 1
2

ζ=
∞∏
µ=0

λ
− 1

2
µ .

1 The smallest eigenvalue is negative.
2 The next-larger eigenvalue is positive,

but exponentially small λ ∼ e−ωT/2.
−→ related to approximate time-

translation symmetry
3 For large times T , multi-bounce

configurations become dominant.

t0

t0

t1

(standard) bounce

shifted bounce

double
bounce

shifted double
bounce
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Critical paths

In both cases, the conditions for the endpoints x0, T
(crit) evaluate to√

2mV
[
x

(crit)
0
] != sign

[
ẋ(crit)(0)

]√
2m
{
V
[
x

(crit)
0
]

+ Ecrit

}
,√

2mV
[
x

(crit)
T

]
︸ ︷︷ ︸
wave function

!= −sign
[
ẋ(crit)(T )

]√
2m
{
V
[
x

(crit)
T

]
+ Ecrit

}
︸ ︷︷ ︸

derivative of SE
(
x0, xT , T

) .

Any critical path xcrit(τ) immediately requires Ecrit
!= 0. Moreover, there are two cases:

1 Path has no turning point
Then the only solution is x(τ) = xFV, i.e. the trivial false vacuum trajectory.

2 Path has a single turning point (necessarily xturn)
Critical trajectories are bounce-like paths, possessing an exact zero-mode.
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Exponent for bounce-like trajectories

An important observation at this point is that the full exponent evaluated on the
one-parameter family of bounce solutions is:

exponent = ψ(loc)
exp
[
x

(crit)
0

]
+ ψ(loc)

exp
[
x

(crit)
T

]
+ SE

[
x

(crit)
0 , x

(crit)
T , T

]

=
∫ x

(crit)
0

0

√
2mV (ξ) dξ +

∫ xturn

x
(crit)
0

√
2mV (ξ) dξ +

(
x

(crit)
0 ↔ x

(crit)
T

)
= 2

∫ xturn

0

√
2mV (ξ) dξ = SE

q
x

(T=∞)
bounce

y
.

This ensures the correct exponential suppression for arbitrary parameter T .
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Bounce-like trajectories (illustrations)
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Collective coordinate bounce

xFV
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Ways to compute a determinant

For homogeneous Dirichlet boundary conditions eµ(0) = eµ(T ) = 0 one can employ the
formulas:

detζ

{
− d2

dτ2 +
V ′′
[
xmin(τ)

]
m

}
= 2κ(0)κ(T )

∫ T

0

1
κ(τ)2 dτ Shifting method

= −2m
[
∂2SE

(
x0, xT , T

)
∂x0∂xT

]−1
Van Vleck-determinant

= 2y(2)
λ = 0(T ) Gel’fand Yaglom

The Gel’fand Yaglom method can be generalized to deal with eigenvalue problems
possessing generalized boundary conditions(

m11 m12
m21 m22

)(
eµ(0)

p(0) ėµ(0)

)
+
(
n11 n12
n21 n22

)(
eµ(T )

p(T ) ėµ(T )

)
= 0 .
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