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[1] Sakharov (1967), Pisma Zh. Eksp. Teor. Fiz. vol. 5
[2] Garbrecht (2020), Prog. Part. Nucl. Phys. vol. 110

Motivation

Phase transitions in the early universe could provide an explanation for the observed
baryon asymmetry [1, 2]. Such an investigation requires intricate knowledge of

(non-perturbative)

T . in QFT at Ginite temperature) ]

- v - _
v v
usual instanton method requires us to incorporate
is not fully understood the decay of excited states

Goal: Examine the decay of excited states using functional methods.
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[3] Gamow (1928), Z. Physik vol. 51(3)  [5] Callan & Coleman (1977), PRD vol. 16(6)

EXtraCtI ng decay rates [4] Bender & Wu (1973), PRD vol. 7(6) [6] Ai, Garbrecht & Tamarit (2019), JHEP vol. 12

There exist numerous methods of attributing a meaningful imaginary part to the local

energies E(°°) fitting into roughly two categories:

Wave function techniques based Functional techniques based on the
on (approximate) solutions to the (Euclidean) propagator, employing
Schrodinger equation [3, 4, etc.] path integrals [5, 6, etc.]

directly extendable to field theory
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[7] Pham (1983), Singularities, Proc. Symp. Pure Math. vol. 40(2)

Method of steepest descent

Want to approximate the parameter integral

F= [ w0220

BT RL)
exp(Zmin) h

[8] Witten (2011), AMS/IP Stud. Adv. Math. vol. 50
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tion from minima

in the limit 2 — 0.
For complex f one decomposes the integration

contour C into parts on which Im( f) is constant
—— Picard-Lefschetz theory [7, 8, etc.]
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Laplace method for the Euclidean propagator

In a similar manner, one can express the leading order behavior for the Euclidean

propagator

w(T)=er T mi(r)?
KE(xT,T;:UO,O) :/ Dg[z] exp{—ili/o ; ) +V[$(T)j| dT}.

(0)=z0 _

Euclidean action Sg[x]

In the absence of (quasi-)zero modes one finds

1

K (w7, T; 20,0) \/>Zdet§{—2 W} Qexp(—w>.

Imln T

Structure: zero mode factor Z = 1, fluctuation factor, leading exponential contribution
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[5] Callan & Coleman (1977), PRD vol. 16(6)

Late-time behavior of the Euclidean propagator e wal (2017). PAD vl 95(2)

Observe that one can project out the ground state energy from the late-time behavior of
the Euclidean propagator

oo

K (o7, T320,0) = ) 938 (a0) 9 (a7) exp

n=0

E.églob) T
h

which leads to the exact relation

lob g -
E(()go ) _ —hjlgréo{T IID[KE(QfFVaT§ xFV’O)}}'

One hereby chooses xg = xp = xpy for convenience [5, 9].
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Critical trajectories for large T’
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! H [6] Ai, Garbrecht & Tamarit (2019), JHEP vol. 12
COleman S ConJeCture [9] Schwartz, et al. (2017), PRD vol. 95(8)

We require information about E(°?, so how is the relation

T—o0

B = _p lim {T—l n| K0 (T) + K (T) + KT ]}
dominant  exponentially suppressed

of any use? Im(¢)

Dropping the steepest descent contour
associated with the shot solution [6, 9],
one conjectures the identity o

v j(glob)

Zbounce (t) shot

Zshot, (t)

Re(¢)

L
zrv (t)

1 . _ @®V) 1 (bounce) (slob)
B9 = —thgréo{T 11n{KE + 5 Kg” ]} T unee
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Final expression

Taking care of certain caveats yields the ground state decay width I’y as

r

1
d? (T=00) 2
Se =] det’c{—de + V[ Zhommee (7)]} 1 1 (T=o0)
To= onh a2 eXp{ RoE [<bomee } '
e
detc { = @ + V"[xFV(T)]}

Structure: zero mode factor, determinant ratio, leading exponential term

Important: By virtue of analogy, this formula can be transferred to field theory!
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[10] Liang & Miiller-Kirsten (1994), PRD vol. 50(10)
[11] Liang & Miiller-Kirsten (1995), PRD vol. 51(2)

Generalized ansatz

Proceed similarly as in the previous case by considering E{#°") given by
E7(Lg1°b) =-T7'n ln[ ,(Lgbb) (z7) ;z)ggl‘)b) (z0) Kg (:cT, T; xo, O) dxodxr
]R2

To extract E{°°), one employs the following two substitutions [10, 11]:

@ ... omit shot-like contributions.

o .. replace PP () by lled)(z).

r

h

E,QOC)Z—T { ¥ (2r) 909 (o) KES™Y) (a7, T 20,0)

1 ar
+ 5 K]E:bounce like) (CUT, T: zo, 0):| dSEQd.’L’T} ]
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Local wave function

Two naturally arising candidates for 1) (z):
© Harmonic oscillator states — good approximation near xpyv

@ Traditional WKB ansatz — correct estimate inside the barrier
L5 7 \
v \\ n=4
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Methods of evaluation

There are two ways of computing the expression

/ SOC) (JJ loc [/ DE[[xﬂ exp< SE[[«'H])] d.f()dl'T ]
R2 z(0)=x0 (loc)

V /bounce

of all integrals involved single composite path integral

[ Sequential semi-classical evaluation ] [ Rewriting the expression into a ]
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CSeq uential evaluation)

[ vt | [ o es(- 22 sty

e Obtain the family 2221 (7) of
critical trajectories to the Dirichlet
boundary conditions of the propagator

@ Additional conditions on the endpoints

(crit)

a;o %) from weight functions P(x)

C Composite path integral )
/COC([O’ Dlx] ¢ [[oc ) [(0)] exp(— SE}E[JC]])

@ The stationarity condition of the full
exponent reads

[ 0o [ (0)] 460 [ <T>]]+SE[[xﬂ]é0

e t =0,T vyield endpoint restrictions

Bounce-like critical trajectory satisfies F.i = 0, thus one can show

exponent = 1/}&);) |: (Crlt)] + wei?;) |: (Crlt) + S [[xbounce]

S |:|: b()un(e]] .
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[14] Levit, Negele, & Paltiel (1980), PRC vol. 22(5)

CSeq uential evaluation)

[ vt [ pleess(- 22 Y asoaer

@ We have three Gaussian integrations,
thus three fluctuation factors.

@ Soft and negative modes get traded
between the different integrals.

[13] Kirsten & McKane (2004), J. Phys. A vol. 37

[15] Weiss & Haffner (1983), PRD vol. 27(12)

CComposite path integral)

/"C([O,T )]] eXp<7

@ Only a single determinant factor with
altered boundary conditions. This is
easily encompassed by the
Gel'fand-Yaglom theorem [12, 13].

Selz]
[ [0 Eﬁ )

DD[[JJ]] W [=(T)

Both procedures reproduce the known result [14, 15]

mwd3 A2

T, = —2Im [Ef}oc)] —

h h

1 /2mwA?
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7h

exp { SE [[xbounce ]:| }
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Concluding remarks

Key conclusion: Solving a composite path integral is in many situations advantageous
to sequentially approximating the involved integrals.

The former computation should serve as a first step towards resolving the role of
instantons in tunneling:

real time dynamics of a
particle trapped inside a
meta-stable FV region

direct relation instanton solutions in
? imaginary time

Thanks for your attention!
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Traditional WKB procedure

plane wave WKB approximation
V(z) $ y
1 1
A quadratic turning point linear turning point
s A

False Vacuum Barrier True Vacuum
1
! Y - !
VFV -0- f > T

matching matching
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Direct method

Use the probability Pry(t) ~ 1 —e~!"* of the particle to be located inside the true
vacuum region to deduce

= —%{ In [1 — PTv(t)}} ~ PT::(t) fort < T71.

Now one can employ the (endpoint-weighted) path integral representation

Pry(t) = [/COO([ /])De[[z]] Y=o [2(7)] Y=o [2(—7)]

x exp(i&;i[[z]]> o[=(0) —xmm}]] PN

T =+4et
7= —eft
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What makes the bounce special?

The bounce entails three caveats, two of them are tied to the fluctuation determinant

[NIES

I
13
";>/‘|

d2 %44 [wbounce(T)]
dety g T

(standard) bounce

© The smallest eigenvalue is negative.

@ The next-larger eigenvalue is positive,
but exponentially small A ~ e=«7/2.
— related to approximate time-

translation symmetry

double
bounce

© For large times T', multi-bounce
configurations become dominant.

shifted double
bounce
- e
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Critical paths

In both cases, the conditions for the endpoints x&r%) evaluate to

wave function derivative of Sg(zo,z7,T)

!
Any critical path ¢t (7) immediately requires Eiy = 0. Moreover, there are two cases:

© Path has no turning point
Then the only solution is z(7) = xpy, i.e. the trivial false vacuum trajectory.

@ Path has a single turning point (necessarily Ttyrm)
Critical trajectories are bounce-like paths, possessing an exact zero-mode.
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Exponent for bounce-like trajectories

An important observation at this point is that the full exponent evaluated on the
one-parameter family of bounce solutions is:

exponent = (loc)[ Crlti| _'_weloc [ crlt)] +S [ (Crlt)’x’gi:rit)’T}

exp Xp
m(()crit) %\ .
- / VInVE de+ [ VamVE) de+ (a7 o o)

Lturn

V2mV (€) d¢ = SE[[ =

This ensures the correct exponential suppression for arbitrary parameter 7.



Backup slides

Bounce-like trajectories (illustration
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Collective coordinate bounce

general (finite-time) bounce z&?ﬂme(t) = Zbounce(t + to)
A

r ~

symmetric (finite-time) bounce zpounce(t)
N AL

Zo

Lerit

T +
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Ways to compute a determinant

For homogeneous Dirichlet boundary conditions e, (0) = e,(T") = 0 one can employ the

formulas:
d2 Vl/ min T 1
detc{—dT2 + [xm(Tﬂ} = QH(O)H(T)/O e dr Shifting method
025 7)1t
= —-2m E(wo’xT’ ) Van Vleck-determinant
8x08xT
= 2y/(\2i o(T) Gel'fand Yaglom

The Gel'fand Yaglom method can be generalized to deal with eigenvalue problems
possessing generalized boundary conditions

(s ) Groiat0) * (o ) Gom ) -
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