

Technical University of Munich Department of Physics

False vacuum decay of excited states from finite-time instantons

IMPRS EPP Recruiting Workshop

Nils Wagner

 13^{th} November 2023

Morentwom det

TVM

- 4 課 2 - 4 理 2 - 4 理

Supervisor: Prof. Dr. Björn Garbrecht Research Group: T70 (TUM)

Introduction 0000	Semiclassical expansion	Traditional instanton method	Decay of excited states	Backup slides
Outline				

- 2 Semiclassical expansion
- Traditional instanton method
- 4 Decay of excited states

Introduction ●000	Semiclassical expansion	Traditional instanton method	Decay of excited states	Backup slides
Outline				

2 Semiclassical expansion

3 Traditional instanton method

Introduction 0000	Semiclassical expansion	Traditional instanton method	Decay of excited states	Backup slides
Motivation			 Sakharov (1967), Pisma Zh. Eksp. Teor Garbrecht (2020), Prog. Part. Nucl. Phys. 	. Fiz. vol. 5 /s. vol. 110

Phase transitions in the early universe could provide an explanation for the observed baryon asymmetry [1, 2]. Such an investigation requires intricate knowledge of

Goal: Examine the decay of excited states using functional methods.

Introduction	Semiclassical expansion	Traditional instanton method	Decay of excited states	Backup slides
0000				
Ceneric tun	peling notential			

Introduction 000●	Semiclassical expansion	Traditional instanton method	Decay of excited states	Backup slides
Extracting d	lecay rates	[3] Gamow (1928), <i>Z. Physik</i> vol. <i>51</i> (3) [4] Bender & Wu (1973), <i>PRD</i> vol. <i>7</i> (6)	[5] Callan & Coleman (1977), F [6] Ai, Garbrecht & Tamarit (20	PRD vol. <i>16</i> (6) 019), <i>JHEP</i> vol. <i>12</i>

There exist numerous methods of attributing a meaningful imaginary part to the local energies $E_n^{(loc)}$, fitting into roughly two categories:

Functional techniques based on the (Euclidean) propagator, employing path integrals [5, 6, etc.]

directly extendable to field theory

Introduction 0000	Semiclassical expansion •00	Traditional instanton method	Decay of excited states	Backup slides 00000000
Outline				

2 Semiclassical expansion

3 Traditional instanton method

Want to approximate the parameter integral

$$F(\hbar) = \int_{-\infty}^{\infty} \exp\left[-\frac{f(x)}{\hbar}\right] dx$$
$$\sim \sum_{x_{\min}} \sqrt{\frac{2\pi\hbar}{f_{\exp}'(x_{\min})}} \exp\left[-\frac{f(x_{\min})}{\hbar}\right]$$
fluctuations around minima leading contribu-
tion from minima

in the limit $\hbar \to 0$.

For complex f one decomposes the integration contour C into parts on which Im(f) is constant \longrightarrow **Picard-Lefschetz theory** [7, 8, etc.]

Introduction	Semiclassical expansion	Traditional instanton method	Decay of excited states	Backup slides
	000			

Laplace method for the Euclidean propagator

In a similar manner, one can express the leading order behavior for the Euclidean propagator $% \left({{{\left[{{{\left[{{{c_{1}}} \right]}} \right]}_{\rm{c}}}_{\rm{c}}}} \right)$

$$K_{\mathrm{E}}(x_T, T; x_0, 0) = \int_{x(0)=x_0}^{x(T)=x_T} \mathcal{D}_{\mathrm{E}}[\![x]\!] \exp\left\{-\frac{1}{\hbar} \underbrace{\int_0^T \frac{m\dot{x}(\tau)^2}{2} + V[x(\tau)] \,\mathrm{d}\tau}_{\mathsf{Euclidean action } S_{\mathrm{E}}[\![x]\!]}\right\}.$$

In the absence of (quasi-)zero modes one finds

$$K_{\mathrm{E}}(x_{T},T;x_{0},0) \sim \sqrt{\frac{m}{\pi\hbar}} \sum_{x_{\min}(\tau)} \det_{\zeta} \left\{ -\frac{\mathrm{d}^{2}}{\mathrm{d}\tau^{2}} + \frac{V''[x_{\min}(\tau)]}{m} \right\}^{-\frac{1}{2}} \exp\left(-\frac{S_{\mathrm{E}}[\![x_{\min}]\!]}{\hbar}\right).$$

Structure: zero mode factor $\mathcal{Z} = 1$, fluctuation factor, leading exponential contribution

Introduction 0000	Semiclassical expansion	Traditional instanton method ●0000	Decay of excited states	Backup slides
Outline				

1 Introduction

- 2 Semiclassical expansion
- Traditional instanton method
- 4 Decay of excited states

Introduction 0000	Semiclassical expansion	Traditional instanton method o●ooo	Decay of excited states	Backup slides
Late-time be	ehavior of the Euc	lidean propagator	[5] Callan & Coleman (1977), <i>Pl</i> [9] Schwartz, et al. (2017), <i>PRD</i>	RD vol. <i>16</i> (6)

Observe that one can project out the ground state energy from the late-time behavior of the Euclidean propagator

$$K_{\rm E}(x_T, T; x_0, 0) = \sum_{n=0}^{\infty} \overline{\psi_n^{(\text{glob})}(x_0)} \, \psi_n^{(\text{glob})}(x_T) \, \exp\left[-\frac{E_n^{(\text{glob})}T}{\hbar}\right] \,,$$

which leads to the exact relation

$$E_0^{(\text{glob})} = -\hbar \lim_{T \to \infty} \left\{ T^{-1} \ln \left[K_{\text{E}} \left(x_{\text{FV}}, T; x_{\text{FV}}, 0 \right) \right] \right\}.$$

・ロト・(アト・ミト・ミト ミークへで 10/28

One hereby chooses $x_0 = x_T = x_{\rm FV}$ for convenience [5, 9].

Introduction	Semiclassical expansion	Traditional instanton method	Decay of excited states	Backup slides
0000		00●00	0000000	00000000
Critical traje	ctories for large T	٦		

 $+ \Box + + \Box + + \Xi + + \Xi + = 9 < C 11/28$

Introduction 0000	Semiclassical expansion	Traditional instanton method 000●0	Decay of excited states	Backup slides 00000000
Coleman's conjecture		[6] Ai, Garbrecht & Tamarit (201 [9] Schwartz, et al. (2017), <i>PRD</i>	9), <i>JHEP</i> vol. <i>12</i> vol. <i>95</i> (8)	

We require information about $E_0^{(loc)}$, so how is the relation

Introduction 0000	Semiclassical expansion	Traditional instanton method 0000●	Decay of excited states	Backup slides 00000000
Final evores	sion			

Taking care of certain caveats yields the ground state decay width Γ_0 as

$$\Gamma_{0} = \sqrt{\frac{S_{\mathrm{E}}\left[\!\left[x_{\mathrm{bounce}}^{(T=\infty)}\right]\!\right]}{2\pi\hbar}} \left| \frac{\det_{\zeta}'\left\{-\frac{\mathrm{d}^{2}}{\mathrm{d}\tau^{2}} + V''\left[x_{\mathrm{bounce}}^{(T=\infty)}(\tau)\right]\right\}}{\det_{\zeta}\left\{-\frac{\mathrm{d}^{2}}{\mathrm{d}\tau^{2}} + V''\left[x_{\mathrm{FV}}(\tau)\right]\right\}} \right|^{-\frac{1}{2}} \exp\left\{-\frac{1}{\hbar}S_{\mathrm{E}}\left[\!\left[x_{\mathrm{bounce}}^{(T=\infty)}\right]\!\right]\right\}.$$

Structure: zero mode factor, determinant ratio, leading exponential term

Important: By virtue of analogy, this formula can be transferred to field theory!

Introduction 0000	Semiclassical expansion	Traditional instanton method	Decay of excited states ●000000	Backup slides 00000000	
Outline					

1 Introduction

- 2 Semiclassical expansion
- 3 Traditional instanton method

Introduction 0000	Semiclassical expansion	Traditional instanton method	Decay of excited states 0●00000	Backup slides 00000000
Generalized	ansatz		[10] Liang & Müller-Kirsten (1994), P. [11] Liang & Müller-Kirsten (1995), P.	RD vol. <i>50</i> (10) RD vol. <i>51</i> (2)

Proceed similarly as in the previous case by considering $E_n^{(\text{glob})}$ given by

$$E_n^{(\text{glob})} = -T^{-1}\hbar \ln\left[\int_{\mathbb{R}^2} \overline{\psi_n^{(\text{glob})}(x_T)} \,\psi_n^{(\text{glob})}(x_0) \,K_{\text{E}}\big(x_T, T; x_0, 0\big) \,\mathrm{d}x_0 \,\mathrm{d}x_T\right]$$

To extract $E_n^{(\mathrm{loc})}$, one employs the following two substitutions [10, 11]:

... omit shot-like contributions.

2 ... replace $\psi_n^{(\mathrm{glob})}(x)$ by $\psi_n^{(\mathrm{loc})}(x)$.

$$E_n^{(\text{loc})} = -\frac{\hbar}{T} \ln \left\{ \int_{\mathbb{R}^2} \overline{\psi_n^{(\text{loc})}(x_T)} \,\psi_n^{(\text{loc})}(x_0) \left[K_{\text{E}}^{(\text{FV})}(x_T, T; x_0, 0) + \frac{1}{2} K_{\text{E}}^{(\text{bounce-like})}(x_T, T; x_0, 0) \right] \mathrm{d}x_0 \mathrm{d}x_T \right\}.$$

Introduction 0000	Semiclassical expansion	Traditional instanton method	Decay of excited states 00●0000	Backup slides 00000000	
Local wave	function				

Two naturally arising candidates for $\psi_n^{(loc)}(x)$:

- **(**) Harmonic oscillator states good approximation near $x_{\rm FV}$
- Iraditional WKB ansatz correct estimate inside the barrier

Introduction 0000	Semiclassical expansion	Traditional instanton method	Decay of excited states 000●000	Backup slides 00000000
Methods of	evaluation			

There are two ways of computing the expression

$$\int_{\mathbb{R}^2} \overline{\psi_n^{(\mathrm{loc})}(x_T)} \, \psi_n^{(\mathrm{loc})}(x_0) \left[\int_{x(0)=x_0}^{x(T)=x_T} \mathcal{D}_{\mathrm{E}}[\![x]\!] \, \exp\left(-\frac{S_{\mathrm{E}}[\![x]\!]}{\hbar}\right) \right]_{\mathcal{J}_{\mathrm{FV/bounce}}^{(\mathrm{loc})}} \mathrm{d}x_0 \, \mathrm{d}x_T \, .$$
Sequential semi-classical evaluation of all integrals involved
$$\operatorname{Rewriting the expression into a single composite path integral}$$

Critical naths							
0000	000	00000	0000000	0000000			
Introduction	Semiclassical expansion	Traditional instanton method	Decay of excited states	Backup slides			

Sequential evaluation

$$\int_{\mathbb{R}^2} \overline{\psi(x_T)} \psi(x_0) \left[\int_{x_0}^{x_T} \mathcal{D}[\![x]\!] \exp\!\left(\!-\frac{S_{\mathrm{E}}[\![x]\!]}{\hbar}\right) \right] \mathrm{d}x_0 \mathrm{d}x_T$$

- Obtain the family $x_{classical}^{(x_0, x_T, T)}(\tau)$ of critical trajectories to the Dirichlet boundary conditions of the propagator
- Additional conditions on the endpoints $x_{0,\,T}^{({\rm crit})}$ from weight functions $\psi(x)$

Composite path integral

$$\int_{\mathcal{C}^{\infty}\left([0,T]\right)} \mathcal{D}\llbracket x \rrbracket \,\overline{\psi}\llbracket x(T) \rrbracket \,\psi \llbracket x(0) \rrbracket \exp\left(-\frac{S_{\mathrm{E}}\llbracket x \rrbracket}{\hbar}\right)$$

• The stationarity condition of the full exponent reads $\frac{\delta}{\delta x(t)} \left[\psi_{\exp}^{(\text{loc})} \llbracket x(0) \rrbracket + \psi_{\exp}^{(\text{loc})} \llbracket x(T) \rrbracket + S_{\text{E}} \llbracket x \rrbracket \right] \stackrel{!}{=} 0$

 $\bullet \ t=0,T$ yield endpoint restrictions

Bounce-like critical trajectory satisfies $E_{\text{crit}} = 0$, thus one can show $\begin{aligned} & \text{exponent} = \psi_{\exp}^{(\text{loc})} \left[x_0^{(\text{crit})} \right] + \psi_{\exp}^{(\text{loc})} \left[x_T^{(\text{crit})} \right] + S_{\text{E}} \left[\left[x_{\text{bounce}}^{(T)} \right] \right] = S_{\text{E}} \left[\left[x_{\text{bounce}}^{(T=\infty)} \right] \right]. \end{aligned}$

Introduction 0000	Semiclassical expansion	Traditional instanton method	Decay of excited states 00000€0	Backup slides	
Final result	[12] Gel'fand & Yaglom	(1960), J. Math. Phys. vol. 1(1)	[14] Levit, Negele, & Paltiel (1980),	PRC vol. 22(5)	
	[13] Kirsten & McKane	(2004), J. Phys. A vol. 37	[15] Weiss & Häffner (1983), <i>PRD</i>	vol. 27(12)	

J

Sequential evaluation

$$\int_{\mathbb{R}^2} \overline{\psi(x_T)} \psi(x_0) \left[\int_{x_0}^{x_T} \mathcal{D}[\![x]\!] \exp\!\left(\!-\frac{S_{\mathrm{E}}[\![x]\!]}{\hbar}\right) \right] \mathrm{d}x_0 \mathrm{d}x_T$$

- We have three Gaussian integrations, thus three fluctuation factors.
- Soft and negative modes get traded between the different integrals.

Composite path integral

$$\int_{\mathcal{C}^{\infty}\left([0,T]\right)} \mathcal{D}\llbracket x \rrbracket \,\overline{\psi}\llbracket x(T) \rrbracket \,\psi \llbracket x(0) \rrbracket \exp\left(-\frac{S_{\mathrm{E}}\llbracket x \rrbracket}{\hbar}\right)$$

• Only a single determinant factor with altered boundary conditions. This is easily encompassed by the Gel'fand-Yaglom theorem [12, 13].

Both procedures reproduce the known result [14, 15]

$$\Gamma_n = -\frac{2}{\hbar} \operatorname{Im} \left[E_n^{(\text{loc})} \right] = \frac{1}{n!} \left(\frac{2m\omega\mathcal{A}^2}{\hbar} \right)^n \sqrt{\frac{m\omega^3\mathcal{A}^2}{\pi\hbar}} \exp \left\{ -\frac{1}{\hbar} S_{\text{E}} \left[\! \left[x_{\text{bounce}}^{(T=\infty)} \right] \! \right] \right\}.$$

Introduction 0000	Semiclassical expansion	Traditional instanton method	Decay of excited states 000000●	Backup slides
Concluding	remarks			

Key conclusion: Solving a composite path integral is in many situations advantageous to sequentially approximating the involved integrals.

The former computation should serve as a first step towards resolving the role of instantons in tunneling:

Thanks for your attention!

Introduction 0000	Semiclassical expansion	Traditional instanton method	Decay of excited states	Backup slides 0000000
Direct meth	od			

Use the probability $P_{\rm TV}(t)\sim 1-e^{-\Gamma t}$ of the particle to be located inside the true vacuum region to deduce

$$\Gamma = -\frac{\mathrm{d}}{\mathrm{d}t} \Big\{ \ln \Big[1 - P_{\mathrm{TV}}(t) \Big] \Big\} \approx \frac{P_{\mathrm{TV}}(t)}{t} \qquad \text{for } t \ll \Gamma^{-1} \,.$$

Now one can employ the (endpoint-weighted) path integral representation

$$P_{\mathrm{TV}}(t) = \left[\int_{\mathcal{C}^{\infty}([-\tau,\tau'])} \mathcal{D}_{\theta} \llbracket z \rrbracket \ \overline{\psi_{t=0} \llbracket z(\tau') \rrbracket} \ \psi_{t=0} \llbracket z(-\tau) \rrbracket \right] \\ \times \exp\left(\frac{iS_{\theta} \llbracket z \rrbracket}{\hbar}\right) \Theta\left[\llbracket z(0) - x_{\mathrm{turn}} \rrbracket \right]_{\substack{\tau,\tau'>0\\ \tau = +e^{i\theta}t\\ \tau' = -e^{i\theta}t}}.$$

What ma	kes the bounce sr	ecial?			
0000	000	00000	000000	0000000	
Introduction	Semiclassical expansion	Traditional instanton method	Decay of excited states	Backup slides	

The bounce entails three caveats, two of them are tied to the fluctuation determinant

$$\det_{\zeta} \left\{ -\frac{\mathrm{d}^2}{\mathrm{d}\tau^2} + \frac{V'' \big[x_{\mathrm{bounce}}(\tau) \big]}{m} \right\}^{-\frac{1}{2}} \stackrel{\zeta}{=} \prod_{\mu=0}^{\infty} \lambda_{\mu}^{-\frac{1}{2}}$$

- The smallest eigenvalue is negative.
- **②** The next-larger eigenvalue is positive, but exponentially small λ ~ e^{-ωT/2}.
 → related to approximate time-translation symmetry
- For large times T, multi-bounce configurations become dominant.

Introduction 0000	Semiclassical expansion	Traditional instanton method	Decay of excited states	Backup slides 000●0000
Critical path	าร			

In both cases, the conditions for the endpoints $x_{0,T}^{(\mathrm{crit})}$ evaluate to

$$\begin{split} \sqrt{2mV\big[x_0^{(\mathrm{crit})}\big]} &\stackrel{!}{=} \operatorname{sign}\big[\dot{x}^{(\mathrm{crit})}(0)\big]\sqrt{2m\left\{V\big[x_0^{(\mathrm{crit})}\big] + E_{\mathrm{crit}}\right\}}},\\ \sqrt{2mV\big[x_T^{(\mathrm{crit})}\big]} &\stackrel{!}{=} \underbrace{-\operatorname{sign}\big[\dot{x}^{(\mathrm{crit})}(T)\big]\sqrt{2m\left\{V\big[x_T^{(\mathrm{crit})}\big] + E_{\mathrm{crit}}\right\}}}_{\mathrm{derivative of }S_{\mathrm{E}}\big(x_0, x_T, T\big)}. \end{split}$$

Any critical path $x_{\text{crit}}(\tau)$ immediately requires $E_{\text{crit}} \stackrel{!}{=} 0$. Moreover, there are two cases:

Path has no turning point

Then the only solution is $x(\tau) = x_{\rm FV}$, i.e. the trivial false vacuum trajectory.

Path has a single turning point (necessarily x_{turn}) Critical trajectories are bounce-like paths, possessing an exact zero-mode.

-					
				00000000	
Introduction	Semiclassical expansion	Traditional instanton method	Decay of excited states	Backup slides	

Exponent for bounce-like trajectories

6

An important observation at this point is that the full exponent evaluated on the one-parameter family of bounce solutions is:

$$\begin{aligned} \mathsf{exponent} &= \psi_{\exp}^{(\mathrm{loc})} \left[x_0^{(\mathrm{crit})} \right] + \psi_{\exp}^{(\mathrm{loc})} \left[x_T^{(\mathrm{crit})} \right] + S_{\mathrm{E}} \left[x_0^{(\mathrm{crit})}, x_T^{(\mathrm{crit})}, T \right] \\ &= \int_0^{x_0^{(\mathrm{crit})}} \sqrt{2mV(\xi)} \, \mathrm{d}\xi + \int_{x_0^{(\mathrm{crit})}}^{x_{\mathrm{turn}}} \sqrt{2mV(\xi)} \, \mathrm{d}\xi + \left(x_0^{(\mathrm{crit})} \leftrightarrow x_T^{(\mathrm{crit})} \right) \\ &= 2 \int_0^{x_{\mathrm{turn}}} \sqrt{2mV(\xi)} \, \mathrm{d}\xi = S_{\mathrm{E}} \left[\left[x_{\mathrm{bounce}}^{(T=\infty)} \right] \right]. \end{aligned}$$

This ensures the correct exponential suppression for arbitrary parameter T.

0000 000		0			00000		000000	00000000	
_					1		N		

Introduction	Semiclassical expansion	Traditional instanton method	Decay of excited states	Backup slides
				0000000

Ways to compute a determinant

For homogeneous Dirichlet boundary conditions $e_{\mu}(0)=e_{\mu}(T)=0$ one can employ the formulas:

$$\begin{split} \det_{\zeta} & \left\{ -\frac{\mathrm{d}^2}{\mathrm{d}\tau^2} + \frac{V'' \big[x_{\min}(\tau) \big]}{m} \right\} = 2\kappa(0)\kappa(T) \int_0^T \frac{1}{\kappa(\tau)^2} \,\mathrm{d}\tau \qquad \text{Shifting method} \\ & = -2m \Big[\frac{\partial^2 S_{\mathrm{E}} \big(x_0, x_T, T \big)}{\partial x_0 \partial x_T} \Big]^{-1} \quad \text{Van Vleck-determinant} \\ & = 2y_{\lambda \,= \, 0}^{(2)}(T) \qquad \qquad \text{Gel'fand Yaglom} \end{split}$$

The Gel'fand Yaglom method can be generalized to deal with eigenvalue problems possessing generalized boundary conditions

$$\begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix} \begin{pmatrix} e_{\mu}(0) \\ p(0) \dot{e}_{\mu}(0) \end{pmatrix} + \begin{pmatrix} n_{11} & n_{12} \\ n_{21} & n_{22} \end{pmatrix} \begin{pmatrix} e_{\mu}(T) \\ p(T) \dot{e}_{\mu}(T) \end{pmatrix} = 0.$$