Workshop on precision measurements of α_s 9-11 February, 2011 Max Planck Institut für Physik, Munich, Germany

Review of α_s determinations from jets at HERA

The strong coupling constant α_s in ep collisions

• The strong coupling constant, α_s , participates in any observable involving jets in ep collisions

th. uncert.

exp. uncert.

0.1

- \Rightarrow jet observables can be used to determine its value
- A wealth of α_s determinations are available from HERA data
 - \rightarrow observables such as
 - jet cross sections
 - ratios of jet cross sections
 - internal structure of jets
 - \rightarrow are sensitive to the value of α_s and were used to determine its value
- The $\alpha_s(M_Z)$ values from H1 and ZEUS are all in good agreement and consistent with the world average

Determination of α_s at HERA

• The predictions for jet cross sections at HERA can be written in QCD as

$$d\sigma(ep
ightarrow e + ext{Jets}) + X) = \sum_{a=q,ar{q},g} \int dx \ f_a(x,\mu_F) \ d\hat{\sigma}_a(x,lpha_s(\mu_R),\mu_R,\mu_F)$$

 $\Rightarrow \text{ to determine } \alpha_s \text{ from a jet observable at HERA, the correlation between} \\ \rightsquigarrow \text{ explicit dependence on } \alpha_s \text{ from the matrix elements} \\ \rightsquigarrow \text{ implicit dependence on } \alpha_s \text{ from the pPDFs} \\ \text{ has to be taken into account properly} \end{cases}$

• Solutions:

Claudia Glasman (UAM)

- \rightarrow determine α_s from observables with small dependence on the pPDFs (eg, determination from ratios of observables)
- \rightarrow determine α_s by taking properly into account the correlation (eg. using pPDF sets extracted assuming different values of $\alpha_s \rightarrow$)
- \rightarrow or perform simultaneous determination of α_s and the pPDFs (not treated in this talk)

A method to determine α_s from jet observables

• The method to determine α_s from jet observables used by ZEUS is based on the α_s dependence of the pQCD calculations, taking into account the correlation with the pPDFs:

 $\frac{d\sigma}{dA}$

measured

value

- perform NLO calculations using different sets of pPDFs
- use as input in each calculation the value of $lpha_s(M_Z)$ assumed in each pPDF set
- parametrise the α_s dependence of the observable:

 $A^i(lpha_s(M_Z)) = A^i_1\,lpha_s(M_Z) + A^i_2\,lpha_s(M_Z)^2$

- determine $\alpha_s(M_Z)$ from the measured value using the NLO parametrisation
- This procedure handles correctly the complete α_s -dependence of the NLO calculations (explicit dependence in the partonic cross section and implicit dependence from the pPDFs) in the fit, while preserving the correlation between α_s and the pPDFs

extracted

value

Claudia Glasman (UAM)

parametrisation

NLO QCD

 $\alpha_s(M_Z)$

Claudia Glasman (UAM)

Jets in NC DIS at HERA

• Jet production in neutral current deep inelastic ep scattering at $\mathcal{O}(\alpha_s)$ in the Breit frame:

• Jet production cross section in NC DIS is given in pQCD by:

$$d\sigma_{
m jet} = \sum_{a=q,ar q,g}\int dx \ f_a(x,\mu_F) \ d\hat\sigma_a(x,lpha_s(\mu_R),\mu_R,\mu_F)$$

- f_a : parton a density, determined from experiment \rightarrow long-distance structure of the target
- $-\hat{\sigma}_a$: subprocess cross section, calculable in pQCD \rightarrow short-distance structure of the interaction

Kinematics:
- momentum transfer:

$$Q^2 = -q^2 = -(k - k')^2$$

- Bjorken x : $x = \frac{Q^2}{2P \cdot q}$
- inelasticity:
 $y = \frac{P \cdot q}{P \cdot k} = 1 - \frac{E'_e(1 - \cos \theta_e)}{2E_e}$

Review of α_s determinations from jets at HERA

 $ep \rightarrow e + \mathrm{jet}(\mathrm{s}) + \mathrm{X}$: jets at low Q^2

- Jets searched using the k_T cluster algorithm in Breit frame
- Kinematic region: $5\!<\!Q^2\!<\!100~{\rm GeV}^2$ and $0.2\!<\!y\!<\!0.7$
- Jets with $P_T\!>\!5~{
 m GeV}$ and $-1\!<\!\eta_{
 m LAB}^{
 m jet}\!<\!2.5$
- ($M^{
 m jj}\!>\!18~
 m GeV$)
- Small experimental uncertainties
 - \rightarrow uncorrelated: $<\pm5, ~\sim\pm5, ~\sim\pm8\%$
 - ightarrow correlated: $\sim \pm 5, \ \sim \pm 5, \ < \pm 8\%$
- NLO predictions using NLOJET++
 - $\rightarrow \mu_R^2 = \mu_F^2 = (Q^2 + \langle P_T \rangle^2)/2; \text{ pPDFs: CTEQ6.5M};$ corrected for hadronisation effects
- Theoretical uncertainties: dominated by terms beyond NLO
 - ightarrow higher orders ($\pm 30~(10)\%$ at low (high) Q^2)
 - ightarrow proton PDFs ($\pm 6~(2)\%$ at low (high) Q^2)
 - ightarrow parton-to-hadron corrections (±1-2.5, ±1-2, ±5%)
- → The measured jet cross sections are well described by the NLO predictions in the whole measured range
- \rightarrow Measurements provide direct sensitivity to $\alpha_s(M_Z)$ with small experimental uncertainties H1 Collab, Eur Phys J C 67 (2010) 1

inclusive iets do_{jet}/dQ ² [pb/GeV ²] • H1 data 10³ NLO \otimes hadr 10² **H1** 10 10^{2} 10 Q^2 [GeV²] dijets do _{2-jet}/dQ ² [pb/GeV ²] • H1 data 10² NLO ⊗ hadr 10 **H1** 10 10^{2} Q^2 [GeV²] trijets do_{3-jet}/dQ ² [pb/GeV ²] H1 data 10 NLO ⊗ hadr **H1** 10^{2} 10 Q^2 [GeV²]

Workshop on precision measurements of α_s

 $\mathcal{L}=43.5~{ t pb}^{-1}$

• From the measured double-differential cross sections for $5 < Q^2 < 100$ GeV², values of $\alpha_s(M_Z)$ were extracted:

 $\begin{aligned} &\alpha_s(M_Z) = 0.1180 \pm 0.0018 \,(\text{exp.})^{+0.0124}_{-0.0093} \,(\text{th.}) &\text{inclusive jets} \\ &\alpha_s(M_Z) = 0.1155 \pm 0.0018 \,(\text{exp.})^{+0.0124}_{-0.0093} \,(\text{th.}) &\text{dijets} \\ &\alpha_s(M_Z) = 0.1170 \pm 0.0017 \,(\text{exp.})^{+0.0091}_{-0.0073} \,(\text{th.}) &\text{trijets} \\ &\alpha_s(M_Z) = 0.1160 \pm 0.0014 \,(\text{exp.})^{+0.0094}_{-0.0079} \,(\text{th.}) &\text{combined} \end{aligned}$

- Experimental uncertainty: $\pm 1.2\%$
- Theoretical uncertainty: $^{+8.1}_{-6.8}\%$, dominated by terms beyond NLO (offset method)
- * Reduction of theoretical uncertainties can be achieved by determining α_s from the measured trijet to dijet ratio:

$$lpha_s(M_Z) = 0.1215 \pm 0.0032 \; ({
m exp.})^{+0.0067}_{-0.0059} \; ({
m th.})$$

experimental uncertainty: $\pm 2.6\%$; theoretical uncertainty: $^{+5.5}_{-4.9}\%$

H1 Collab, Eur Phys J C 67 (2010) 1

¹⁰ Q² [GeV²] ⁵⁰ 9-11 February, 2011

• H1 data

 $NLO \otimes hadr$

H1

0.4

0.3

0.2

0.1

0.0

Workshop on precision measurements of α_s

• From the measured normalised double-differential cross sections for $150 < Q^2 < 15000$ GeV², values of $\alpha_s(M_Z)$ were extracted:

 $\begin{aligned} &\alpha_s(M_Z) = 0.1195 \pm 0.0010 \; (\exp.)^{+0.0052}_{-0.0040} \; (\text{th.}) & \text{inclusive jets} \\ &\alpha_s(M_Z) = 0.1155 \pm 0.0009 \; (\exp.)^{+0.0045}_{-0.0035} \; (\text{th.}) & \text{dijets} \\ &\alpha_s(M_Z) = 0.1172 \pm 0.0013 \; (\exp.)^{+0.0053}_{-0.0032} \; (\text{th.}) & \text{trijets} \\ &\alpha_s(M_Z) = 0.1168 \pm 0.0007 \; (\exp.)^{+0.0049}_{-0.0034} \; (\text{th.}) & \text{combined} \end{aligned}$

- Experimental uncertainty:
 - $-\pm0.6\%$, equally shared by correlated/uncorrelated sources
- Theoretical uncertainty (offset method): $^{+4.2}_{-2.9}\%$ ($^{+8.1}_{-6.8}\%$ at low Q^2)
 - factorisation scale: $\pm 0.5\%$
 - hadronisation corrections: $\pm 0.4 1\%$
 - pPDFs: $\pm 1.5\%$
 - terms beyond NLO: $\pm 3-4\%$
- \ast Reduction of theoretical uncertainties achieved by using normalised cross sections and higher Q^2

H1 Collab, Eur Phys J C 65 (2010) 363

 $\binom{+5.5}{-4.9}\%$ ratio at low Q^2)

Workshop on precision measurements of $lpha_s$

Jet cross sections in NC DIS at high Q^2

- $\rightarrow k_T$ cluster algorithm in the longitudinally invariant inclusive mode (S Catani, S Ellis & D Soper)
- Performance of k_T algorithm tested extensively
 - \rightarrow stringent tests of pQCD: good description of data for all jet radii with similar precision
 - \rightarrow good performance of k_T algorithm: small theoretical uncertainties and small hadronisation corrections
- New jet algorithms anti- k_T and SIScone (M Cacciari, G Salam & G Soyez)
- → Good description of data in shape and normalisation by NLO QCD
- \rightarrow Bigger hadronisation corrections and theoretical uncertainty for SIScone than anti- k_T (similar to k_T)
- → Similar shape and normalisation in data and theory for the three jet algorithms → Similar experimental uncertainties $\mathcal{L} = 82 \text{ pb}^{-1}$
- → Similar experimental uncertainties ZEUS Collab, Phys Lett B 691 (2010) 127

9-11 February, 2011

Workshop on precision measurements of $lpha_s$

 α_s from jet cross sections: NC DIS at high Q^2

• From the measured $d\sigma/dQ^2$ for $Q^2 > 500~{\rm GeV}^2$ values of $\alpha_s(M_Z)$ were extracted:

$$egin{aligned} &lpha_s(M_Z) = 0.1188 \ ^{+0.0036}_{-0.0035} \ (ext{exp.}) \ ^{+0.0022}_{-0.0022} \ (ext{th.}) \ (ext{anti-}k_T) \ &lpha_s(M_Z) = 0.1186 \ ^{+0.0037}_{-0.0035} \ (ext{exp.}) \ ^{+0.0026}_{-0.0026} \ (ext{th.}) \ (ext{SIScone}) \ &lpha_s(M_Z) = 0.1207 \ ^{+0.0038}_{-0.0036} \ (ext{exp.}) \ ^{+0.0022}_{-0.0023} \ (ext{th.}) \ (k_T) \end{aligned}$$

• Experimental uncertainties:

Claudia Glasman (UAM)

 \rightarrow dominated by jet energy scale: $\Delta \alpha_s / \alpha_s = \sim \pm 2\%$

Theoretical uncertainties: (Jones et al method)		anti- k_T	SIScone	k_T
→ terms beyond NLO:	$\Delta \alpha_s / \alpha_s (\%) =$	+1.4	+1.6	+1.5
\rightarrow uncertainties from pPDFs:	$\Delta \alpha_s / \alpha_s (\%) =$	± 0.8	$\pm 0.8^{-1.7}$	$^{-1.5}_{\pm 0.7}$
\rightarrow hadronisation corrections:	$\Delta lpha_s / lpha_s (\%) =$	± 0.9	± 1.3	± 0.8

 $\rightarrow \alpha_s(M_Z)$ from inclusive-jet cross sections in NC DIS at high Q^2 :

\rightarrow precise determination using	anti- k_T	SIScone	k_T
\rightarrow total uncertainty (%):	~ 3.5	3.7	3.7
\rightarrow theoretical uncertainty (%):	~ 1.9	2.2	1.9

11

ZEUS

H1 Collab, Eur Phys J C 65 (2010) 363

Workshop on precision measurements of α_s

9-11 February, 2011

ZEUS Collab, PLB 649 (2007) 12

Workshop on precision measurements of $lpha_s$

9-11 February, 2011

Jets in PHP at HERA

• Jet production in photoproduction at $\mathcal{O}(\alpha_s)$:

$$d\sigma_{
m jet} = \sum_{i,j} \int dy \; f_{\gamma/e}(y) \; \int dx_p \; f_{j/p}(x_p,\mu_{F_p}) \int dx_\gamma \; f_{i/\gamma}(x_\gamma,\mu_{F_\gamma}) \; d\hat{\sigma}_{i(\gamma)j}$$

 $\rightarrow \text{Measurements of jet cross sections in photoproduction allow tests of:} \\ structure of the photon \qquad pQCD, \, \alpha_s \qquad structure of the proton \end{tabular}$

Workshop on precision measurements of $lpha_s$

Workshop on precision measurements of $lpha_s$

 α_s from jet cross sections: PHP at high $E_T^{
m jet}$

- From the measured $d\sigma/dE_T^{\text{jet}}$ for $21 < E_T^{\text{jet}} < 71$ GeV values of $\alpha_s(M_Z)$ were extracted: $\alpha_s(M_Z) = 0.1208 \stackrel{+0.0024}{_{-0.0023}} (\text{exp.}) \stackrel{+0.0044}{_{-0.0033}} (\text{th.}) (k_T)$ $\alpha_s(M_Z) = 0.1200 \stackrel{+0.0024}{_{-0.0023}} (\text{exp.}) \stackrel{+0.0043}{_{-0.0032}} (\text{th.})$ (anti- k_T) $\alpha_s(M_Z) = 0.1199 \stackrel{+0.0022}{_{-0.0022}} (\text{exp.}) \stackrel{+0.0047}{_{-0.0042}} (\text{th.})$ (SIScone)
- Experimental uncertainties:

Claudia Glasman (UAM)

ightarrow dominated by jet energy scale uncertainty: $\Delta lpha_s / lpha_s = \pm 1.7\%$

Theoretical uncertainties:			k_T	anti- k_T	SIScone		
→ terms beyond NLO:	$\Delta \alpha_{e}/c$	$x_{e}(\%) =$	+2.4	+2.3	+3.2		
\rightarrow uncertainties from <i>p</i> PDFs:	$\Delta \alpha_s/c$	$\alpha_s(\%) =$	± 1.0	± 0.9	± 0.9		
$ ightarrow$ uncertainties from γ PDFs:	$\Delta \alpha_s^{o'}/c$	$\alpha_s(\%) =$	+2.4	+2.4	+2.1		
→ hadronisation corrections:	$\Delta \alpha_s/c$	$\alpha_s(\%) =$	± 0.5	± 0.4	± 0.2		
$\rightarrow \alpha_s(M_Z)$ from inclusive-jet cross sections in PHP at high E_T^{jet} :							
\rightarrow precise determination usin	g k_T	anti- k_T	SIScor	ne 1			
\rightarrow total uncertainty (%):	+4.1	+4.1	+4	.4			
\rightarrow theoretical uncertainty (%)	+3.6	+3.5	+3	.9			
ZEUS Collab, ZEUS-prel-10-003	-2.7	-2.6	-3	ZEUS Colla	b, ZEUS-prel-1		

Workshop on precision measurements of $lpha_s$

0 - 015

16

ZEUS

Jet substructure and QCD predictions

- The investigation of the internal structure of jets gives insight into the transition between a parton produced in a hard process and the experimentally observable jet of hadrons
- QCD predictions:
 - \rightarrow jet substructure driven by gluon emission off primary partons (at sufficiently high $E_T^{
 m jet}$, fragmentation effects negligible)
 - → gluon jets are broader than quark jets (larger colour charge of the gluon)
 - → jet substructure depends mainly on flavour of primary parton from which the jet originated and to a lesser extent on the hard scattering process

Jet substructure: integrated jet shape

• $\psi(r)$: fraction of the jet transverse energy that lies inside a cone in the $\eta - \phi$ plane of radius r, concentric with the jet axis

Claudia Glasman (UAM)

$$\psi(r) = rac{E_T(r)}{E_T^{
m jet}} \longrightarrow \langle \psi(r)
angle = rac{1}{N_{
m jets}} \sum_{
m jets} rac{E_T(r)}{E_T^{
m jet}}$$

mean integrated jet shape

Jet substructure: subjet multiplicity

• subjets: are resolved within a jet by reapplying the k_T cluster algorithm until for every pair of particles i, j

Workshop on precision measurements of α_s

$$\langle n_{\text{subjet}}(y_{\text{cut}}) \rangle = \frac{1}{N_{\text{jets}}} \sum_{i=1}^{N_{\text{jets}}} n_{\text{subjet}}^{i}(y_{\text{cut}})$$

mean subjet multiplicity

9-11 February, 2011

Jet shapes in NC DIS at high $E_T^{ m jet}$

- $E_T^{
 m jet}$ dependence of $\langle \psi(r)
 angle$ in NC DIS
- Jets searched using the k_T cluster algorithm in Laboratory frame
- Kinematic region: $Q^2 > 125~{
 m GeV}^2$

Claudia Glasman (UAM)

- At least one jet with $E_T^{
 m jet} > 17$ GeV and $-1 < \eta^{
 m jet} < 2.5$
- $\langle \psi(r) \rangle$ vs r in different E_T^{jet} regions: \rightarrow the jets become narrower as E_T^{jet} increases
- Comparison to QCD predictions:
 - → NLO predictions in NC DIS are possible in LAB frame from $\mathcal{O}(\alpha_s^2)$ calculations since three partons can be inside one jet

 \rightarrow the data are well described by the NLO QCD calculations for r>0.1

ZEUS Collab, Nucl Phys B 700 (2004) 3

Workshop on precision measurements of $lpha_s$

9-11 February, 2011

19

ZEUS

 $lpha_s$ from internal structure of jets: NC DIS at high $E_T^{
m jet}$

 $ep
ightarrow e + {
m jet} + {
m X}$: inclusive jets at high $E_T^{
m jet}$

 \bullet From the measured $\langle\psi(r=0.5)\rangle$ for $E_T^{\rm jet}>21~{\rm GeV}$ a value of $\alpha_s(M_Z)$ was extracted:

 $lpha_s(M_Z) = 0.1176 \stackrel{+0.0013}{_{-0.0028}} (\mathrm{exp.}) \stackrel{+0.0091}{_{-0.0072}} (\mathrm{th.})$

• Experimental uncertainties:

 $\Delta lpha_s / lpha_s = {+0.8 \atop -2.2}\%$

- Theoretical uncertainties:
 - \rightarrow terms beyond NLO: $\Delta \alpha_s / \alpha_s = ^{+7.6}_{-6.0}\%$
 - \rightarrow uncertainties from pPDFs: negligible
 - \rightarrow hadronisation corrections: $\Delta \alpha_s / \alpha_s = \pm 1.5\%$
- From the measured $\langle n_{
 m subjet}(y_{
 m cut}=10^{-2})\rangle$ for $25 < E_T^{
 m jet} < 71$ GeV a value of $\alpha_s(M_Z)$ was extracted:

$$lpha_s(M_Z) = 0.1187 \, {}^{+0.0029}_{-0.0019} \, ({
m exp.}) \, {}^{+0.0093}_{-0.0076} \, ({
m th.})$$

ZEUS Collab, Nucl Phys B 700 (2004) 3

Workshop on precision measurements of α_s

20

ZEUS

ZEUS Collab, Phys Lett B 558 (2003) 41

• The energy-scale dependence of the coupling was determined by extracting α_s from the measured jet cross sections from low to high Q^2 :

 \rightarrow The results are in good agreement with the predicted running of α_s with small experimental uncertainties in a wide range of the scale

H1 Collab, Eur Phys J C 67 (2010) 1

H1 Collab, EPJ C 65 (2010) 363

Workshop on precision measurements of $lpha_s$

from the measured jet cross sections from low to high $E_T^{
m jet}$:

 \rightarrow The results are in good agreement with the predicted running of α_s with small experimental uncertainties in a wide range of the scale

ZEUS Collab, ZEUS-prel-10-002

ZEUS Collab, ZEUS-prel-10-003

Workshop on precision measurements of $lpha_s$

Summary and Conclusions

- Jet physics at HERA provides
 - ightarrow precise values of $lpha_s(M_Z)$ in different regimes
 - \rightarrow precise determinations of the running of α_s over a wide range of the scale
- Room for improvement?
 - ightarrow all HERA data analysed: experimental uncertainties in $lpha_s$ small

 \Rightarrow NNLO calculations for jet cross sections at HERA needed to improve precision on α_s further

Workshop on precision measurements of $lpha_s$

9-11 February, 2011

23

ZEUS

Back-up slides

Claudia Glasman (UAM)

Tests of pQCD: k_T vs anti- k_T vs SIScone

- New infrared- and collinear-safe jet algorithms:
 - ightarrow anti- k_T (M Cacciari, G Salam & G Soyez) and SIScone (G Salam & G Soyez)
- Cluster algorithms:
 - $\rightarrow d_{ij} = \min[(E_{T,B}^i)^{2p}, (E_{T,B}^j)^{2p}] \cdot \Delta R^2 / R^2$ with $p = 1 \ (-1)$ for k_T (anti- k_T)
 - \rightarrow anti- k_T keeps infrared and collinear safety and provides \approx circular jets (experimentally desirable)
- Cone algorithms:
 - → seedless cone algorithm produces also jets with well-defined area and is infrared and collinear safe (theoretically desirable)

Tests of pQCD: k_T vs anti- k_T vs SIScone

• Theoretical uncertainties:

Claudia Glasman (UAM)

- \rightarrow PDFs and value of $\alpha_s(M_Z)$:
 - \rightarrow very similar for all three jet algorithms
- → terms beyond NLO and QCD cascade/hadronisation modelling:
 - \rightarrow very similar for k_T and anti- k_T ; somewhat larger for SIScone

ZEUS Collab, Phys Lett B 691 (2010) 127

ZEUS Collab, ZEUS-prel-10-015

9-11 February, 2011

Workshop on precision measurements of $lpha_s$

HERA averages

• Determinations of $\alpha_s(M_Z)$ by ZEUS and H1 from jet cross sections, ratios, internal structure of jets and structure functions:

Process	Collab.	Value	Stat.	Exp.	Th.	Total	(%)
Inc. Jet NC DIS	ZEUS	0.1212	0.0017	$+0.0023 \\ -0.0031$	$+0.0028 \\ -0.0027$	$+0.0040 \\ -0.0044$	~ 3.5
Inc. Jet NC DIS	H1	0.1186	\rightarrow	+0.0030 -0.0030	$+0.00\overline{51} \\ -0.0051$	$+0.0059 \\ -0.0059$	$\sim\!5$
Inc. Jet γp	ZEUS	0.1224	0.0001	$+0.0022 \\ -0.0019$	$+0.0054 \\ -0.0042$	$+0.0058 \\ -0.0046$	~ 4
Dijet NC DIS	ZEUS	0.1166	0.0019	$+0.0024 \\ -0.0033$	$^{+0.0057}_{-0.0044}$	$+0.0065 \\ -0.0058$	$\sim\!5$
3/2 Jet NC DIS	ZEUS	0.1179	0.0013	$+0.0028 \\ -0.0046$	$^{+0.0064}_{-0.0046}$	$+0.0071 \\ -0.0066$	~ 6
Jet Shapes NC DIS	ZEUS	0.1176	0.0009	$+0.0009 \\ -0.0026$	$^{+0.0091}_{-0.0072}$	$+0.0092 \\ -0.0077$	~ 7
Subjets NC DIS	ZEUS	0.1187	0.0017	$+0.0024 \\ -0.0009$	$+0.0093 \\ -0.0076$	$+0.0097 \\ -0.0078$	~ 8
Subjets CC DIS	ZEUS	0.1202	0.0052	$+0.0060 \\ -0.0019$	$+0.0065 \\ -0.0053$	$+0.0103 \\ -0.0077$	~ 8
SF	H1	0.1150	\rightarrow	$+0.0017 \\ -0.0017$	$+0.0051 \\ -0.0050$	$+0.0054 \\ -0.0053$	~ 4.5
SF	ZEUS	0.1183	\rightarrow	$+0.0028 \\ -0.0028$	$+0.0051 \\ -0.0051$	$+0.0058 \\ -0.0058$	$\sim\!5$

 \rightarrow experimental uncertainties: $\sim 3\%$

 \rightarrow theoretical uncertainties: $\sim 4\%$ (jet cross sections and SF)

 $\sim 8\%$ (internal structure of jets)

3

ZEUS

Averaging the determinations of $\alpha_s(M_Z)$ at HERA

- A proper average requires the inclusion of correlations among the different determinations:
 - \rightarrow Experimental uncertainties:
 - eg jet energy scale (correlated among the determinations from each experiment)
 - \rightarrow Theoretical uncertainties:
 - parton distribution functions of the proton (correlated)
 - hadronisation corrections (partially correlated)
 - terms beyond NLO (correlated?)
- → Since the theoretical uncertainties are dominant and the biggest contribution arises from the terms beyond NLO
 - \rightarrow the difficulty of averaging the determinations of $\alpha_s(M_Z)$ at HERA lies on the treatment of the theoretical uncertainties arising from terms beyond NLO

HERA 2004 average: $lpha_s(M_Z)$

• Several methods have been used to obtain an average of $lpha_s(M_Z)$ at HERA:

- ightarrow Naive method: $\overline{lpha_s(M_Z)}=0.1188\pm 0.0020$
- \rightarrow Schmelling's method: $\overline{\alpha_s(M_Z)} = 0.1192 \pm 0.0047$
- \rightarrow Correlated sources:

 $\overline{lpha_s(M_Z)} = 0.1186 \pm 0.0011 \text{ (exp.)} \pm 0.0050 \text{ (th.)}$ = 0.1186 ± 0.0051

- The last two methods give comparable uncertainties → confidence on the result
- The last method is considered to be the most realistic (though conservative) since the known correlations among determinations from the same experiment were taken into account
- The HERA average is:
- $\rightarrow \overline{\alpha_s(M_Z)} = 0.1186 \pm 0.0011 \text{ (exp.)} \pm 0.0050 \text{ (th.)}$

experimental uncertainty: $\sim 0.9\%$; theoretical uncertainty: $\sim 4\%$

C Glasman, hep-ex/0506035

Claudia Glasman (UAM) Review of α_s determinations from jets at HERA HERA 2004 average: scale dependence of α_s

• The QCD prediction for the energy-scale dependence of α_s was measured by determining α_s from the measured differential cross sections at different E_T^{jet} :

ightarrow The determinations are consistent with the running of $lpha_s$ predicted by QCD over a large range in $E_T^{
m jet}$

C Glasman, hep-ex/0506035

HERA 2004 average: scale dependence of α_s

• Determinations at similar E_T^{jet} were combined using the correlation method:

→ Observation of the running of α_s over a wide range in the scale from HERA jet data alone

C Glasman, hep-ex/0506035

Workshop on precision measurements of $lpha_s$

9-11 February, 2011

HERA 2004 average: scale dependence of α_s

- → HERA determinations consistent with other experiments
- → Uncertainties of HERA determinations very competitive

S Bethke and P Zerwas, Physik Journal 3 (2004) 31

determination at HERA (total uncertainty: $\sim 3.6\%$; theoretical uncertainty: $\sim 1.9\%$)

ZEUS Collab, Phys Lett B 649 (2007) 12

- New $\alpha_s(M_Z)$ combination from inclusive-jet cross sections in NC DIS
 - make a simultaneous fit to ZEUS and H1 data sets which yield the most precise $lpha_s(M_Z)$ values (instead of combining $lpha_s(M_Z)$ values)
- From measured normalised $1/\sigma_{\rm NC} d^2 \sigma_{\rm jets}/dE_{T,{\rm B}}^{\rm jet} dQ^2$ (150 < Q^2 < 15000):

 $\alpha_s(M_Z) = 0.1193 \pm 0.0014 \; (\text{exp.})^{+0.0049}_{-0.0034} \; (\text{th.})$

• Experimental uncertainties:

Claudia Glasman (UAM)

- → dominated by jet energy scale uncertainty and model dependence
- Theoretical uncertainties:
 - \rightarrow terms beyond NLO: dominant
 - \rightarrow uncertainties from pPDFs: small
 - ightarrow uncertainties from μ_F : small
 - \rightarrow hadronisation corrections: negligible
- $\rightarrow \alpha_s(M_Z)$ from normalised inclusive jet cross sections: very precise determination at HERA total uncertainty: ~ 4.3% experimental uncertainty: ~ 1.1%

H1 Collab, Phys Lett B 653 (2007) 134

Workshop on precision measurements of α_s

9-11 February, 2011

HERA 2007 combination: $\alpha_s(M_Z)$

- Fit to 30 measurements of inclusive-jet cross sections in NC DIS:
 - \rightarrow 24 H1 data points from double-differential cross section ($150 < Q^2 < 15000$ GeV²)
 - ightarrow 6 ZEUS data points from single-differential Q^2 cross section (125 < Q^2 < 10⁵ GeV²)
- NLO QCD calculations:
 - \rightarrow differential cross sections were calculated at NLO ($\mathcal{O}(\alpha_s^2)$) with:
 - pPDFs: MRST2001 sets
 - renormalisation scale: $\mu_R = E_{T,\mathrm{B}}^{\mathrm{jet}}$ of each jet
 - factorisation scale: $\mu_F = Q$
- Experimental uncertainties on combined $lpha_s(M_Z)$:
 - → 0.0019 (obtained using Hessian method; fit sources of systematic uncertainties, eg energy scale, luminosity, model dependence)
- Theoretical uncertainties on combined $lpha_s(M_Z)$:
 - \rightarrow terms beyond NLO: 0.0021 (using Jones et al method, JHEP 122003007)
 - \rightarrow factorisation scale: 0.0010 (obtained by varying μ_F by factors 2 and 0.5 in the calculations)
 - \rightarrow pPDFs: 0.0010 (obtained by using 30 sets of MRST2001)
 - \rightarrow hadronisation: 0.0004 (obtained from different parton-shower models)

H1 Collab (H1prelim-07-132) and ZEUS Collab (ZEUS-prel-07-025)

12

ZEUS

HERA 2007 combination: $\alpha_s(M_Z)$

• HERA 2007 combination:

Workshop on precision measurements of $lpha_s$

9-11 February, 2011

QCD calculations of jet substructure

• QCD-based Monte Carlo models:

- → PYTHIA, HERWIG, ARIADNE, LEPTO approximate the substructure of jets with parton showers
- Fixed-order QCD calculations:
 - \rightarrow at lowest order, a jet consists of one parton (no structure)
 - \rightarrow higher-order terms give the non-trivial contributions
 - \to NLO calculations in NC DIS are possible in LAB frame from $\mathcal{O}(\alpha_s^2)$ predictions since three partons can be inside one jet
- Measurements of jet substructure provide a stringent test of pQCD calculations directly beyond LO
- pQCD calculations of jet shapes:

$$\langle 1-\psi(r)
angle = rac{\int_r^R dE_T \; (E_T/E_T^{ ext{jet}}) [d\sigma(ep
ightarrow 2 ext{partons})/dE_T}{\sigma_{ ext{jet}}(E_T^{ ext{jet}})}$$

• pQCD calculations of subjet multiplicities:

$$\langle n_{\mathrm{subjet}}(y_{\mathrm{cut}})
angle = 1 + rac{1}{\sigma_{\mathrm{jet}}} \sum_{j=2}^{\infty} (j-1) \cdot \sigma_{\mathrm{sbj},j}(y_{\mathrm{cut}}) = 1 + C_1 \, lpha_s + C_2 \, lpha_s^2$$

α

Breit

Frame

α

Ζ

Laboratory

Frame

Z

Theoretical uncertainties: offset method vs Jones et al method

terms beyond NLO \rightarrow offset method:

 \rightarrow Jones et al method:

ZEUS Collab, Phys Lett B 691 (2010) 127

Workshop on precision measurements of α_s

15

H1 Collab, Phys Lett B 653 (2007) 134