α_s from Deep-Inelastic Scattering: DESY Analysis

Johannes Blümlein DESY

- NNLO Valence Analysis
- NNLO Valence + Singlet Analyses
- Λ_{QCD} and $\alpha_s(M_Z^2)$
- Consequences for Tevatron and LHC

In collaboration with:

J.B., H. Böttcher, A. Guffanti Nucl.Phys. B774 (2007) 182, hep-ph/0607200.

J.B., H. Böttcher Phys.Lett. B662 (2008) 336, arXiv:0802.0408; Nucl.Phys. B841 (2010) 205, arXiv:1005.3113.

S. Alekhin, J.B., S. Klein, S. Moch, Phys.Rev. D81 (2010) 014032 arXiv:0908.2766

S. Alekhin, J.B., S. Moch, PoS DIS2010 (2010) 021, arXiv:1007.3657; arXiv:1101.5261.

S. Alekhin, J.B., P. Jimenez-Delgado, S. Moch, E. Reya, Phys. Lett. B697 (2011) 127, arXiv:1011.6259.

 α_s -Workshop

Deep Inelatsic Scattering

$$W_{\mu\nu}(q, P, s) = \frac{1}{4\pi} \int d^{4}\xi \exp(iq\xi) \langle P, s[J_{\mu}^{em}(\xi), J_{\nu}^{em}(0)]P, s \rangle$$

$$= \frac{1}{2x} \left(g_{\mu\nu} - \frac{q_{\mu}q_{\nu}}{q^{2}} \right) F_{L}(x, Q^{2})$$

$$+ \frac{2x}{Q^{2}} \left(P_{\mu}P_{\nu} + \frac{q_{\mu}P_{\nu} + q_{\nu}P_{\mu}}{2x} - \frac{Q^{2}}{4x^{2}}g_{\mu\nu} \right) F_{2}(x, Q^{2})$$

Structure Functions: $F_{2,L}$ contain light and heavy quark contributions

J. Blümlein

 α_s -Workshop

1. World Data Analysis: Valence Distributions

Why an $O(\alpha_s^4)$ analysis can be performed?

assume an $\pm 100\%$ error on the Pade approximant $\longrightarrow \pm 2$ MeV in Λ_{QCD}

$$\gamma_n^{approx:3} = \frac{{\gamma_n^{(2)}}^2}{{\gamma_n^{(1)}}}$$

Baikov & Chetyrkin, April 2006:

$$\begin{split} \gamma_2^{3;NS} &= \frac{32}{9}a_s + \frac{9440}{243}a_s^2 + \left[\frac{3936832}{6561} - \frac{10240}{81}\zeta_3\right]a_s^3 \\ &+ \left[\frac{1680283336}{1777147} - \frac{24873952}{6561}\zeta_3 + \frac{5120}{3}\zeta_4 - \frac{56969}{243}\zeta_5\right]a_s^4 \end{split}$$

The results agree better than 20%.

Valence Distributions

Valence Distributions: higher twist

• agreement between p and d analysis, J.B., H. Böttcher Phys.Lett. B662 (2008) 336

• LGT determination of interest

2. Flavor distributions: light quarks (NNLO)

Current Fitting Community (NNLO): ■ ■ №, H1 & ZEUS + Many NLO analyses worldwide: CTEQ, NNPDF, ...

S. Alekhin, J.B., S. Klein, S. Moch, Phys.Rev. D81 (2010) 014032 arXiv:0908.2766

Correct treatment of HQ very essential: FFNS, BSMN-schemes. full lines: ABKM error band; dashed lines: MSTW08 α_s -Workshop Munich, I

Munich, February 9th 2011

Heavy quarks and gluon (NNLO)

S. Alekhin, J.B., S. Klein, S. Moch, Phys.Rev. D81 (2010) 014032 arXiv:0908.2766 full lines: ABKM error band; dashed lines: MSTW08

FFNS,
$$N_f = 3$$

comparison: ABKM (2009) vs. Jimenez-Delgado/ Reya (2008)

Gluon distribution in the Higgs region

S. Alekhin, J.B., P. Jimenez-Delgado, S. Moch, E. Reya, Phys. Lett. B697 (2011) 127

D0 run II dijet data

ABM (2011). Note that cross section is known to NLO only !

D0 run II djet data

before the fit

after the fit

ABM (2011) $\chi^2 = 104/110$

3. $\Lambda_{
m QCD}$ and $lpha_s(M_Z^2)$

older values: $\lesssim 2007$

NLO	$\alpha_s(M_Z^2)$	expt	theory	Ref.					
CTEQ6	0.1165	± 0.0065		[1]	NNLO	$\alpha_s(M_Z^2)$	expt	theory	Ref.
MRST03	0.1165	± 0.0020	± 0.0030	[2]	MRST03	0.1153	±0.0020	±0.0030	[2]
A02	0.1171	± 0.0015	± 0.0033	[3]	A02	0.1143	± 0.0014	± 0.0009	[3]
ZEUS	0.1166	± 0.0049		[4]	SY01(ep)	0.1166	± 0.0013		[8]
H1	0 1150	+0.0017	+0.0050	[5]	SY01(ν N)	0.1153	± 0.0063		[8]
	0.110		± 0.0030		GRS	0.111			[10]
BCDMS	0.110	± 0.006		[6]	A06	0.1128	± 0.0015		[11]
GRS	0.112			[10]	BBG	0.1134	+0.0019/-0.0021		[9]
BBG	0.1148	± 0.0019		[9]	N ³ LO	$\alpha_s(M_Z^2)$	expt	theory	Ref.
BB (pol)	0.113	±0.004	$+0.009 \\ -0.006$	[7]	BBG	0.1141	+0.0020/-0.0022		[9]

NLO at least: scale errors of ± 0.0050

NNLO systematic shifts down N³LO slight upward shift

BBG: $N_f = 4$: non-singlet data-analysis at $O(\alpha_s^4)$: $\Lambda = 234 \pm 26 \text{ MeV}$ Earlier lattice results :

 \circledast Alpha Collab: $N_f = 2$ Lattice; non-pert. renormalization $\Lambda = 245 \pm 16 \pm 16$ MeV

SQCDSF Collab: $N_f = 2$ Lattice, pert. reno. $\Lambda = 261 \pm 17 \pm 26$ MeV

S. Alekhin, J.B., S. Klein, S. Moch, Phys. Rev. D81 (2010) 014032 $\delta\alpha_s(M_Z^2)/\alpha_s(M_Z^2)\approx 1\%$

	$lpha_s({ m M}^2_{ m Z})$			
BBG (2006)	$0.1134 \begin{array}{c} +0.0019 \\ -0.0021 \end{array}$	valence analysis, NNLO		
ABKM	0.1135 ± 0.0014	HQ: FFS $N_f=3$		
ABKM	0.1129 ± 0.0014	HQ: BSMN-approach		
JR (2008)	0.1124 ± 0.0020	dynamical approach		
MSTW (2008)	0.1171 ± 0.0014			
HERAPDF (2010)	0.1145	(combined H1/ZEUS data, prelimiary)		
ABM (2010)	0.1147 ± 0.0012	(FFN, combined H1/ZEUS data in)		
A.Hoang et al.	$0.1135 \pm 0.0011 \pm 0.0006$	e^+e^- thrust		
BBG (2006)	$\begin{array}{c} 0.1141 \\ -0.0022 \end{array} +0.0022 \end{array}$	valence analysis, N ³ LO		
WA (2009)	0.1184 ± 0.0007			

J.B., H. Böttcher Nucl. Phys. B841 (2010) 205, arXiv:1005.3113.

Why is MSTW's $\alpha_s(M_Z^2)$ so high ?

$\alpha_s(M_Z^2)$	with $\sigma_{ m NMC}$	with $F_2^{ m NMC}$	difference
NLO	0.1179(16)	0.1195(17)	$+0.0026 \simeq 1\sigma$
NNLO	0.1135(14)	0.1170(15)	$+0.0035 \simeq 2.3\sigma$
NNLO + $F_LO(\alpha_s^3)$	0.1122(14)	0.1171(14)	$+0.0050 \simeq 3.6\sigma$

S. Alekhin, J.B., S. Moch, arXiv:1101.5261.

 \implies also fixed target data shall be analyzed using σ .

- \implies This applies to NMC in particular.
- Wrong treatment of $F_L(x, Q^2)$ in NMC F_2 extraction.
- \implies also necessary for BCDMS, see BBG (2006).

Effect on the Gluon density

wrong treatment ($F_2^{\rm NMC}$): larger gluon at $x \simeq 0.1$

– p.17

4. Consequences for Hadron Colliders

 α_s -Workshop

Gluon Luminosity

 \implies The correct NMC analysis leads to lower values for $\alpha_s^2 g \otimes g$.

- Tevatron Higgs search group, Summer 2010.
- exclusion is based on MSTW08 NNLO only.

 \implies systematic error of -39 % @ $M_H \sim 160$ GeV.

 \implies halfs the exclusion region.

5. Conclusions

- \checkmark The N³LO DIS analysis yields : $lpha_s(M_Z^2)=0.1141\pm 0.0021$
- Correct NNLO anlyses require the fit of $d^2\sigma/dxdQ^2$ and the correct decription of $F_L, F_2^{c\bar{c}}$.
- NNLO $\alpha_s(M_Z^2)$ values in the range $0.1122 0.1147 \pm 0.0014$ are obtained.
- The various systematic shifts are understood; presently not possible to resolve $\delta \alpha_s < 0.0008$.
- Ine difference to the MSTW08 value can be explained.
- NLO analyses yield systematic higher $\alpha_s(M_Z^2)$ values than NNLO analyses; averaging of these values is not possible.
- Direct relevance for the Higgs search at Tevatron and LHC and likewise for the other standard candle processes $(W/Z, t\bar{t})$.
- Interpresent excluded range for the Higgs mass at Tevatron appears to be to large.