CTEQ-TEA Parton distribution functions and $lpha_s$

C.-P. Yuan

Michigan State University

in collaboration with H.-L. Lai, M. Guzzi, J. Huston, Z. Li, P. Nadolsky, J. Pumplin, and D. Stump Alphas Workshop, MPI Munich Feb 9, 2011

CTEQ-Tung Et Al.: recent activities

- Uncertainty induced by α_s in the CTEQ-TEA PDF analysis (PRD, arXiv:1004.4624)
- New PDFs for collider physics
 - ► CTEQ6.6 set (published in 2008) \rightarrow CT09 \rightarrow CT10, CT10W (PRD, arXiv:1007.2241)
 - new experimental data, statistical methods, and parametrization forms
- PDFs for Event Generators (JHEP. arXiv:0910.4183)
 Exploration of statistical aspects and PDF parametrization dependence (PRD, arXiv:0909.0268 and 0909.5176)

・ロト ・ 同ト ・ ヨト ・ ヨト ・

Uncertainty in α_s in the CTEQ-TEA PDF analysis arXiv:1004.4624

- Two leading theoretical uncertainties in LHC processes are due to α_s and the PDFs
- These are not independent uncertainties; how can one quantify their correlation?
- Which central $\alpha_s(M_Z)$ and which error on $\alpha_s(M_Z)$ are to be used with the existing PDFs?
- What are the consequences for key LHC processes $(gg \rightarrow H^0, \text{ etc.})$?

イロト イ団ト イヨト イヨトー

Uncertainty in α_s in the CTEQ-TEA PDF analysis

arXiv:1004.4624

Recent activity to examine these questions, e.g.:

MSTW (arXiv:0905.3531)

- $\alpha_s(M_Z)$ is an **output** of the global fit (constrained by the hadronic scattering only)
- ► several sets of error PDFs, each with its own $\alpha_s(M_Z)$ value \Rightarrow lengthier calculations
- The α_s uncertainty and PDF uncertainty are inseparable
- **NNPDF** (in 2009 Les Houches Proceedings, arXiv: 1004.0962):
 - $\alpha_s(M_Z) = 0.119 \pm 0.002$ is taken as an input
 - $\blacktriangleright~\alpha_s-{\rm PDF}$ correlation is examined with $\sim 1000~{\rm PDF}$ replicas and found to be small

■ H1+ZEUS (arXiv:0911.0884): sensitivity of the HERAPDF set to $\delta \alpha_s(M_Z) = \pm 0.002$ is explored

Our findings

Total PDF+ α_s errors ΔX are the **same** when found (a) from a full fit with floating α_s , or (b) by adding ΔX_{PDF} and ΔX_{α_s} in quadrature

black – CTEQ6.6 PDF uncertainty

Blue filled – PDF+ α_s uncertainty of the fit with floating $\alpha_s(M_Z)$

Green hatched – PDF+ α_s uncertainty added in quadrature

Also, agreement in cross section predictions

-

Our findings

Total PDF+ α_s errors ΔX are the same if found either from a full fit with floating α_s , or by adding ΔX_{PDF} and ΔX_{α_s} in quadrature

Details of the CTEQ6.6FAS analysis

- Take the "world-average" $\alpha_s(M_Z) = 0.118 \pm 0.002$ as an input: $\alpha_s(M_Z)|_{in} = 0.118 \pm 0.002$ at 90% C.L.
- Find the theory parameter $\alpha_s(M_Z)$ as an **output** of a global fit (CTEQ6.6FAS):

 $\left. \alpha_s(M_Z) \right|_{\mbox{Out}} = 0.118 \pm 0.0019 \mbox{ at } 90\% \mbox{ C.L.}$

The combined PDF+ α_s uncertainty is estimated as

$$\Delta X = \frac{1}{2} \sqrt{\sum_{i=1}^{22+1} \left(X_i^{(+)} - X_i^{(-)}\right)^2}$$

- Problem: each PDF set comes with its own $\alpha_s \Rightarrow$ cumbersome
- A simple workaround exists!

C.-P. Yuan (MSU)

Alphas Workshop, MPI Munich

イロト イポト イヨト イヨト

A quadrature sum reproduces the α_s -PDF correlation H.-L. Lai, J. Pumplin

Theorem

In the quadratic approximation, the total α_s +PDF uncertainty $\Delta \sigma$ of the CTEQ6.6FAS set, with all correlation, reduces to

$$\Delta X = \sqrt{\Delta X_{CTEQ6.6}^2 + \Delta X_{\alpha_s}^2},$$

where

- $\Delta X_{CTEQ6.6}$ is the CTEQ6.6 PDF uncertainty from 44 PDFs with the same $\alpha_s(M_Z) = 0.118$
- $\Delta X_{\alpha_s} = (X_{0.120} X_{0.116})/2$ is the α_s uncertainty computed with two central CTEQ6.6AS PDFs for $\alpha_s(M_Z) = 0.116$ and 0.120

The full proof is given in the paper; the main idea is illustrated for the α_s parameter a_0 and 1 PDF parameter a_1

Illustration of the theorem for 2 parameters

C.-P. Yuan (MSU)

Alphas Workshop, MPI Munich

Feb 9, 2011 9

Illustration of the theorem for 2 parameters, cont.

$$\Delta X^{2} = \frac{1}{4} \left[(X(A) - X(C))^{2} + (X(B) - X(D))^{2} \right]$$

= $\Delta X_{0}^{2} + \Delta X_{1}^{2}$

PDF and α_s uncertainties for $gg \rightarrow H$ and $t\bar{t}$ production

Alphas Workshop, MPI Munich

イロン イボン イヨン イヨ

Full and reduced fits with variable α_s : cross sections

Process	CTEQ6.6+CTEQ6.6AS				CTEQ6.6FAS
$t\overline{t}$ (171 GeV)	σ_0	$\Delta \sigma_{PDF}$	$\Delta \sigma_{\alpha_S}$	$\Delta \sigma$	$\sigma_0 \pm \Delta \sigma$
LHC 7 TeV	157.41	10.97	7.54	13.31	160.10 ± 13.93
LHC 10 TeV	396.50	18.75	16.10	24.71	400.48 ± 25.74
LHC 14 TeV	877.19	28.79	30.78	42.15	881.62 ± 44.27
$gg \to H \ (120 \text{ GeV})$	σ_0	$\Delta \sigma_{PDF}$	$\Delta \sigma_{\alpha_S}$	$\Delta \sigma$	$\sigma_0 \pm \Delta \sigma$
Tevatron 1.96 TeV	0.63	0.042	0.032	0.053	0.64 ± 0.055
LHC 7 TeV	10.70	0.31	0.32	0.45	10.70 ± 0.48
LHC 10 TeV	20.33	0.66	0.56	0.87	20.28 ± 0.93
LHC 14 TeV	35.75	1.31	0.94	1.61	35.63 ± 1.70
$gg \to H \ (160 \ {\rm GeV})$	σ_0	$\Delta \sigma_{PDF}$	$\Delta \sigma_{\alpha_S}$	$\Delta \sigma$	$\sigma_0 \pm \Delta \sigma$
$\begin{array}{c} gg \rightarrow H \ (160 \ {\rm GeV}) \\ \hline \\ {\rm Tevatron} \ 1.96 \ {\rm TeV} \end{array}$	σ_0 0.26	$\Delta \sigma_{PDF}$ 0.026	$\Delta \sigma_{\alpha_S}$ 0.015	$\Delta \sigma$ 0.030	$\sigma_0 \pm \Delta \sigma$ 0.26 ± 0.031
$\begin{array}{c} gg \rightarrow H \; (160 \; {\rm GeV}) \\ \hline {\rm Tevatron} \; 1.96 \; {\rm TeV} \\ \hline {\rm LHC} \; 7 \; {\rm TeV} \end{array}$	σ_0 0.26 5.86	$\frac{\Delta\sigma_{PDF}}{0.026}$ 0.16	$\begin{array}{c} \Delta \sigma_{\alpha_S} \\ 0.015 \\ 0.18 \end{array}$	$\begin{array}{c} \Delta \sigma \\ 0.030 \\ 0.24 \end{array}$	$\begin{aligned} \sigma_0 \pm \Delta \sigma \\ 0.26 \pm 0.031 \\ 5.88 \pm 0.26 \end{aligned}$
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	σ_0 0.26 5.86 11.73	$\Delta \sigma_{PDF} = 0.026 = 0.16 = 0.33$	$\Delta \sigma_{\alpha_S}$ 0.015 0.18 0.33	$\Delta \sigma$ 0.030 0.24 0.47	$ \begin{aligned} \sigma_0 \pm \Delta \sigma \\ 0.26 \pm 0.031 \\ 5.88 \pm 0.26 \\ 11.72 \pm 0.50 \end{aligned} $
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	σ_0 0.26 5.86 11.73 21.48	$\Delta \sigma_{PDF}$ 0.026 0.16 0.33 0.68	$\Delta \sigma_{\alpha_S}$ 0.015 0.18 0.33 0.56	$\Delta \sigma$ 0.030 0.24 0.47 0.88	$\begin{aligned} \sigma_0 \pm \Delta \sigma \\ 0.26 \pm 0.031 \\ 5.88 \pm 0.26 \\ 11.72 \pm 0.50 \\ 21.43 \pm 0.94 \end{aligned}$
$ \begin{array}{c} gg \rightarrow H \; (160 \; {\rm GeV}) \\ \hline {\rm Tevatron} \; 1.96 \; {\rm TeV} \\ \hline {\rm LHC} \; 7 \; {\rm TeV} \\ \hline {\rm LHC} \; 10 \; {\rm TeV} \\ \hline {\rm LHC} \; 10 \; {\rm TeV} \\ \hline {\rm LHC} \; 14 \; {\rm TeV} \\ \hline gg \rightarrow H \; (250 \; {\rm GeV}) \end{array} $	σ_0 0.26 5.86 11.73 21.48 σ_0	$\begin{array}{c} \Delta \sigma_{PDF} \\ 0.026 \\ 0.16 \\ 0.33 \\ 0.68 \\ \Delta \sigma_{PDF} \end{array}$	$\Delta \sigma_{\alpha_s}$ 0.015 0.18 0.33 0.56 $\Delta \sigma_{\alpha_s}$	$\Delta \sigma$ 0.030 0.24 0.47 0.88 $\Delta \sigma$	$\begin{aligned} & \sigma_0 \pm \Delta \sigma \\ & 0.26 \pm 0.031 \\ & 5.88 \pm 0.26 \\ & 11.72 \pm 0.50 \\ & 21.43 \pm 0.94 \\ & \sigma_0 \pm \Delta \sigma \end{aligned}$
$ \begin{array}{c} gg \rightarrow H \; (160 \; {\rm GeV}) \\ \hline {\rm Tevatron} \; 1.96 \; {\rm TeV} \\ \hline {\rm LHC} \; 7 \; {\rm TeV} \\ \hline {\rm LHC} \; 10 \; {\rm TeV} \\ \hline {\rm LHC} \; 10 \; {\rm TeV} \\ \hline {\rm Gg} \rightarrow H \; (250 \; {\rm GeV}) \\ \hline {\rm Tevatron} \; 1.96 \; {\rm TeV} \\ \end{array} $		$\Delta \sigma_{PDF}$ 0.026 0.16 0.33 0.68 $\Delta \sigma_{PDF}$ 0.0099	$\begin{array}{c} \Delta \sigma_{\alpha_{S}} \\ 0.015 \\ 0.18 \\ 0.33 \\ 0.56 \\ \Delta \sigma_{\alpha_{S}} \\ 0.0044 \end{array}$	$\Delta \sigma$ 0.030 0.24 0.47 0.88 $\Delta \sigma$ 0.011	$\begin{aligned} & \sigma_0 \pm \Delta \sigma \\ & 0.26 \pm 0.031 \\ & 5.88 \pm 0.26 \\ & 11.72 \pm 0.50 \\ & 21.43 \pm 0.94 \\ & \sigma_0 \pm \Delta \sigma \\ & 0.058 \pm 0.012 \end{aligned}$
$ \begin{array}{c} gg \rightarrow H \; (160 \; {\rm GeV}) \\ \hline {\rm Tevatron} \; 1.96 \; {\rm TeV} \\ \hline {\rm LHC} \; 7 \; {\rm TeV} \\ \hline {\rm LHC} \; 10 \; {\rm TeV} \\ \hline {\rm LHC} \; 14 \; {\rm TeV} \\ \hline gg \rightarrow H \; (250 \; {\rm GeV}) \\ \hline {\rm Tevatron} \; 1.96 \; {\rm TeV} \\ \hline {\rm LHC} \; 7 \; {\rm TeV} \\ \end{array} $	$\begin{array}{c} \sigma_0 \\ 0.26 \\ 5.86 \\ 11.73 \\ 21.48 \\ \sigma_0 \\ 0.055 \\ 2.30 \end{array}$	$\begin{array}{c} \Delta \sigma_{PDF} \\ 0.026 \\ 0.16 \\ 0.33 \\ 0.68 \\ \hline \Delta \sigma_{PDF} \\ 0.0099 \\ 0.085 \end{array}$	$\begin{array}{c} \Delta \sigma_{\alpha_{S}} \\ 0.015 \\ 0.18 \\ 0.33 \\ 0.56 \\ \Delta \sigma_{\alpha_{S}} \\ 0.0044 \\ 0.081 \end{array}$	$\Delta \sigma$ 0.030 0.24 0.47 0.88 $\Delta \sigma$ 0.011 0.12	$\begin{array}{c} \sigma_{0}\pm\Delta\sigma\\ 0.26\pm0.031\\ 5.88\pm0.26\\ 11.72\pm0.50\\ 21.43\pm0.94\\ \sigma_{0}\pm\Delta\sigma\\ 0.058\pm0.012\\ 2.32\pm0.12\\ \end{array}$
$ \begin{array}{c} gg \rightarrow H \; (160 \; {\rm GeV}) \\ \hline {\rm Tevatron} \; 1.96 \; {\rm TeV} \\ \hline {\rm LHC} \; 7 \; {\rm TeV} \\ \hline {\rm LHC} \; 10 \; {\rm TeV} \\ \hline {\rm LHC} \; 14 \; {\rm TeV} \\ \hline gg \rightarrow H \; (250 \; {\rm GeV}) \\ \hline {\rm Tevatron} \; 1.96 \; {\rm TeV} \\ \hline {\rm LHC} \; 7 \; {\rm TeV} \\ \hline {\rm LHC} \; 10 \; {\rm TeV} \\ \hline {\rm LHC} \; 10 \; {\rm TeV} \\ \hline \end{array} $	$\begin{array}{c} \sigma_0 \\ 0.26 \\ 5.86 \\ 11.73 \\ 21.48 \\ \hline \sigma_0 \\ 0.055 \\ 2.30 \\ 5.08 \end{array}$	$\begin{array}{c} \Delta \sigma_{PDF} \\ 0.026 \\ 0.16 \\ 0.33 \\ 0.68 \\ \hline \Delta \sigma_{PDF} \\ 0.0099 \\ 0.085 \\ 0.14 \\ \end{array}$	$\begin{array}{c} \Delta \sigma_{\alpha_S} \\ 0.015 \\ 0.18 \\ 0.33 \\ 0.56 \\ \Delta \sigma_{\alpha_S} \\ 0.0044 \\ 0.081 \\ 0.15 \end{array}$	$\begin{array}{c} \Delta \sigma \\ 0.030 \\ 0.24 \\ 0.47 \\ 0.88 \\ \hline \Delta \sigma \\ 0.011 \\ 0.12 \\ 0.21 \end{array}$	$\begin{array}{c} \sigma_{0}\pm\Delta\sigma\\ 0.26\pm0.031\\ \overline{5.88\pm0.26}\\ 11.72\pm0.50\\ 21.43\pm0.94\\ \overline{\sigma_{0}\pm\Delta\sigma}\\ 0.058\pm0.012\\ 2.32\pm0.12\\ \overline{5.10\pm0.22} \end{array}$

The full and reduced methods perfectly agree

イロト イポト イヨト イヨト

Correlations between α_s and PDFs

Correlation cosine $\cos \phi$ between the best-fit $\alpha_s(M_Z)$ and PDFs, plotted as a function of the momentum fraction x.

solid – gluon PDF; anticorrelated at $x \sim 0.01$; from HERA NC-DIS

■ dashed – singlet PDF; correlated at $x \sim 0.4$; from BCDMS and NMC NC-DIS

dashed-dotted – heavy quark (c, b) PDFs; correlated at $x \sim 0.05$ - 0.2; from HERA

At large *Q*, these correlations are reduced by PDF evolution, except heavy-quark PDFs.

• • • • • • • •

C.-P. Yuan (MSU)

Full fit with floating α_s in CT10.AS Series

The Minimal χ^2 found from a full fit with floating α_s in CT10.AS series.

The $\Delta \chi^2 = 100$ range (at 90% C.L.) is 0.1197 ± 0.0061 which is a rather weak constraint as compare to the world-average $\alpha_s(M_Z) = 0.118 \pm 0.002$

(D) (A) (A) (A) (A)

Summary

CTEQ6.6AS and CT10.AS PDF sets (available in LHAPDF):

■ from 4 alternative CTEQ6.6 fits (http://hep.pa.msu.edu/cteq/public/cteq6.html) for

 $\alpha_s(M_Z) = 0.116, 0.117, 0.119, 0.120$

- sufficient to compute uncertainty in $\alpha_s(M_Z)$ at $\approx 68\%$ and 90% C. L., including the world-average $\alpha_s(M_Z) = 0.118 \pm 0.002$ as an input data point
- **The CTEQ6.6AS** α_s uncertainty should be combined with the CTEQ6.6 PDF uncertainty as

$$\Delta X = \sqrt{\Delta X_{CTEQ6.6}^2 + \Delta X_{CTEQ6.6AS}^2}$$

- The total uncertainty ΔX reproduces the full correlation between $\alpha_s(M_Z)$ and PDFs
- A larger range (from 0.113 to 0.123) of $\alpha_s(M_Z)$ for CT10/W.AS series is given at http://hep.pa.msu.edu/cteq/public/ct10.html

C.-P. Yuan (MSU)

Backup slides

C.-P. Yuan (MSU)

Alphas Workshop, MPI Munich

Feb 9, 2011 16

(日) (四) (三) (三)

NMC F_2^d/F_2^p and F_2^p data vs. α_s

Minimal χ^2 from a full fit with floating α_s in CT10.AS series.

■ We did not find a significant effect of NMC F_2^d/F_2^p data on α_s , though a smaller value is mildly preferred. (χ^2 is close to the number of data points, which is 123.)

NMC F_2^p data prefers a larger α_s , but χ^2 is much larger than the number of data points, which is 201.)

We will examine the NMC reduced cross section (instead of F_2) in the next version of CTEQ-TEA fits.