

Alan Martin, James Stirling, Robert Thorne, Graeme Watt

(Robert Thorne was looking forward to coming, but has been very ill with chicken pox. I am pleased to report he is recovering, albeit slowly)

Workshop on Precision Measurements of α_{s} Munich, February 2011

MSTW 2008 NNLO (α_s) PDF fit

NNLO

BCDMS – favours low α_s

CDF jets normalised to Z rap. distrib.

S.Bethke

11

	NLO	$\alpha_S(M_Z^2)$ (expt. unc. only)
	MSTW (this work)	$0.1202 \begin{array}{c} +0.0012 \\ -0.0015 \end{array}$
	CTEQ [2]	0.1170 ± 0.0047
	H1 [23]	0.1150 ± 0.0017
	ZEUS [48]	0.1183 ± 0.0028
	Alekhin [57]	0.1171 ± 0.0015
	BBG [58]	0.1148 ± 0.0019
	GJR [59]	0.1145 ± 0.0018
MSTW		
largest ?	NNLO	$\alpha_S(M_Z^2)$ (expt. unc. only)
	MSTW (this work)	$0.1171 \begin{array}{c} +0.0014 \\ -0.0014 \end{array}$
	AMP [60]	0.1128 ± 0.0015
$F_2(N^3LO)$	▶ BBG [58]	$0.1134 \begin{array}{c} +0.0019 \\ -0.0021 \end{array}$
non-singlet DIS	ABKM [61]	0.1129 ± 0.0014
gluon for x>0.3 ?	JR [62]	0.1158 ± 0.0035

MSTW have highest α_s from DIS fits --- why?

- 1. More flexible low x parametrization of gluon needed by data $(\Delta \chi^2 \sim 80)$ --- shape confirmed by NNPDF without flexibility $\begin{cases} \alpha_s(NLO) & 0.1202 \rightarrow 0.1175\\ \alpha_s(NNLO) & 0.1171 \rightarrow 0.1157 \end{cases}$
- 2. Inclusion of Tevatron jet data

Jet data themselves prefer α_s slightly lower than global α_s However jets demand more high x gluon (less low x gluon) which turn a low α_s into a better constrained high α_s

$$\alpha_{s} \longleftrightarrow$$
 gluon correlation

scaling violation: dF/dlogQ² ~ $\alpha_s g$

1.+2. \rightarrow smaller gluon at low x \rightarrow larger α_s

Unpublished MSTW α_{s} studies

MSTW2008 excluding Tevatron jets $\begin{array}{l} \alpha_{\rm s}({\rm NNLO}) = 0.117 \\ = 0.117 \end{array} \begin{cases} {\rm both~jets+W~asym} \\ {\rm keep~}\alpha_{\rm s}~{\rm up} \end{cases} \end{array}$

DIS only (including v) = $0.110 \begin{cases} -ve \text{ high x gluon, F(charm).} \\ \text{Avoiding this } \alpha_s = 0.1155 \end{cases}$ DIS only (but excluding BCDMS) = $0.119 \end{cases}$ MSTW2008 - BCDMS = 0.118

Neither the omission, nor the inclusion, of an individual data set changes α_s by more than ~0.001 in global fit

The low y data from BCDMS could be strongly affected by a scale uncertainty of E_{μ} A y>0.3 cut has been advocated, which increases α_s by 0.004 in a BCDMS – only fit

Is F_2 pure non-singlet for x>0.3? as in BBG

MSTW2008 χ^2 for F₂^p, F₂^d for x>0.3: $\chi^2=329/282$ data (BCDMS,NMC,E665,SLAC,H1,ZEUS) 160 of which are BCDMS but $\chi^2=1433/282$ if consider non-singlet contrib. only

In fact, contributions other than valence quarks ~ 10% at x=0.3 Indeed, at x=0.3 g(x)=u(x)/2

Low BBG α_s value due (i) to dominance of BCDMS data (ii) neglect of singlet contributions

x<0.12 NMC extracted a Q^2 indep. R from their data to get F_2 not good

x>0.12 NMC used R from SLAC OK

ABM: NMC reduced cross section should be fitted, not F₂

Actually not a large effect for most NMC points, with only a few changing by amounts the size of the errors; so anticipate v.small effects in global fit

(we will be more consistent in future)

MSTW2008 fitted F_2 of NMC \checkmark Does this bias α_s ?

As a check, MSTW repeated global fit with NMC F₂ replaced by that obtained using R from SLAC: $\alpha_s(NNLO) = 0.1171 \rightarrow 0.1168$ (v.small effect)

X

--- PDFs must be used with corresponding $\alpha_{\rm s}$

- --- We studied correlations between PDF and α_{s} uncertainties within a global fit.
- --- $\alpha_{\rm s}({\rm M_Z})$ stable to 0.001 to removal of any data set

