Thrust distributions at N³LL with power corrections and precision determination of $\alpha_s(m_z)$

LHCphenOnet

Vicent Mateu

MIT Cambridge - US 1417

Massachusetts Institute of Technology

 α_s workshop, Munich

10 - 02 - 2011

R. Abbate, M. Fickinger, A. Hoang, VM & I. Stewart – arXiv: 1006.3080 [hep-ph]

R. Abbate, A. Hoang, VM, M. Schwartz & I. Stewart – work in progress for HJM

Builds on work by Gehrmann et al & Weinzierl $O(\alpha_s^3)$ and Becher & Schwartz at N³LL

Factorization theorem

Factorization theorem

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\tau} = \int \mathrm{d}k \left(\frac{\mathrm{d}\hat{\sigma}_{\mathrm{s}}}{\mathrm{d}\tau} + \frac{\mathrm{d}\hat{\sigma}_{\mathrm{ns}}}{\mathrm{d}\tau} + \frac{\mathrm{d}\hat{\sigma}_{b}}{\mathrm{d}\tau} \right) \left(\tau - \frac{k}{Q} \right) S_{\tau}^{\mathrm{mod}} \left(k - 2\bar{\Delta} \right) + O\left(\sigma_{0} \frac{\alpha_{s} \Lambda_{\mathrm{QCD}}}{Q} \right)$$

- $O(\alpha_s^3)$ fixed order (nonsingular). Event2 $O(\alpha_s^2)$ and EERAD3 $O(\alpha_s^3)$.
- $O(\alpha_s^3)$ matrix elements. Axial singlet anomaly. Full hard function at 3 loops.
- Resummation at N³LL. Effective field theory (SCET).
- Correct theory in peak, tail and multijet (profile functions).
- Field theory matrix elements for power corrections.
- Removal of u=1/2 renormalon in leading power correction/soft function.
- QED effects in Sudadok & FSR @ NNLL $O(\alpha_s^2)$ with $\alpha \sim \alpha_s^2$.
- bottom mass corrections with factorization theorem.
- Computation of bin cumulants in a meaningful way.

Why a global fit (many Q's)

We fit for $\Omega_1 \& \alpha_s(m_Z)$ simultaneously. Strong degeneracy lifted by many Q's.

Power correction needed with 20% accuracy to get α_s at the 1% level

0.16

0.18

0.20

0.22

0.24

0.26

ALEPH Q's all event shapes $0.1240 \pm (0.0029)_{pert}$

-0.30

0.28

- Multijet boundary condition
- No power corrections
- No renormalon subtraction

10

0.0

0.2

0.1

0.3

0.4

 $au^{0.5}$

 μ_i

0.0

0.3

0.4

0.5

au

0.2

0.1

0.02

0.00 L

0.32

ALEPH

0.34

0.36

0.38

 $^{0.40}$ au

0.42

 μ_i

0.0

0.2

0.1

0.3

0.4

 τ

0.5

Estimate of perturbative uncertainties

parameter	default value	range of values	
μ_0	$2{ m GeV}$	1.5 to 2.5 GeV	2.0 Hard, Jet, and Soft scales normalized to Q
n_1	5	2 to 8	
t_2	0.25	0.20 to 0.30	₹ [Ω 1.0 ₹]Ω
e_J	0	-1,0,1	0.0
e_H	1	0.5 to 2.0	0.0 0.1 0.2 0.3 0.4 0 τ
n_s	0	-1,0,1	Profile functions
s_2	-39.1	-36.6 to -41.6	h = 8998.05
Γ_3^{cusp}	1553.06	-1553.06 to $+4569.18$	Baikov et al
j_3	0	-3000 to $+3000$	Padè approximants
s_3	0	-500 to $+500$	for range
ϵ_2	0	-1,0,1	Nonsingular
ϵ_3	0	-1,0,1	statistical error

- Resummation at N³LL
- Multijet boundary condition
- Power corrections give -7.5% shift

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\tau} = \int \mathrm{d}k \left(\frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}\tau} + \frac{\mathrm{d}\hat{\sigma}_{\mathrm{ns}}}{\mathrm{d}\tau} + \frac{\mathrm{d}\hat{\sigma}_{b}}{\mathrm{d}\tau} \right) \left(\tau - \frac{k}{Q} \right) S_{\tau}^{\mathrm{mod}} \left(k - 2\overline{\Delta} \right) + O\left(\sigma_{0} \frac{\alpha_{s} \Lambda_{\mathrm{QCD}}}{Q} \right)$$

In the tail region
$$\ell_{\text{soft}} \sim Q \tau \gg \Lambda_{QCD}$$

and we can expand the soft function
$$S(\tau) = S_{\text{pert}}(\tau) - S'_{\text{pert}}(\tau) \frac{2\Omega_1}{Q} \approx S_{\text{pert}}\left(\tau - \frac{2\Omega_1}{Q}\right) \qquad \Omega_1 \sim \Lambda_{QCD} \qquad \text{Is a nonperturbative parameter}$$

Ω_1 is defined in field theory

$$\overline{\Omega}_{1} = \frac{1}{2N_{C}} \langle 0 | \operatorname{tr} \overline{Y}_{\overline{n}}(0) Y_{n}(0) i \partial_{\tau} Y_{n}^{\dagger}(0) \overline{Y}_{\overline{n}}^{\dagger}(0) | 0 \rangle \quad \overline{\mathsf{MS}}$$
$$i \partial_{\tau} = \theta (i \overline{n} \cdot \partial - i n \cdot \partial) i n \cdot \partial + \theta (i \overline{n} \cdot \partial - i n \cdot \partial) i \overline{n} \cdot \partial$$

Consistency check

- Resummation at N³LL
- Multijet boundary condition
- Power correction, in a scheme free of the $O(\Lambda_{\text{QCD}})$ renormalon

R-scheme

$$\Omega_1(R,\mu_s) = \overline{\Omega}_1 - \delta(R,\mu_s) \qquad \qquad \delta(R,\mu) = \sum_n \left(\frac{\alpha}{4\pi}\right)^n \delta_n(R,\mu)$$

Renormalon free

$$\delta_n(R,\mu) = \operatorname{R} e^{\gamma_R} \sum_m \delta_n^m \log^m \left(\frac{R}{\mu}\right) \longrightarrow$$
 Can become large $\longrightarrow R \sim \mu$
Keep them O(1)

Running equations for $\overline{\Delta}(R,\mu)$ $\begin{cases} \text{R-running} \\ \mu\text{-running} \end{cases}$

Convergence of results

Theory uncertainty is from a flat scan

- Resummation at N³LL
- Multijet boundary condition
- Power correction, in a scheme free of the $O(\Lambda_{\text{QCD}})$ renormalon
- QED & bottom mass corrections

Final thrust result

$$\alpha_s(m_Z) = 0.1135 \pm 0.0002_{\text{exp}} \pm 0.0005_{\text{had}} \pm 0.0009_{\text{per}}$$

- Use of the latest $O(\alpha_s^3)$ results for fixed order and matrix elements.
- The Soft-Collinear Effective Theory provides a powerful formalism for deriving factorization theorems and analyzing processes with Jets:
 - Resummation of logs at N³LL.
 - Field theoretical treatment of nonperturbative effects.
- Theory valid in peak, tail and multijet.
- Renormalon free Ω_1 provides very stable results \rightarrow improves perturbative errors.
- Inclusion of QED, b-mass and axial singlet corrections.
- Global fit of all data with all Q's. Simultaneous fits to $\alpha_s \& \Omega_1$.

Back up slides

Scale setting in cumulants

$$\begin{split} \Sigma(\tau_2, \mu_i(\tau_2)) &- \Sigma(\tau_1, \mu_i(\tau_1)) \\ &= \underbrace{\left[\int_{\tau_1}^{\tau_2} d\tau' \frac{1}{\sigma} \frac{d\sigma}{d\tau}(\tau', \mu_i(\tau_2))\right]}_{\tau_1} + \underbrace{\Sigma(\tau_1, \mu_i(\tau_2)) - \Sigma(\tau_1, \mu_i(\tau_1))}_{\simeq (\tau_2 - \tau_1) \frac{d\mu_i(\tau_1)}{d\tau} \frac{\partial}{\partial \mu_i} \int_0^{\tau_1} d\tau' \frac{d\sigma}{d\tau'}(\tau', \mu_i(\tau_1))}_{\sigma \tau_1} \end{split}$$

HJM thrust BS profile 0.1212 0.1173 Cum.edge CUM. mid. 0.1169 0.1168 integrate 0.1169 0.1175 AFHMS profile CUM. edge 0.1183 0.1208 cum. mid. integrate 0.1223 0.1211 0-1223 0.1220

Preliminary numbers

Effect of the various scan parameters

Fit for bins: different data sets

Theoretical motivation

In fact logs dominate even for moderate τ

Theoretical motivation

In fact logs dominate even for moderate au

Classical resummation

 $1 d\sigma$

- Resumation is performed at the level of the cross section.
- It is produced by multiple collinear $\sigma d\tau$ and soft gluon emisions.

 $=\frac{Q^2}{2\pi i}\int_C \mathrm{ds}\,e^{\tau s Q^2} \left[\overline{J}_C(Q^2,s)\right]^2$

Classical resummation

 $1 d\sigma$

- Resumation is performed at the level of the cross section.
- It is produced by multiple collinear $\sigma d\tau$ and soft gluon emisions.

 $\int_{\mathrm{tr}} = \frac{Q^2}{2\pi i} \int_C \mathrm{ds} \, e^{\tau s Q^2} \left[\overline{J}_C(Q^2, s) \right]^2$

$$\frac{d\sigma}{d\tau} = \int dk \left[\frac{d\hat{\sigma}}{d\tau} + \frac{d\hat{\sigma}_{ns}}{d\tau} + \frac{d\hat{\sigma}_{b}}{d\tau} \right] \left(\tau - \frac{k}{Q} \right) S_{\tau}^{mod} (k - 2\bar{\Delta}) + O\left(\sigma_{0} \frac{\alpha_{s} \Lambda_{QCD}}{Q} \right)$$
$$\frac{d\hat{\sigma}}{d\tau} = Q \sum_{i} \sigma_{0}^{I} H_{Q}^{I}(Q, \mu) \int ds \ J_{\tau}(s, \mu) e^{-2\frac{\delta}{Q}\frac{\partial}{\partial\tau}} S_{\tau}^{part} \left(Q\tau - \frac{s}{Q}, \mu \right)$$

$$\frac{d\sigma}{d\tau} = \int dk \left[\frac{d\hat{\sigma}}{d\tau} + \frac{d\hat{\sigma}_{ns}}{d\tau} + \frac{d\hat{\sigma}_{b}}{d\tau} \right] \left(\tau - \frac{k}{Q} \right) S_{\tau}^{mod} (k - 2\bar{\Delta}) + O\left(\sigma_{0} \frac{\alpha_{s} \Lambda_{QCD}}{Q} \right)$$
$$\frac{d\hat{\sigma}}{d\tau} = Q \sum_{i} \sigma_{0}^{I} H_{Q}^{I}(Q, \mu) \int ds J_{\tau}(s, \mu) e^{-2\frac{\delta}{Q}\frac{\partial}{\partial\tau}} S_{\tau}^{part} \left(Q\tau - \frac{s}{Q}, \mu \right)$$

- Electroweak factor: family (flavor) and current (vector/axial-vector) dependent)
- Lowest order cross section

$$\frac{d\sigma}{d\tau} = \int dk \left[\frac{d\hat{\sigma}}{d\tau} + \frac{d\hat{\sigma}_{ns}}{d\tau} + \frac{d\hat{\sigma}_{b}}{d\tau} \right] \left(\tau - \frac{k}{Q} \right) S_{\tau}^{mod} (k - 2\overline{\Delta}) + O\left(\sigma_{0} \frac{\alpha_{s} \Lambda_{QCD}}{Q} \right)$$

$$\frac{d\hat{\sigma}}{d\tau} = Q \sum_{i} \sigma_{0}^{I} H_{Q}^{I}(Q, \mu) \int ds J_{\tau}(s, \mu) e^{-2\frac{\delta}{Q}\frac{\partial}{\partial\tau}s} S_{\tau}^{part} \left(Q\tau - \frac{s}{Q}, \mu \right)$$
Hard Wilson coefficient (function) $H(Q, \mu_{h}) = \left| C(Q, \mu_{h}) \right|^{2}$

$$a^{a} \bigotimes_{p} \bigoplus_{QCD} \bigoplus_{QCD} \bigoplus_{q} \bigoplus_{QCD} \bigoplus$$

- Known up to $O(\alpha_s^3)$ N³LO
- Anomalous dimension known up to $O(\alpha_s^3)$
- Cusp anomalous dimension known up to $O(lpha_s^3)$

Baikov et al Lee et al Moch et al

Adding the $O(\alpha_s^4)$ cusp with a Padè approximation \longrightarrow N³LL analysis

• Anomalous dimension known up to $O(\alpha_s^3)$ Moch, Vermaresen & Vogt

$$\frac{d\sigma}{d\tau} = \int dk \left[\frac{d\hat{\sigma}}{d\tau} + \frac{d\hat{\sigma}_{ns}}{d\tau} + \frac{d\hat{\sigma}_{b}}{d\tau} \right] \left(\tau - \frac{k}{Q} \right) S_{\tau}^{mod} (k - 2\bar{\Delta}) + O\left(\sigma_{0} \frac{\alpha_{s} \Lambda_{QCD}}{Q} \right)$$
$$\frac{d\hat{\sigma}}{d\tau} = Q \sum_{i} \sigma_{0}^{I} H_{Q}^{I}(Q, \mu) \int ds J_{\tau}(s, \mu) e^{-2\frac{\delta}{Q}\frac{\partial}{\partial\tau}} S_{\tau}^{part} \left(Q\tau - \frac{s}{Q}, \mu \right)$$

Renormalon subtraction

- Reduces sensitivity to low momenta in the soft function
- \bullet Removes an $O(\Lambda_{\text{QCD}})$ renormalon from the first moment of the soft function

$$\frac{d\sigma}{d\tau} = \int dk \left[\frac{d\hat{\sigma}}{d\tau} + \frac{d\hat{\sigma}_{ns}}{d\tau} + \frac{d\hat{\sigma}_{b}}{d\tau} \right] \left(\tau - \frac{k}{Q} \right) S_{\tau}^{mod} (k - 2\bar{\Delta}) + O\left(\sigma_{0} \frac{\alpha_{s} \Lambda_{QCD}}{Q} \right)$$

$$\frac{d\hat{\sigma}}{d\tau} = Q \sum_{i} \sigma_{0}^{I} H_{Q}^{I}(Q, \mu) \int ds J_{\tau}(s, \mu) e^{-2\frac{\delta}{Q}\frac{\partial}{\partial t}} S_{\tau}^{part} \left(Q\tau - \frac{s}{Q}, \mu \right)$$
Soft Function
$$\int_{Y_{n}}^{n} \int_{Y_{n}}^{n} \int_{y_{n}}^{y_{n}} \int_{y_{n}}^{y$$

$$S(\ell^{+},\ell^{-},\mu) \equiv \frac{1}{N_{c}} \sum_{X_{s}} \delta(\ell^{+}-k_{s}^{+a}) \delta(\ell^{-}-k_{s}^{-b}) \langle 0|(\overline{Y}_{\bar{n}})^{cd} (Y_{n})^{ce}(0)|X_{s}\rangle \langle X_{s}|(Y_{n}^{\dagger})^{ef} (\overline{Y}_{\bar{n}}^{\dagger})^{df}(0)|0\rangle$$

- Analytically known up to $O(\alpha_s)$ Schwartz; Fleming et al
- Numerically known up to $O(\alpha_s^2)$ NNLO Becher & Schwartz; Hoang & Kluth

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\tau} = \int \mathrm{d}k \left[\frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}\tau} + \frac{\mathrm{d}\hat{\sigma}_{\mathrm{ns}}}{\mathrm{d}\tau} + \frac{\mathrm{d}\hat{\sigma}_{b}}{\mathrm{d}\tau} \right] \left(\tau - \frac{k}{Q}\right) S_{\tau}^{\mathrm{mod}} \left(k - 2\overline{\Delta}\right) + O\left(\sigma_{0} \frac{\alpha_{s} \Lambda_{\mathrm{QCD}}}{Q}\right)$$

$$\frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}\tau} = Q \sum_{i} \sigma_{0}^{I} H_{Q}^{I}(Q,\mu) \int \mathrm{d}s \ J_{\tau}(s,\mu) e^{-2\frac{\delta}{Q\partial\tau}} S_{\tau}^{\mathrm{part}} \left(Q\tau - \frac{s}{Q},\mu \right)$$
Still has large logs

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\tau} = \int \mathrm{d}k \left(\frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}\tau} + \frac{\mathrm{d}\hat{\sigma}_{\mathrm{ns}}}{\mathrm{d}\tau} + \frac{\mathrm{d}\hat{\sigma}_{b}}{\mathrm{d}\tau} \right) \left(\tau - \frac{k}{Q} \right) S_{\tau}^{\mathrm{mod}} \left(k - 2\overline{\Delta} \right) + O\left(\sigma_{0} \frac{\alpha_{s} \Lambda_{\mathrm{QCD}}}{Q} \right)$$

Include b mass effects in factorization theorem (2% effect)

$\mathrm{d}\hat{\sigma}_{_{b}}$ _	$d\hat{\sigma}_{ ext{massive}}^{ ext{NNLL}}$	$d\hat{\sigma}_{ ext{massless}}^{ ext{NNLL}}$
$d\tau$	$-\frac{1}{d\tau}$	$d\tau$

- At this order affects only jet function and τ limits.
- Use massive SCET factorization theorem. Flemming, Hoang, Matry, Stewart

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\tau} = \int \mathrm{d}k \left(\frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}\tau} + \frac{\mathrm{d}\hat{\sigma}_{\mathrm{ns}}}{\mathrm{d}\tau} + \frac{\mathrm{d}\hat{\sigma}_{b}}{\mathrm{d}\tau} \right) \left(\tau - \frac{k}{Q}\right) S_{\tau}^{\mathrm{mod}} \left(k - 2\overline{\Delta}\right) + O\left(\sigma_{0}\frac{\alpha_{s}\Lambda_{\mathrm{QCD}}}{Q}\right)$$

Include QED effects in factorization theorem (2% effect)

- Count $\alpha_{qed} \sim \alpha_s^2$, include only final state radiation.
- Include O($\alpha_s^2 \alpha_{qed}$) corrections to QCD β function.
- Include one loop QED corrections to matrix elements and nonsingular.

Include axial anomaly contribution

(1% effect)

- Affects the bottom axial hard coefficient at $O(\alpha_s^2)$.
- Affects the nonsingular at $O(\alpha_s^2)$.
- Due to large top-bottom mass splitting.

Kniehl, Kuhn Hagiwara, Kuruma, Yamada

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\tau} = \int \mathrm{d}k \left(\frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}\tau} + \frac{\mathrm{d}\hat{\sigma}_{\mathrm{ns}}}{\mathrm{d}\tau} + \frac{\mathrm{d}\hat{\sigma}_{b}}{\mathrm{d}\tau}\right) \left(\tau - \frac{k}{Q}\right) S_{\tau}^{\mathrm{mod}} \left(k - 2\overline{\Delta}\right) + O\left(\sigma_{0}\frac{\alpha_{s}\Lambda_{\mathrm{QCD}}}{Q}\right)$$

It is the same model function!

- In the peak region one cannot expand
- Tail and far tail: expansion causes shift
- Requires SCET sub-leading calculation Same effect for all tau
- Numerically irrelevant

$$S_{\tau}^{\text{mod}}(\ell) = \frac{1}{\lambda} \left[\sum_{n=0}^{\infty} c_n f_n\left(\frac{\ell}{\lambda}\right) \right]^2$$

Hadronization Corrections from QCD Monte Carlos

- Hadronization corrections in MC's cannot be used to estimate nonperturbative corrections for multiloop results based on dim. reg.
- All analyses using hadronization corrections from MC's essentially fit the perturbative multiloop results to the LL(+NLO) partonic MC predictions.

Ingredients for the calculation

When fixed order resuls are important primed counting is better

Peak and multijet regions

Comparison with recent analyses

Becher & Schwartz 0803.0342

Our code removing:

- Model function (***)
- Renormalon subtraction (***)
- QED and mass corrections (**)
- Axial singlet (*)
- Full hard coefficient (*)

Our number full analysis:

$$\alpha_s(m_Z) = 0.1135 \pm 0.0006 \pm 0.0009$$

Their number:

 $\alpha(m_z) = 0.1172 \pm 0.0013 \pm 0.0012 \pm 0.0012$

Our reproduction using our pruned code: $\alpha(m_{\tau}) = 0.1184 \pm 0.0013 \pm 0.0012 \pm 0.0012$

They also use different profile functions (***)

Data: Aleph & Opal

Understimates the size of hadronization errors

- Resummation: In the amplitude (EFT RG Equations)
- No nonperturbative effects in central value (Monte Carlo) (***)

(*) irrelevant

(**) important

(***) essential

Comparison with recent analyses

Davison & Webber 0809.3326

Our code removing:

- Log resumation in renormalon subtraction (**)
- Resummation beyond NLL (**)
- QED and mass corrections (**)
- Axial singlet (*)

Our number full analysis:

$$\alpha_s(m_Z) = 0.1135 \pm 0.0006 \pm 0.0009$$

Their number:

 $\alpha(m_{_Z}) = 0.1164 \pm 0.0022 \pm 0.0017$

Compatible !

- Data: Many Q's
- Resummation: In the distribution (classical approach)
- Nonperturbative effects in a model

Comparison with recent analyses

Dissertori et al 0712.0327

Our number full analysis:

$$\alpha_s(m_Z) = 0.1135 \pm 0.0006 \pm 0.0009$$

Their number:

 $\alpha(m_{z}) = 0.1224 \pm 0.0013 \pm 0.0011 \pm 0.0028$

Our code removing:

- Logs resummation (***)
- Model function (***)
- Renormalon subtraction (***)
- QED and mass corrections (**)
- Axial singlet (*)
- Data: Aleph
- No resummation (***)
- Nonperturbative effects treatment: Monte Carlo generator (***)

Experiment	Energy	Dissertori et al. results [22]	Our fixed order code
ALEPH	$91.2{ m GeV}$	0.1274(3)	0.1281
ALEPH	$133{ m GeV}$	0.1197(35)	0.1289
ALEPH	$161{ m GeV}$	0.1239(54)	0.1391
ALEPH	$172{ m GeV}$	0.1101(72)	0.1117
ALEPH	$183{ m GeV}$	0.1132(32)	0.1247
ALEPH	$189{ m GeV}$	0.1140(20)	0.1295
ALEPH	$200{\rm GeV}$	0.1094(22)	0.1260
ALEPH	$206{\rm GeV}$	0.1075(21)	0.1214

Heavy Jet Mass

The thrust axis defines two hemispheres

$$s_i = \left(\sum_{hem i} p_j\right)^2 \rightarrow \rho = Max(s_1, s_2)$$

$$\frac{d\sigma}{d\rho} = 2Q^{2}\sum_{i}\sigma_{0}^{I}H_{Q}^{I}(Q,\mu)\int_{0}^{Q^{2}\rho}ds_{1}\int_{0}^{s_{1}/Q}dl_{1}\int_{0}^{Q\rho}dl_{2}J(s_{1}-Ql_{1},\mu)J(Q^{2}\rho-Ql_{2},\mu)S(l_{1},l_{2},\mu)$$

• The heavy jet mass involves two nontrivial convolutions

• To hemispheres get entangled by non-perturbative effects

 For the nonsingular one would need the entire double differential hemiphere mass distribution → highly nontrivial

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\rho} = \frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}\rho} \left(\rho - \frac{\Omega_1}{Q}\right)$$

However in the far tail the OPE expansion works similarly