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Outline

• NP power corrections

• Universal low-scale     hypothesis

• NLL resummation

• Including power correction

• NNLO+NLL+NP fit to thrust
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NP shift in Thrust 
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NP power dependence
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• Rtheory - Rexpt = AQn
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NP power dependence
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• Rtheory - Rexpt = AQn
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NP power dependence
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• Rtheory - Rexpt = AQn
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NP power dependence
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• Rtheory - Rexpt = AQn
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NP power dependence

8

• Rtheory - Rexpt = AQn
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NP power dependence
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• Rtheory - Rexpt = AQn
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NP power dependence
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• Rtheory - Rexpt = AQn

-6

-5

-4

-3

-2

-1

 2.5  3  3.5  4  4.5  5  5.5

ln
(R

th
e
o
ry

-R
e
x
p
t)

ln(Q/GeV)

t = 0.10

n = -1.02 ± 0.10

DELPHI
ALEPH

JADE
TASSO

AMY
L3

Best Fit



Alpha_s Workshop Munich 09/02/2011

NP power dependence
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• Rtheory - Rexpt = AQn
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NP power dependence

12

• Rtheory - Rexpt = AQn
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NP power dependence
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• Rtheory - Rexpt = AQn
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NP power dependence
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NP power dependence
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• Rtheory - Rexpt = AQn
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NP power dependence
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Universal low-scale effective

• Infrared renormalon

• Divergent series: truncate at smallest term                    
(                          )      uncertainty                               

Asymptotics of perturbation theory

It is expected that perturbation series will diverge at
high order.

There may even be signs of this already for some
observables, e.g. the Gross–Llewellyn Smith sum rule:

1

6

∫ 1

0
dx (F ν

3 + F ν̄
3 ) = 1−

αS

π
− 3.6

(αS

π

)2
− 19

(αS

π

)3
+ · · ·

One source of divergence is renormalon chain graphs

F ∼ αS

∞
∑

n=0

n!

(

β0αS

2πp

)n

! Quark loops ⇒ β0 = −2Nf/3

p = 1, 2, . . . depends on observable F

Infrared renormalon ⇔ low momentum in loops

! “Naive non-Abelianization”: replace

Nf → Nf − 33/2 , β0 → 11 − 2Nf/3

– Typeset by FoilTEX – 8
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•Renormalon is due to 
IR divergence of

•Postulate universal IR-
regular

•Power corrections 
depend on

•Match NP & PT at  GeV

Power Corrections
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NLL thrust resummation

• Leading PT contribution from 
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The 3-loop constant
• Coefficient of 3-loop cusp anomalous dimension

➡ L = true value [used by Gehrmann et al., EPJC67(2010)57]

➡ K2 = effective scale change (used by RD&BW)

• Happen to agree at nf = 5 (but effect negligible anyway)

20
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Power correction to thrust
• Replace PT by NP for 

• For               , i.e.  

21
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`Milan Factor’:
Dokshitzer et al., JHEP05(1998)003

α0 → 2Mα0/π = 0.95α0
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Power corrections to event shapes

• 1/Q renormalon present in T & C, absent in y3
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NLO results from e+e
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NLO results from DIS

• Consistent with e+e

FRIF Workshop on First Principles Non-Perturbative QCD of Hadron Jets
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Figure 9: Normalised event shape distributions corrected to the hadron level for ρ0 and the C-parameter. For details see the

caption of Fig. 8.
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NNLO+NLL matching

• At NNLO:

• At NLL:

• Log-R matching:

25

2 R.A. Davison, B.R. Webber: Non-Perturbative Contribution to the Thrust Distribution in e+e− Annihilation

bution, the fixed-order calculation and the resummation of

large logarithms. Sect. 3 presents the predictions of pertur-

bative NNLO+NLL matching and the power dependence

of the discrepancy with experimental data. The matching

to the low-scale effective coupling and comparisons with

data are performed in Sect. 4, and our conclusions are

presented in Sect. 5.

2 Perturbative calculation of the thrust
distribution

We recall that the thrust T is a measure of the distribution

of momenta of the final state hadrons:

T = max−→n

��N
i=1 |−→pi .

−→n |
�N

i=1 |−→pi |

�
, (2)

where
−→n is a unit vector and we sum over the 3-momentum

of each final-state hadron in the centre-of-mass frame.

Theoretical calculations of thrust are performed by sum-

ming over the individual final state partons, as the hadro-

nisation process is still not well understood. T can vary

between the limits T = 1 for back-to-back jets and T =
1
2

for a uniform angular distribution of hadrons.

For comparison with experiments, it is the thrust dis-

tribution
1

σ

dσ

dT
, (3)

which is relevant, where σ is the total cross-section for

e+e− → hadrons. In calculations it is more convenient to

use the event shape variable

t ≡ 1− T, (4)

which has the two-jet limit t = 0. The distribution away

from this limit therefore depends directly upon the pro-

duction of extra final-state partons at QCD vertices, and

hence is ideal for testing QCD and evaluating αs. The

normalised thrust cross section is then defined as

R (t) =

� t

0
dt

1

σ

dσ

dt
=

� 1

1−t
dT

1

σ

dσ

dT
. (5)

2.1 Fixed-order calculations

The perturbative expansion of the normalised thrust cross

section has the general form

R(t) = 1 + ᾱsR1(t) + ᾱ2
sR2(t) + ᾱ3

sR3(t) + . . . , (6)

where R1 (t) is the leading order (LO) coefficient, R2 (t) is

the next-to-leading order (NLO) coefficient, R3 (t) is the

next-to-next-to-leading order (NNLO) coefficient etc. and

ᾱs ≡ αs/2π. Solving the renormalisation group equation

for the running coupling to NNLO gives

αs (µR) =
2π

β0L

�
1− β1 lnL

β2
0L

+
1

β2
0L2

�
β2

1

β2
0

�
ln

2 L− lnL− 1
�

+
β2

β0

��
, (7)

where µR is some chosen renormalisation scale (we take

µR = Q except where stated otherwise),

β0 =
11N − 2NF

6
β1 =

17N2 − 5NNF − 3CF NF

6
,

β2 =
1

432
(2857N3

+ 54C2
F NF − 615NCF NF

− 1415N2NF + 66CF N2
F + 79NN2

F ) ,
(8)

with CF = (N2− 1)/2N for an SU(N) gauge theory with

NF active flavours (N = 3 for QCD and NF = 5 at all

energies considered here) and L = ln(µ2
R/Λ(5) 2

MS
), Λ(5)

MS
being the 5-flavour QCD scale in the modified minimal

subtraction renormalisation scheme.

A numerical Monte Carlo program, EERAD3 [7], has re-

cently been developed which computes the process e+e− →
jets to NNLO in αs via the decay of a virtual neutral gauge

boson (γ or Z0) to between three and five partons [5,6].1

The EERAD3 predictions for the thrust distribution at a

variety of centre-of-mass energies Q spanning the range

14 GeV to 206 GeV are shown by the green/lighter curves

in Figs. 1-3. The values of αs (Q) were calculated using

Λ(5)

MS
= 0.204 GeV, corresponding to the world average

αs (91.2 GeV) = 0.1176 [9].

2.2 Resummation of large logarithms

The enhancement of the distribution at low t due to soft

or collinear gluon emission (as seen in Figs. 1- 3) is present

at all orders in perturbation theory: the dominant term at

nth order is typically of the form

1

σ

dσ

dt
∼ αn

s
1

t
ln

2n−1

�
1

t

�
. (9)

Thus we see that at low t the condition αs � 1 is not

sufficient for a fixed-order prediction in perturbation the-

ory to be accurate. Instead, we require αsL2 � 1, where

L ≡ ln(1/t). To obtain accurate predictions in the two-

jet limit t → 0, we must therefore take account of these

enhanced terms at all orders in perturbation theory by

resumming them.

Resummation of large logarithms is possible for event

shape variables y that exponentiate [10], i.e. their corre-

sponding normalised cross section can be written in the

form

R (y) = C (αs)Σ (y,αs) + D (y,αs) , (10)

1 A recent calculation [8] finds some discrepancies with
Refs. [5,6], but these are not significant in the kinematic re-
gions that we consider.
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bution, the fixed-order calculation and the resummation of

large logarithms. Sect. 3 presents the predictions of pertur-

bative NNLO+NLL matching and the power dependence

of the discrepancy with experimental data. The matching

to the low-scale effective coupling and comparisons with

data are performed in Sect. 4, and our conclusions are

presented in Sect. 5.

2 Perturbative calculation of the thrust
distribution

We recall that the thrust T is a measure of the distribution

of momenta of the final state hadrons:

T = max−→n

��N
i=1 |−→pi .

−→n |
�N

i=1 |−→pi |

�
, (2)

where
−→n is a unit vector and we sum over the 3-momentum

of each final-state hadron in the centre-of-mass frame.

Theoretical calculations of thrust are performed by sum-

ming over the individual final state partons, as the hadro-

nisation process is still not well understood. T can vary

between the limits T = 1 for back-to-back jets and T =
1
2

for a uniform angular distribution of hadrons.

For comparison with experiments, it is the thrust dis-

tribution
1

σ

dσ

dT
, (3)

which is relevant, where σ is the total cross-section for

e+e− → hadrons. In calculations it is more convenient to

use the event shape variable

t ≡ 1− T, (4)

which has the two-jet limit t = 0. The distribution away

from this limit therefore depends directly upon the pro-

duction of extra final-state partons at QCD vertices, and

hence is ideal for testing QCD and evaluating αs. The

normalised thrust cross section is then defined as

R (t) =

� t

0
dt

1

σ

dσ

dt
=

� 1

1−t
dT

1

σ
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. (5)

2.1 Fixed-order calculations

The perturbative expansion of the normalised thrust cross

section has the general form

R(t) = 1 + ᾱsR1(t) + ᾱ2
sR2(t) + ᾱ3

sR3(t) + . . . , (6)

where R1 (t) is the leading order (LO) coefficient, R2 (t) is

the next-to-leading order (NLO) coefficient, R3 (t) is the

next-to-next-to-leading order (NNLO) coefficient etc. and

ᾱs ≡ αs/2π. Solving the renormalisation group equation

for the running coupling to NNLO gives

αs (µR) =
2π

β0L
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1
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where µR is some chosen renormalisation scale (we take

µR = Q except where stated otherwise),

β0 =
11N − 2NF

6
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17N2 − 5NNF − 3CF NF

6
,

β2 =
1

432
(2857N3

+ 54C2
F NF − 615NCF NF

− 1415N2NF + 66CF N2
F + 79NN2

F ) ,
(8)

with CF = (N2− 1)/2N for an SU(N) gauge theory with

NF active flavours (N = 3 for QCD and NF = 5 at all

energies considered here) and L = ln(µ2
R/Λ(5) 2

MS
), Λ(5)

MS
being the 5-flavour QCD scale in the modified minimal

subtraction renormalisation scheme.

A numerical Monte Carlo program, EERAD3 [7], has re-

cently been developed which computes the process e+e− →
jets to NNLO in αs via the decay of a virtual neutral gauge

boson (γ or Z0) to between three and five partons [5,6].1

The EERAD3 predictions for the thrust distribution at a

variety of centre-of-mass energies Q spanning the range

14 GeV to 206 GeV are shown by the green/lighter curves

in Figs. 1-3. The values of αs (Q) were calculated using

Λ(5)

MS
= 0.204 GeV, corresponding to the world average

αs (91.2 GeV) = 0.1176 [9].

2.2 Resummation of large logarithms

The enhancement of the distribution at low t due to soft

or collinear gluon emission (as seen in Figs. 1- 3) is present

at all orders in perturbation theory: the dominant term at

nth order is typically of the form

1

σ

dσ

dt
∼ αn

s
1

t
ln

2n−1

�
1

t

�
. (9)

Thus we see that at low t the condition αs � 1 is not

sufficient for a fixed-order prediction in perturbation the-

ory to be accurate. Instead, we require αsL2 � 1, where

L ≡ ln(1/t). To obtain accurate predictions in the two-

jet limit t → 0, we must therefore take account of these

enhanced terms at all orders in perturbation theory by

resumming them.

Resummation of large logarithms is possible for event

shape variables y that exponentiate [10], i.e. their corre-

sponding normalised cross section can be written in the

form

R (y) = C (αs)Σ (y,αs) + D (y,αs) , (10)

1 A recent calculation [8] finds some discrepancies with
Refs. [5,6], but these are not significant in the kinematic re-
gions that we consider.
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with Γ the Euler Γ -function, γE the Euler constant, and
CF , K and βn the constants previously defined.

By combining these with the fixed-order calculation,
we can obtain a new estimate of the normalised cross sec-
tion to NLL accuracy. This should particularly improve
the fixed-order estimate in the two-jet region, where L

becomes large. Naively we would simply calculate R (t) as
defined in Eq. (10), but it turns out to be considerably
simpler to consider lnR (t), as we recall next.

2.3 Log-R matching

In the log-R matching scheme, we rewrite the exponenti-
ation formula as

lnR (t) = F (αs) + lnΣ (t, αs) + H (t, αs) , (17)

where F (αs) is a power series in αs and H (t, αs) denotes
the remainder function which vanishes as t→ 0.

For a fixed-order perturbative calculation of R (t) to
order M , we can write Eq. (6) as

lnR (t) = ln

�
1 +

M�

n=1

ᾱn
s Rn (t)

�

=
M�

n=1

ᾱn
s Rn (t)− 1

2

�
M�

n=1

ᾱn
s Rn (t)

�2

+
1
3

�
M�

n=1

ᾱn
s Rn (t)

�3

− . . . .

(18)

The matched estimate is obtained by combining the Mth
order perturbative result with the resummed contribu-
tions and subtracting the terms of order ≤M in lnΣ (as
these are already accounted for in the fixed-order terms).
Thus for a fixed-order calculation to order α3

s, the matched
estimate after resumming large logarithms to NLL accu-
racy is

lnR (t) = Lg1 (αsL) + g2 (αsL)
+ ᾱs

�
R1 (t)−G11L−G12L

2
�

+ ᾱ2
s

�
R2 (t)− 1

2
[R1 (t)]2 −G22L

2 −G23L
3

�

+ ᾱ3
s

�
R3 (t)−R1 (t) R2 (t) +

1
3

[R1 (t)]3

−G33L
3 −G34L

4

�
.

(19)
The coefficients Gnm can be extracted by expanding

the functions g1 (αsL) and g2 (αsL) as power series in αsL

and comparing them with the definition (11) of Gnm:

G11 = 3CF ,

G12 = −2CF ,

G22 = −CF

36
�
48π2

CF +
�
169− 12π2

�
N − 22NF

�
,

G23 = −CF

3
(11N − 2NF ) ,

G33 =
CF

108
�
2304ζ (3)C

2
F − 792π2

NCF

−
�
3197− 132π2

�
N

2 +
�
108 + 144π2

�
CF NF

+
�
1024− 24π2

�
NNF − 68N

2
F

�
,

G34 = − 7
108

CF (11N − 2NF )2 ,

(20)

where ζ (3) = 1.202057 . . ..
There are two reasons why it is simpler to use this

log-R matching scheme rather than R matching (i.e. eval-
uating Eq. (10) explicitly to NLL precision). Firstly, we
do not have to be concerned with the C (αs) and D (t, αs)
terms in (10), for which we do not have analytic expres-
sions but which contribute to the fixed-order calculation
– these are contained in R1 (t), R2 (t), etc. Secondly, it
is easier to impose physical boundary conditions on the
normalised cross section, namely

R (t = tmax) = 1, (21)

by definition of the normalised cross section, and

dR

dt
(t = tmax) = 0, (22)

as there is an upper kinematic limit tmax on the thrust
for a given number of final-state partons. Although the
resummed logarithmic terms are small at high t, dR/dt

is also small and so these terms can cause relatively large
unphysical effects if we do not impose these conditions.

The above constraints are automatically obeyed by
the fixed-order terms Rn (t) but not by the resummed
terms, as we have neglected the subdominant logarithms
g3 (αsL), g4 (αsL) etc. To satisfy these constraints, we
therefore require

Q (t) = Lg1 (αsL) + g2 (αsL)− ᾱs

�
G11L + G12L

2
�

− ᾱ2
s

�
G22L

2 + G23L
3
�
− ᾱ3

s

�
G33L

3 + G34L
4
�

(23)
and its first derivative to vanish at t = tmax. Q (t) cor-
responds to the resummed logarithmic terms of order L

4

and higher and hence at small L,

t
dQ

dt
= aL

3 + bL
4 + cL

5 + . . . . (24)

By making the replacement

L→ L̃ = ln
�

1 +
1
t
− 1

tmax

�
, (25)
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with Γ the Euler Γ -function, γE the Euler constant, and
CF , K and βn the constants previously defined.

By combining these with the fixed-order calculation,
we can obtain a new estimate of the normalised cross sec-
tion to NLL accuracy. This should particularly improve
the fixed-order estimate in the two-jet region, where L

becomes large. Naively we would simply calculate R (t) as
defined in Eq. (10), but it turns out to be considerably
simpler to consider lnR (t), as we recall next.

2.3 Log-R matching

In the log-R matching scheme, we rewrite the exponenti-
ation formula as

lnR (t) = F (αs) + lnΣ (t, αs) + H (t, αs) , (17)

where F (αs) is a power series in αs and H (t, αs) denotes
the remainder function which vanishes as t→ 0.

For a fixed-order perturbative calculation of R (t) to
order M , we can write Eq. (6) as

lnR (t) = ln
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The matched estimate is obtained by combining the Mth
order perturbative result with the resummed contribu-
tions and subtracting the terms of order ≤M in lnΣ (as
these are already accounted for in the fixed-order terms).
Thus for a fixed-order calculation to order α3

s, the matched
estimate after resumming large logarithms to NLL accu-
racy is

lnR (t) = Lg1 (αsL) + g2 (αsL)
+ ᾱs
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The coefficients Gnm can be extracted by expanding

the functions g1 (αsL) and g2 (αsL) as power series in αsL

and comparing them with the definition (11) of Gnm:

G11 = 3CF ,

G12 = −2CF ,

G22 = −CF

36
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,

G34 = − 7
108
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(20)

where ζ (3) = 1.202057 . . ..
There are two reasons why it is simpler to use this

log-R matching scheme rather than R matching (i.e. eval-
uating Eq. (10) explicitly to NLL precision). Firstly, we
do not have to be concerned with the C (αs) and D (t, αs)
terms in (10), for which we do not have analytic expres-
sions but which contribute to the fixed-order calculation
– these are contained in R1 (t), R2 (t), etc. Secondly, it
is easier to impose physical boundary conditions on the
normalised cross section, namely

R (t = tmax) = 1, (21)

by definition of the normalised cross section, and

dR

dt
(t = tmax) = 0, (22)

as there is an upper kinematic limit tmax on the thrust
for a given number of final-state partons. Although the
resummed logarithmic terms are small at high t, dR/dt

is also small and so these terms can cause relatively large
unphysical effects if we do not impose these conditions.

The above constraints are automatically obeyed by
the fixed-order terms Rn (t) but not by the resummed
terms, as we have neglected the subdominant logarithms
g3 (αsL), g4 (αsL) etc. To satisfy these constraints, we
therefore require

Q (t) = Lg1 (αsL) + g2 (αsL)− ᾱs

�
G11L + G12L

2
�

− ᾱ2
s

�
G22L

2 + G23L
3
�
− ᾱ3

s

�
G33L

3 + G34L
4
�

(23)
and its first derivative to vanish at t = tmax. Q (t) cor-
responds to the resummed logarithmic terms of order L

4

and higher and hence at small L,

t
dQ

dt
= aL

3 + bL
4 + cL

5 + . . . . (24)

By making the replacement

L→ L̃ = ln
�

1 +
1
t
− 1

tmax

�
, (25)

[ᾱs ≡ αs(µR)/2π]

lnR(t) = Lg1(ᾱsL) + g2(ᾱsL) =
∞�

n=1

n+1�

m=n

Gnm ᾱn
sL

m

�
L = ln

�
1

t
+ 1− 1

tmax
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the boundary conditions are satisfied as L̃ (tmax) = 0. This
does introduce corrections to the expression for lnR (t)
but these are power-suppressed at small t:

L̃ (t) = ln

�
1

t

�
+ ln

�
1− t

tmax
+ t

�

= L (t) +

�
t− t

tmax

�
− 1

2

�
t− t

tmax

�2

+ . . . ,

(26)
and so L̃ (t) → L (t) in the important limit t → 0.

3 Results of NNLO+NLL matching

To perform the matching, the integrated perturbation se-
ries coefficients are required as in Eq. (19). For R1 (t), the
analytic result is

R1 (t) =− 8

3
ln2

�
t

1− t

�
− 4 (1− 2t) ln

�
t

1− 2t

�
+

4π2

9

− 10

3
+ 8t+ 6t2 − 16

3
Li2

�
t

1− t

�
,

(27)
where

Li2 (z) ≡
� 0

z
dx

ln (1− x)

x
(28)

is the dilogarithm function. R2 (t) and R3 (t) were ob-
tained by interpolating the differential results from EERAD3
and then numerically integrating them. For R3 (t), the
EERAD3 results were first smoothed by taking

dR3

dt
(ti) →

1

3

�
dR3

dt
(ti+1) +

dR3

dt
(ti) +

dR3

dt
(ti−1)

�
,

(29)
repeatedly until a smooth curve was obtained. The peak
near t = 0 had to be reintroduced by hand, as this smooth-
ing technique always results in the peak value being re-
duced.

R (t) was computed to NNLO+NLL precision using
Eqs. (19) and (26) with tmax = 0.42 in L̃, as this is the
maximum value of t kinematically allowed in the five par-
ton limit. The differential cross section was then obtained
by numerically differentiating R(t). The results at a range
of energies are shown by the red/darker curves in Figs 1-3.
The values of αs (Q) were calculated as described earlier
for the unresummed NNLO (green/lighter) curves. The
shaded area around each line shows the renormalisation
scale uncertainty found by taking µ2

R ∈
�
Q2/2, 2Q2

�
.

3.1 Comparison with experimental data

The matched, resummed differential thrust distribution
was compared with data from a wide range of experiments,
as listed in Table 1. The points in Figs. 1-3 show the data
at an illustrative selection of energies. The error bars rep-
resent the experimental statistical and systematic errors,
added in quadrature.

Experiment Q/GeV Ref. No. Pts. χ2

TASSO 14.0 [14] 4 8.2
TASSO 22.0 [14] 6 2.8
TASSO 35.0 [14] 8 0.7
JADE 35.0 [15] 10 10.5
L3 41.4 [16] 8 3.4
JADE 44.0 [15] 10 3.8
TASSO 44.0 [14] 8 6.8
DELPHI 45.0 [17] 11 11.6
AMY 54.5 [18] 4 4.9
L3 55.3 [16] 8 3.2
L3 65.4 [16] 8 7.5
DELPHI 66.0 [17] 11 14.5
L3 75.7 [16] 8 1.9
DELPHI 76.0 [17] 11 10.3
L3 82.3 [16] 8 4.0
L3 85.1 [16] 8 3.6
OPAL 91.0 [19] 5 11.9
ALEPH 91.2 [20] 27 16.1
DELPHI 91.2 [17] 11 18.8
SLD 91.2 [21] 6 2.7
L3 130.1 [16] 10 14.6
ALEPH 133.0 [20] 6 7.2
OPAL 133.0 [19] 5 6.5
L3 136.1 [16] 10 37.3
ALEPH 161.0 [20] 6 5.5
L3 161.3 [16] 10 4.0
ALEPH 172.0 [20] 6 14.0
L3 172.3 [16] 10 2.1
OPAL 177.0 [19] 5 1.1
L3 182.8 [16] 10 2.7
ALEPH 183.0 [20] 6 4.0
DELPHI 183.0 [17] 13 33.1
L3 188.6 [16] 10 3.4
ALEPH 189.0 [20] 6 6.7
DELPHI 189.0 [17] 13 22.7
DELPHI 192.0 [17] 13 12.1
L3 194.4 [16] 10 1.2
DELPHI 196.0 [17] 13 39.7
OPAL 197.0 [19] 5 10.0
ALEPH 200.0 [20] 6 21.0
DELPHI 200.0 [17] 13 7.1
L3 200.0 [16] 9 6.5
DELPHI 202.0 [17] 13 14.9
DELPHI 205.0 [17] 13 12.6
ALEPH 206.0 [20] 6 7.0
L3 206.2 [16] 10 10.0
DELPHI 207.0 [17] 13 11.7
Total 430 466.0

Table 1. Data sets used and best-fit χ2 contributions.

There are a few features common to the graphs at
all energies. Firstly, the resummed distribution and the
NNLO distribution are almost identical away from the
two-jet region. However, in this low-t limit the resummed
distribution peaks, in line with the experimental data,
whereas the NNLO distribution carries on increasing. Thus
resummation has significantly improved the theoretical
prediction in the two-jet limit, as we had expected.
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were obtained, with χ2/d.o.f. = 466.0/428 ≈ 1.09. The
quoted errors correspond to one standard deviation, com-

puted as recommended by the Particle Data Group [9]: the

value of χ2 corresponding to the 1σ (68.3% C.L.) contour

was rescaled by the value of χ2/d.o.f., giving χ2 = 480.6,
i.e. ∆χ2 = 14.6.

The contribution to χ2 from each data set is shown in

Table 1. It should be noted that the few data sets with

χ2/no. pts. � 1 are not generally inconsistent with the

shifted distribution, but simply have a few outlying points

giving a large contribution.

The contour plot in Fig. 7 shows the ranges of α0 and

Λ(5)

MS
which give fits within ∆χ2 of the best-fit value of χ2,

and also demonstrates the correlation between these two

parameters.

Varying the renormalisation scale µ2
R ∈

�
Q2/2, 2Q2

�

gave best fit values in the range α0 (2 GeV) = 0.585,

Λ(5)

MS
= 0.173 GeV to α0 (2 GeV) = 0.598, Λ(5)

MS
= 0.210

GeV with no significant change in the quality of fit. Thus

we find

Λ(5)

MS
= 0.190+0.025+0.020

−0.022−0.017 GeV (39)

where the first error is the combined experimental statis-

tical and systematic error and the second is due to the

theoretical renormalisation scale uncertainty. The corre-

sponding strong coupling constant is

αs (91.2 GeV) = 0.1164+0.0022+0.0017
−0.0021−0.0016 , (40)

or, combining all the errors in quadrature,

αs (91.2 GeV) = 0.1164+0.0028
−0.0026 , (41)

in good agreement with the world average value of 0.1176 [9].

To assess the importance of the NNLO terms, the anal-

ysis was repeated with all those terms omitted, i.e. com-

bining NLO+NLL in perturbation theory with Eq. (36)

without the O(α3
s) contribution. The resulting best fit val-

ues were

α0 (2 GeV) = 0.51± 0.04 ,

Λ(5)

MS
= 0.214+0.032+0.034

−0.027−0.026 GeV ,

αs (91.2 GeV) = 0.1185+0.0025+0.0027
−0.0024−0.0023

(42)

with χ2/d.o.f. = 515.1/428 ≈ 1.20. Thus the NLO and

NNLO results are consistent but the inclusion of NNLO

terms consistently in both the perturbative prediction and

the power correction improves the quality of the fit and

reduces the errors.

The most complete previous NLO study along similar

lines [24], combining NLO+NLL in perturbation theory

with the NLO equivalent of Eq. (36) and covering a variety

of event shapes but a slightly narrower range of energies

than that used here, obtained the overall best fit at

αs (91.2 GeV) = 0.1171+0.0032
−0.0020,

α0 (2 GeV) = 0.513+0.066
−0.045

(43)

in good agreement with our results. Their fit to the thrust

distribution alone gave

αs (91.2 GeV) = 0.1173+0.0063
−0.0051,

α0 (2 GeV) = 0.492+0.084
−0.070

(44)

also in good agreement.

In the recent NNLO analysis [25], a range of event

shapes at energies at and above 91.2 GeV were fitted

without resummation; non-perturbative effects were es-

timated using Monte Carlo event generators. The value

obtained for the strong coupling was αs (91.2 GeV) =

0.1240± 0.0033.
To estimate the dependence of our results upon the

infra-red matching scale, a fit with µI = 3 GeV was made,

yielding α0 (3 GeV) = 0.458±0.025 and Λ(5)

MS
= 0.202+0.034

−0.027,

with χ2/d.o.f. ≈ 1.09. Thus the fit remains good and the

value obtained for Λ(5)

MS
is stable under variation of µI ,

while the value of α0 decreases as expected for a running

effective coupling. Indeed, the implied mean value of αeff

in the range 2-3 GeV,

αeff = 3α0 (3 GeV)− 2α0 (2 GeV) = 0.19± 0.10 (45)

is consistent with the perturbative value αs (2.5 GeV) =

0.26.

4.4 Final comparison with experimental distributions

Figures 8-10 show the final (NNLO+NLL+shift) theoret-

ical distributions in comparison to the experimental ones,

with the best-fit values of α0 and αs assumed. The shaded

area around the unshifted distribution is the renormalisa-

tion scale uncertainty found by varying µ2
R ∈

�
Q2/2, 2Q2

�
,

and the shaded area around the shifted distribution is

the corresponding error found by varying between the

best fit limits obtained previously (α0 (2 GeV) = 0.585,

Λ(5)

MS
= 0.173 GeV and α0 (2 GeV) = 0.598, Λ(5)

MS
= 0.210

GeV).

It is clearly seen that inclusion of the shift results in a

significantly more accurate distribution over the fit range,

particularly for the lower energies. As the best fit value of

αs is very close to the world average, the unshifted distri-

butions here are essentially the same as those in Figs. 1-3.
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timated using Monte Carlo event generators. The value
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yielding α0 (3 GeV) = 0.458±0.025 and Λ(5)
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= 0.202+0.034

−0.027,

with χ2/d.o.f. ≈ 1.09. Thus the fit remains good and the

value obtained for Λ(5)

MS
is stable under variation of µI ,

while the value of α0 decreases as expected for a running

effective coupling. Indeed, the implied mean value of αeff

in the range 2-3 GeV,

αeff = 3α0 (3 GeV)− 2α0 (2 GeV) = 0.19± 0.10 (45)

is consistent with the perturbative value αs (2.5 GeV) =

0.26.
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Figures 8-10 show the final (NNLO+NLL+shift) theoret-

ical distributions in comparison to the experimental ones,

with the best-fit values of α0 and αs assumed. The shaded

area around the unshifted distribution is the renormalisa-

tion scale uncertainty found by varying µ2
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and the shaded area around the shifted distribution is

the corresponding error found by varying between the

best fit limits obtained previously (α0 (2 GeV) = 0.585,
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GeV).

It is clearly seen that inclusion of the shift results in a

significantly more accurate distribution over the fit range,

particularly for the lower energies. As the best fit value of

αs is very close to the world average, the unshifted distri-

butions here are essentially the same as those in Figs. 1-3.
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