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Our Goal

the parameter η introduced in the background field φi and define the SF coupling constant
as [18]
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is a normalization coefficient evaluated at tree level.

III. OUR STRATEGY

Our goal is to derive the renormalization group invariant (RGI) scale ΛQCD in physical
units and evaluate the running coupling constant αs(MZ) at high energy scale µ = MZ . The
RGI scale Λ is scheme dependent and we employ the commonly used definition for the SF
scheme,
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where g(L) is the SF renormalized coupling at the box scale L and β(g) is the renormalization
group β function in the same scheme whose perturbative expansion coefficients are given by
[27]
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The derivation of the RGI scale for the SF scheme proceeds in the following steps [18]:

(i) We start by calculating the step scaling function (SSF) Σ(u, a/L) on the lattice at
several box sizes and lattice spacings. The SSF gives the relation between the renor-
malized coupling constants when the renormalization scale is changed by some factor,
which is fixed to 2 in this paper,
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The scale is given by the box size L, and a/L represents the discretization error. We
take sufficient number of values for the coupling u to cover low to high energy scales.
Taking the continuum limit at each scale u

σ(u) = lim
a/L→0

Σ
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a
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)
, (III.7)

and performing a polynomial fit we obtain a non-perturbative running of the coupling
constant in the SF scheme for the scale change of 2.
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ḡ(L): Schrödinger Functional (SF) coupling

L: special box size

T

L3

boundary gauge field

boundary gauge field

Advantages

A box size L gives the scale. No other scale is needed.

The continuum limit (a->0) can be taken.

Disadvantages

Separate simulations have to be performed.

Non-perturbative.



Strategy for Λ
(1) Step Scaling Function (SSF)
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(2) define a reference scale Lmax through a fixed value of ḡ2(Lmax)
non-perturbative a/Lmax ! 1

1/Lmax ∼ 0.5 GeV 1/L = 2n/Lmax ∼ 16 GeV
non-perturbative perturbativeSSF( n times)

(3) ΛSFLmax from

the parameter η introduced in the background field φi and define the SF coupling constant
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g2(L) with L = 2−nLmax

3-loop

(4) Lmax in physical unit from hadron mass
an independent large scale simulation at some a is required.  

(ii) In the second step we define a reference scale Lmax through a fixed value of the renor-
malized coupling constant g2(Lmax). The value of g2(Lmax) is arbitrary as long as it
is well in low energy region to suppress lattice artifacts with a/Lmax ! 1. We then
start from Lmax and follow the non-perturbative RG flow in the SF scheme into the
high energy region. A typical scale turns out to be 1/Lmax ∼ 0.5 GeV in this paper
so that after n ∼ 5 iterations the scale 1/L = 2n/Lmax ∼ 16 GeV is already in the
perturbative region where the difference between perturbative and non-perturbative
RG runnings is negligible.

(iii) Substituting g2(L) and L = 2−nLmax into the definition (III.1) and evaluating the
integral with three loops β-function in the SF scheme [27] for the weak coupling region
we obtain the RGI scale ΛSFLmax in terms of the reference scale.

(iv) In the last step we need some physical input measured in an independent large scale
simulation at some lattice spacing a to quote Lmax in physical units. The requirement
for the lattice spacing and the reference scale is that the magnitude of lattice artifacts
a/Lmax should be kept small. In this paper we employ hadron masses for physical input
and use the lattice spacing determined from them in physical units as the intermediate
scale. We then obtain the RGI scale ΛSF in physical units. The transformation into
the MS scheme is given exactly at one-loop order via

ΛMS = 2.61192ΛSF (III.8)

for three flavors.

The RGI scale ΛMS measured so far is for three flavors (Λ(3)

MS
). In order to evaluate the

coupling constant αs(MZ) at high energy we need to change the number of flavors at charm

and bottom quark mass thresholds, obtaining Λ(5)

MS
for five flavors. For this purpose we

used the matching formula near mass thresholds for the MS scheme at three-loop order in
Refs. [28, 29, 30]. The evaluation of αs(MZ) will proceed in the following steps in this paper.

(i) Introduce the physical scale through hadron masses and evaluate Lmax in units of GeV.

(ii) Perform the non-perturbative step scaling n = 5 times and reach deep into the per-
turbative region q ∼ 16 GeV.

(iii) Change the scheme to MS according to the two-loop relation [27]

αMS(sq) = αSF(q) + c1(s)α
2
SF(q) + c2(s)α

3
SF(q) + · · · , (III.9)

c1(s) = −8πb0 ln(s) + 1.255621(2) + 0.0398629(2)Nf , (III.10)

c2(s) = c1(s)
2 − 32π2b1 ln(s) + 1.197(10) + 0.140(6)Nf − 0.0330(2)Nf

2.

(III.11)

We may set the scale boost factor s = 2.61192 so that c1(s) = 0. A systematic error
due to higher loops correction is less than 0.1 % and negligible here.

(iv) Running back to the charm quark mass threshold µ = mc with the four loop β-
function in the MS scheme we change the number of flavors to four using the three-loop

6

for 3 flavors



Strategy for α(5)

MS
(MZ)

(1)Lmax in unit of GeV−1

(2)α(q) at q = 25/Lmax ∼ 16GeV by σ(u) continuum, non-perturbative

(3)Change the scheme to MS at 2-loop
perturbative

(ii) In the second step we define a reference scale Lmax through a fixed value of the renor-
malized coupling constant g2(Lmax). The value of g2(Lmax) is arbitrary as long as it
is well in low energy region to suppress lattice artifacts with a/Lmax ! 1. We then
start from Lmax and follow the non-perturbative RG flow in the SF scheme into the
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=0 at s=2.61192

higher order correction is less than 0.1%

(4)Run down to µ = mc at 4-loop running with Nf = 3 in MS.

At µ = mc, Nf = 3 → Nf = 4 at 3-loop
matching formula [28, 29, 30].
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π
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α(Nf )(µ)

π
F
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36
x2

)
, (III.16)

where M(µ) is the MS running mass of the heavy quark which decouples at the thresh-
old. We shall set µ = M(M) and x = 0 in this paper. Since the largest error may
be introduced from the use of perturbation theory at µ = mc(mc), we estimate the
systematic error of this perturbative matching, by comparing the result with that from
the two-loop matching relation[31, 32, 33].

(v) Running to the bottom quark mass threshold µ = mb(mb) we obtain the running
coupling constant for five flavors in the same manner.

(vi) Finally we change the scale to µ = MZ(MZ) with the four-loop β-function and find
αs(MZ).

(vii) The RGI scale Λ(5)

MS
is given by substituting µ = MZ(MZ) = 1/L and αs(MZ) in the

definition (III.1) for five flavors in the MS scheme with the four-loop β(g).

IV. STEP SCALING FUNCTION

We adopt seven renormalized coupling values to cover weak (g2 = 1.001) to strong (g2 =
3.418) coupling regions, which approximately satisfy g2

i+1(L) = g2
i (2L) (i = 1, · · · , 6). For

each coupling we use three boxes L/a = 4, 6, 8 to take the continuum limit.
The HMC algorithm is adopted for two flavors and the RHMC algorithm for the third

flavor, all of which are set to a common mass of zero. We adopt the CPS++ code [34] and
add some modification for the SF formalism. Simulations were carried out on a number of
computers, the PC cluster Kaede, PACS-CS and T2K-tsukuba at University of Tsukuba,
T2K-tokyo and SR11000 at University of Tokyo and the PC cluster RSCC at RIKEN.

The distribution of the inverse of the coupling constant 1/g2 turned out to be a smooth
Gaussian even at the lowest energy scale [24] as plotted in Fig. 1. This is contrary to the
finding with the standard Wilson gauge action [18, 21] and we need no re-weighting.

We start by tuning the value of β and κ to reproduce the same renormalized coupling
at each of the box sizes 4, 6, 8 keeping the PCAC mass to zero. Requirement for the
renormalized couplings g2(L) is that their values agree within one standard deviation for

7

systematic error from 3-loop vs. 2-loop

µ = M(M) → x = 0

(5) Run up to µ = mb(mb), then Nf = 4 → Nf = 5

(6) Run up to µ = Mz(MZ), then α(5)

MS
(MZ)

(7) Λ(5)

MS
from µ = Mz(Mz) = 1/L, αs(Mz) and 4-loop β(g).
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continuum limit of SSF

where σ(3)
PT is the continuum SSF at three-loop order given by (IV.5). The deviation is fitted

in a polynomial form for each a/L,

1 + δ(u, a/L) = 1 + d1(a/L)u + d2(a/L)u2. (IV.12)

We tried a quadratic fit using data at u ≤ 1.524 with fixing d1(a/L) to its perturbative
value δ1(a/L), which is plotted in Fig. 2. We also plot perturbative one loop behavior for
comparison. As is seen from the figure the one loop line could reproduce the data only at
very high β ≥ 10 for L/a = 4, 6. It may not be safe to adopt the one loop improvement for
our data at u ≥ 1.0.

The fit results for the coefficients are listed in table V. We observe that the higher-loop
coefficient d2 is not negligible and contribute in opposite sign. We notice that the fit result
hardly changes even if we add one more data at u = 1.840. Since the quadratic fit provides
a reasonable description of data as shown in Fig 2 we opt to cancel the O(a) contribution
dividing out the SSF by the quadratic fit according to

Σ(2)
(
u,

a

L

)
=

Σ (u, a/L)

1 + δ1(a/L)u + d2(a/L)u2
. (IV.13)

Now we have the values of the O(a) improved SSF’s in the chiral limit for three lattice
spacings at each of the 7 renormalization scale given by u, which are listed in table VI.
Scaling behavior of the SSF is plotted in Fig. 3. Almost no scaling violation is found. We
performed three types of continuum extrapolation: a constant extrapolation with the finest
two (filled symbols) or all three data points (open symbols), or a linear extrapolation with
all three data points (open circles). As is shown in the figure they are consistent with each
other. Since the scaling behavior is very good for the finest two lattice spacings we employed
the constant fit with these two data point to find our continuum value, which is also listed
in Table VI.

The RG running of the continuum SSF is plotted in Fig. 4. We divide the SSF with
the coupling g2(L) to obtain a better resolution in this figure. A polynomial fit of the
continuum SSF to sixth order fixing the first and second coefficients s0 and s1 to their
perturbative values (IV.6), (IV.7) yields

σ(u) = u + s0u
2 + s1u

3 + s2u
4 + s3u

5 + s4u
6, (IV.14)

s2 = 0.002265, s3 = −0.00158, s4 = 0.000516. (IV.15)

The fitting function is also plotted (solid line) together with the three loop perturbative
running (dashed line).

A. Non-perturbative β-function

From the polynomial form of the SSF we derive the non-perturbative β-function for
Nf = 3 QCD. Starting from definition of the β-function

− L
∂u(L)

∂L
= 2

√
uβ(

√
u), u = g2(L) (IV.16)

the value of the β-function at stronger coupling (lower scale) is given by recursively solving
the relation

β
(√

σ(u)
)

= β(
√

u)

√
u

σ(u)

∂σ(u)

∂u
. (IV.17)
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perturbative scaling violation

polynomial fit 

The input is the three loops perturbative value at u = 0.9381, which is deep in the pertur-
bative region.

For the non-perturbative SSF we adopt a slightly different fitting form in order to reduce
the error propagation. We performed a polynomial fit by fixing the first to third coefficients
s0, s1 and s2 to their perturbative values (IV.6), (IV.7), (IV.8)

σ(u) = u + s0u
2 + s1u

3 + s2u
4 + s3u

5 + s4u
6, (IV.18)

s3 = −0.000673, s4 = 0.0003434. (IV.19)

The resultant β-function is plotted in Fig. 5. The β-function of Nf = 2 QCD is reproduced
from data of the Alpha collaboration [21] for comparison. Note that the error is estimated
by a propagation from those in the continuum SSF’s σ(u).

V. INTRODUCTION OF PHYSICAL SCALE

CP-PACS and JLQCD Collaborations jointly performed an Nf = 2 + 1 simulation with
the O(a) improved Wilson action and the Iwasaki gauge action, whose results have been
recently published [1]. Three values of β, 1.83, 1.90 and 2.05 were adopted to take the
continuum limit and the up-down quark mass covered a rather heavy region corresponding
to mπ/mρ = 0.63 − 0.78.

We adopt those results to introduce the physical scale into the present work so that the
reference scale Lmax is translated into MeV units. The Alpha Collaboration [18, 21] has
adopted the Sommer scale r0 as a physical observable for this purpose. Since the Sommer
scale is not a direct hadronic observable, we prefer to employ the hadron masses mπ, mK ,
mΩ as inputs and use the lattice spacing a as an intermediate scale, which are listed in Table
VII.

We evaluate the renormalized coupling in the SF scheme at the same β = 1.83, 1.90,
2.05 in the chiral limit. The reference scale Lmax is given by the box size we adopt in this
evaluation. Note that this definition gives a different value of Lmax at different β. The
renormalized coupling g2(Lmax) should not exceed our maximal value 5.13 of the SSF very
much. The value of the coupling constant at each β are listed in Table VIII together with
the PCAC mass. The hopping parameter κ is tuned to reproduce mPCAC = 0 except for the
cases that the coupling constant apparently exceeds 5.13. We use the box size of L/a = 4
for β = 1.83 and 1.90 to define Lmax and L/a = 4, 6 for β = 2.05.

VI. RGI SCALE AND THE STRONG COUPLING CONSTANT AT MZ

Starting from umax = g2(Lmax) we iterate the non-perturbative renormalization group flow
five times according to the polynomial fit (IV.14) and substitute the result L = 2−5Lmax

and g(L) into (III.1) with β-function for three flavors at three loops. In this way we obtain

Λ(3)
SFLmax for three flavors. Further non-perturbative step scaling with n ≥ 6 does not change

the central value of Λ(3)
SFLmax. The results are listed in Table IX together with Λ(3)

SF in units

of MeV and Λ(3)

MS
given by (III.8).

We derive the strong coupling constant αs(MZ) at high energy scale µ = MZ according
to the procedure given in Sec. III. After reaching the scale L = 2−5Lmax in the SF scheme,
we transform to the MS scheme by the two-loop formula (III.9) at q = 1/L with s =

10

u=1
1.2488
1.5242
1.8403
2.1289

2.6317

3.4178
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Non-perturbative beta-function

where σ(3)
PT is the continuum SSF at three-loop order given by (IV.5). The deviation is fitted

in a polynomial form for each a/L,

1 + δ(u, a/L) = 1 + d1(a/L)u + d2(a/L)u2. (IV.12)

We tried a quadratic fit using data at u ≤ 1.524 with fixing d1(a/L) to its perturbative
value δ1(a/L), which is plotted in Fig. 2. We also plot perturbative one loop behavior for
comparison. As is seen from the figure the one loop line could reproduce the data only at
very high β ≥ 10 for L/a = 4, 6. It may not be safe to adopt the one loop improvement for
our data at u ≥ 1.0.

The fit results for the coefficients are listed in table V. We observe that the higher-loop
coefficient d2 is not negligible and contribute in opposite sign. We notice that the fit result
hardly changes even if we add one more data at u = 1.840. Since the quadratic fit provides
a reasonable description of data as shown in Fig 2 we opt to cancel the O(a) contribution
dividing out the SSF by the quadratic fit according to

Σ(2)
(
u,

a

L

)
=

Σ (u, a/L)

1 + δ1(a/L)u + d2(a/L)u2
. (IV.13)

Now we have the values of the O(a) improved SSF’s in the chiral limit for three lattice
spacings at each of the 7 renormalization scale given by u, which are listed in table VI.
Scaling behavior of the SSF is plotted in Fig. 3. Almost no scaling violation is found. We
performed three types of continuum extrapolation: a constant extrapolation with the finest
two (filled symbols) or all three data points (open symbols), or a linear extrapolation with
all three data points (open circles). As is shown in the figure they are consistent with each
other. Since the scaling behavior is very good for the finest two lattice spacings we employed
the constant fit with these two data point to find our continuum value, which is also listed
in Table VI.

The RG running of the continuum SSF is plotted in Fig. 4. We divide the SSF with
the coupling g2(L) to obtain a better resolution in this figure. A polynomial fit of the
continuum SSF to sixth order fixing the first and second coefficients s0 and s1 to their
perturbative values (IV.6), (IV.7) yields

σ(u) = u + s0u
2 + s1u

3 + s2u
4 + s3u

5 + s4u
6, (IV.14)

s2 = 0.002265, s3 = −0.00158, s4 = 0.000516. (IV.15)

The fitting function is also plotted (solid line) together with the three loop perturbative
running (dashed line).

A. Non-perturbative β-function

From the polynomial form of the SSF we derive the non-perturbative β-function for
Nf = 3 QCD. Starting from definition of the β-function
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∂u(L)
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= 2

√
uβ(

√
u), u = g2(L) (IV.16)

the value of the β-function at stronger coupling (lower scale) is given by recursively solving
the relation
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√
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√
u

σ(u)

∂σ(u)
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where σ(3)
PT is the continuum SSF at three-loop order given by (IV.5). The deviation is fitted

in a polynomial form for each a/L,

1 + δ(u, a/L) = 1 + d1(a/L)u + d2(a/L)u2. (IV.12)

We tried a quadratic fit using data at u ≤ 1.524 with fixing d1(a/L) to its perturbative
value δ1(a/L), which is plotted in Fig. 2. We also plot perturbative one loop behavior for
comparison. As is seen from the figure the one loop line could reproduce the data only at
very high β ≥ 10 for L/a = 4, 6. It may not be safe to adopt the one loop improvement for
our data at u ≥ 1.0.

The fit results for the coefficients are listed in table V. We observe that the higher-loop
coefficient d2 is not negligible and contribute in opposite sign. We notice that the fit result
hardly changes even if we add one more data at u = 1.840. Since the quadratic fit provides
a reasonable description of data as shown in Fig 2 we opt to cancel the O(a) contribution
dividing out the SSF by the quadratic fit according to
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)
=

Σ (u, a/L)

1 + δ1(a/L)u + d2(a/L)u2
. (IV.13)

Now we have the values of the O(a) improved SSF’s in the chiral limit for three lattice
spacings at each of the 7 renormalization scale given by u, which are listed in table VI.
Scaling behavior of the SSF is plotted in Fig. 3. Almost no scaling violation is found. We
performed three types of continuum extrapolation: a constant extrapolation with the finest
two (filled symbols) or all three data points (open symbols), or a linear extrapolation with
all three data points (open circles). As is shown in the figure they are consistent with each
other. Since the scaling behavior is very good for the finest two lattice spacings we employed
the constant fit with these two data point to find our continuum value, which is also listed
in Table VI.

The RG running of the continuum SSF is plotted in Fig. 4. We divide the SSF with
the coupling g2(L) to obtain a better resolution in this figure. A polynomial fit of the
continuum SSF to sixth order fixing the first and second coefficients s0 and s1 to their
perturbative values (IV.6), (IV.7) yields

σ(u) = u + s0u
2 + s1u

3 + s2u
4 + s3u

5 + s4u
6, (IV.14)

s2 = 0.002265, s3 = −0.00158, s4 = 0.000516. (IV.15)

The fitting function is also plotted (solid line) together with the three loop perturbative
running (dashed line).

A. Non-perturbative β-function

From the polynomial form of the SSF we derive the non-perturbative β-function for
Nf = 3 QCD. Starting from definition of the β-function
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the value of the β-function at stronger coupling (lower scale) is given by recursively solving
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start from u=0.9381
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and linear fit.
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continuum limit

scale from mπ, mK and mΩ (2+1 full QCD, CP-PACS/JLQCD)

exp(c1(1)/(8πb0)). Then running back to the scale µ = mc(mc) with three-flavor 4-loop β-
function the coupling constant is matched to that for four flavors at three-loop order using
(III.12). We repeat the same operation at the threshold µ = mb(mb) and obtain the five flavor
coupling constant. We finally run to µ = MZ with the four-loop β-function for five flavors
and find αs(MZ). The QCD parameter Λ(5)

MS
is given by substituting µ = MZ = 1/L and

αs(MZ) in (III.1) for the MS scheme with 4-loop β(g). The results are listed in Table X. For
an estimate of the systematic error due to perturbation theory, results using three- and two-
loop formula in (III.12) are listed. The error includes the statistical error of the renormalized
couplings, which is propagated into that of the SSF, in addition to the statistical error of
the lattice spacing. The experimental errors of mc, mb and MZ are also included.

As the last step we take the continuum limit using the three lattice spacings from Ref. [1].

The scaling behavior of αs(MZ) and Λ(5)

MS
is plotted in Fig. 6. Since the results in the

continuum limit do not depend on Lmax, we adopt the result for L = 6 as the central value
for β = 2.05.

We tested three types of continuum extrapolation; a constant fit with three or two data
points, or a linear extrapolation 1. These results agree with each other and we adopt the
constant fit with three data points for our final results since there is almost no scaling
violation. Our final results are

αs(MZ) = 0.12047(81)(48)(+0
−173), (VI.1)

Λ(5)

MS
= 239(10)(6)(+0

−22) MeV, (VI.2)

where the first parenthesis is statistical error and the second is systematic error of per-
turbative matching of different flavors, which is estimated as a difference between results
with three- and two- loop matching relation for (III.12) and may be overestimated. The
last parenthesis is a difference between the constant and a linear extrapolation and is a
systematic error due to finite lattice spacing for physical inputs.

VII. CONCLUSION

We have presented a calculation of the running coupling constant for the Nf = 2+1 QCD
in the mass independent Schrödinger functional scheme in the chiral limit. We used seven
scales to cover low to high energy regions and three lattice spacings to take the continuum
limit at each scale.

After tuning β and κ to fix seven scales in the massless limit we evaluated the step scaling
function in the continuum limit. We notice that deviation (IV.10) from the continuum SSF
is rather large at one loop for our choice of the Iwasaki gauge action and the tree level
improvement for boundary coefficient cP/R

t . Since the one loop formula could not reproduce
the numerical data except for very high β ≥ 10 we adopted “two loops” formula extracted
from numerical data with quadratic fit. With the “perturbative” improvement the SSF shows
good scaling behavior and the continuum limit seems to be taken safely with a constant
extrapolation of the finest two lattice spacings.

1 O(g2
0a/L) error is expected from boundary terms in temporal direction in the SF scheme, which may

propagate to αs(MZ) through g2(Lmax).
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Determination of !s for Nf = 2+1 QCD with the SF scheme Yusuke Taniguchi

" !s(MZ) #(5)
MS (MeV) ZM ZMSm (2 GeV)

1.83 0.1208(13) 243(17) 2.084(55) 1.616(41)
1.90 0.1206(14) 240(18) 1.870(25) 1.446(17)
2.05 0.1198(16) 231(20) 1.888(26) 1.446(15)
1.90 0.1225(14) 266(20) 1.870(25) 1.484(18)

Table 3: The strong coupling !s(MZ) and the RGI scale #(5)
MS for five flavors. Also listed are preliminary

results of ZM for the RGI mass and ZMSm in the MS scheme. The last row for " = 1.90 is given by an input
from Ref. [7].

As the last step we take the continuum limit using the three lattice spacings from Ref. [6].
The scaling behavior of !s(MZ) and #

(5)
MS is plotted in Fig. 4 together with that from latest input

[7]. Two results agree with each other at the same " = 1.90. We tested three types of continuum
extrapolation, which agree with each other and we adopt the constant fit with three data points for
our final results:

!s(MZ) = 0.12047(81)(48)(+0−173), #(5)
MS = 239(10)(6)(+0−22)MeV, (4.1)

where the first parenthesis is statistical error and the second is systematic error of perturbative
matching of different flavors. The last parenthesis is a difference between the constant and a linear
extrapolation and is a systematic error due to finite lattice spacing for physical inputs.

The results from the physical inputs of our latest Ref. [7] are given by

!s(MZ) = 0.1225(14)(5), #(5)
MS = 266(20)(7)MeV. (4.2)

Difference between the two physical inputs may reflect mainly a systematic error due to chiral
extrapolation toward light quark masses, with the assumption the scaling violation is small also in
the latter case.

We also plot preliminary scaling behavior of the light quark masses renormalized at µ = 2
GeV in MS scheme together with perturbatively renormalized masses [6].

5. Conclusion

We have presented a calculation of the running coupling constant and the quark mass renor-
malization factor for the Nf = 2+1 QCD in the mass independent Schrödinger functional scheme
in the chiral limit. With the “perturbative” improvement the SSF’s shows good scaling behavior
and the continuum limit seems to be taken safely with a constant extrapolation of the finest two
lattice spacings.

With the non-perturbative renormalization group flow we are able to estimate !s(MZ) and the
quark mass renormalization factor with some physical inputs for energy scale. The physical scale
is introduced from the recent spectrum simulations [6, 7] through the hadron masses m$ , mK, m%.
Our coupling constant (4.1) in the continuum limit is consistent with recent lattice results and the
Particle Data Group average !s(MZ) = 0.1176(20).

6

No continuum limit ( a=0.09 fm)


