2011
ARY 9,
FEBRU
r — 1

MAX PLANCK MÜNCHEN

MEASUREMENTS OF α_s

WORKSHOP ON PRECISION

DIPARTIMENTO DI FISICA

UNIVERSITÀ DEGLI STUDI DI MILANO

in collaboration with S. LIONETTI AND J. ROJO

JNIVERSITÀ DI MILANO & INFN

STEFANO FORTE

UNBLASED α_s FROM GLOBAL FITS:

THE NNPDF APPROACH

and with THE NNPDF COLLABORATION

α_s FROM GLOBAL PDF FITS

- THE GOOD: LOTS OF INFORMATION COMBINED \Rightarrow SMALL STATISTICAL UNCERTAINTY
- THE BAD: DEPENDENCE ON PDFS \Rightarrow POTENTIALLY LARGE THEORETICAL BIAS

α_s FROM GLOBAL PDF FITS

- THE GOOD: LOTS OF INFORMATION COMBINED \Rightarrow SMALL STATISTICAL UNCERTAINTY
- THE BAD: DEPENDENCE ON PDFS \Rightarrow POTENTIALLY LARGE THEORETICAL BIAS

1ST EXAMPLE

THE GOTTFRIED SUM RULE

- $S_G(Q^2) = \int \frac{dx}{x} \left(F_2^P(x, Q^2) F_2^n(x, Q^2) \right)$
- NMC DETERMINES $S_G(0.004 < x < 0.8, 4 \text{ GeV}^2) = 0.228 \pm 0.020$
- A NEURAL NETWORK FIT TO NMC+BCDMS STRUCTURE FUNCTION DATA GETS $S_G(0.004 < x < 0.8, 4 \text{ GEV}^2) = 0.228 \pm 0.044 \text{ (Abbate, S.F., 2005)}$
- DIFFERENCE IN UNCERTAINTY COMES ENTIRELY FROM SMALLEST x BIN \Rightarrow VERY NONLINEAR SHAPE OF STR FCTN AT SMALL x POSSIBLE

• THE GOOD: LOTS OF INFORMATION COMBINED \Rightarrow SMALL STATISTICAL UNCERTAINTY
• THE BAD: DEPENDENCE ON PDFS \Rightarrow POTENTIALLY LARGE THEORETICAL BIAS
2ND EXAMPLE
α_s FROM BCDMS & NMC DATA
• CAN DETERMINE NLO α_s FROM SCALING VIOLATIONS OF NONSINGLET TRUNCATED
(measured) moments ⇒ no dependence on PDFs or extrapolation
• $\alpha_s(M_Z) = 0.124 \stackrel{+0.005}{-0.008}$ (s.f., Latorre, Magnea, Piccione, 2002)
• BCDMS FIND $\alpha_s(M_Z) = 0.113 \pm 0.005$ (Virchaux, Milsztajn, 1992) (NMC FIND $\alpha_s(M_Z) = 0.117 \ ^{+0.011}_{-0.016}$ (Arneodo et al., 1993))
• BCDMS (& NMC) results based on simultaneous fit of α_s & PDFs \Rightarrow difference likely due to PDF dependence

UNBIASED PDF DETERMINATION: THE NNPDF APPROACH

OF THE PROBABILITY MEASURE IN THE (FUNCTION) SPACE OF PDFS **BASIC IDEA: MONTE CARLO SAMPLING**

- START FROM MONTE CARLO SAMPLING OF DATA
 SPACE
- EACH PDF > NEURAL NETWORK PARAMETRIZED
 BY 37 PARAMETERS (NNPDF: 37 \overline 7 = 259 PARMS)
 "INFINITE" NUMBER OF PARAMETERS CAN REP-
- FIT STOPS WHEN QUALITY OF FIT TO RAN-DOMLY SELECTED "VALIDATION" DATA (NOT FIT-TED) STOPS IMPROVING

RESENT ANY FUNCTION

- START FROM MONTE CARLO SAMPLING OF DATA CAN DETERMINE BOTH $68c.L.\& 1-\sigma$ SPACE
- EACH PDF↔ NEURAL NETWORK PARAMETRIZED
 BY 37 PARAMETERS (NNPDF: 37 ⊗ 7 = 259
 PARMS)
 "INFINITE" NUMBER OF PARAMETERS⇒ CAN REP-
- FIT STOPS WHEN QUALITY OF FIT TO RAN-DOMLY SELECTED "VALIDATION" DATA (NOT FIT-TED) STOPS IMPROVING

RESENT ANY FUNCTION

xd (x՝ ס⁰₅)

- GLOBAL PDF FIT, INCLUDES
- DIS: NEUTRAL AND CHARGED CURRENT, CHARGED LEPTON AND NEUTRINO BEAMS, INCLUSIVE AND CHARM-TAGGED
- Drell-Yan: fixed target and collider, neutral γ^* and Z and charged current W PRODUCTION
 - INCLUSIVE JETS
- NLO QCD, HQ MASSES INCLUDED TO $O(\alpha_s)$
- 7 PDFs parametrized independently, HQ generated dynamically
- SETS WITH DIFFERENT VALUES OF α_s , m_c , m_b AVAILABLE

 CAN CHECK STATISTICAL FEATURES OF RESULTS: – INDEP. OF PARAMETRIZATION ⇒ ABSENCE OF BIAS – DEPENDENCE OF UNCERTAINTIES ON SIZE OF MC SAMPLE ⇒ ERROR AND ERROR ON THE ERROR – BAYESIAN IMPACT OF NEW DATA ON FIT ⇒ CONSISTENCY WITH STAT INFERENCE CAN STUDY IMPACT OF INDIVIDUAL DATA ON RESULTS
CAVEATS
χ^2 IS A RANDOM VARIABLE \Rightarrow FLUCTUATES FOR FINITE SAMPLE SIZE $\Delta \chi^2 \sim \frac{\sqrt{N_{dat}}}{N_{rep}}$ \Rightarrow ADDITIONAL UNCERTAINTY DUE TO FINITE-SIZE FLUCTUATIONS χ^2 OF AVERAGE ALWAYS LOWER THAN AVERAGE OF χ^2 (FIT LEARNS UNDERLYING LAW) \Rightarrow FLUCTUATIONS OF χ^2 SUPERPOSED TO DECREASE OF AVERAGE
$\chi^2 \text{ VS } N_{\text{rep}}$
2400

DETERMINING α_s FROM NNPDF2.1 ADVANTAGES

THE PROCEDURE

- PRODUCE N_{rep} REPLICAS FOR A RANGE OF VAL-UES OF α_s & DETERMINED THE χ^2
- DETERMINE THE **STATISTICAL FINITE-SIZE UNCERTAINTY** ON EACH χ^2 VALUE (E.G. BY BOOT-STRAP)
- PERFORM A PARABOLIC FIT TO χ^2 PROFILE, POSSIBLY DISCARD OUTER NON-PARABOLIC POINTS BASED ON FIT QUALITY
- Determine α_s and statistical uncertainty by standard $\Delta\chi^2 = 1$ about the minimum
- zχ DETERMINE FURTHER PROCEDURAL UNCER-FAINTY DUE TO UNCERTAINTY ON BEST-FIT PARMS \Rightarrow REPEAT FOR LARGER N_{rep} UNTIL PRO-CEDURAL UNCERTAINTY NEGLIGIBLE COMPARED TO STATISTICAL

THE RESULT: GLOBAL FIT

NLO NNPDF2.1 GLOBAL DETERMINATION (ONLY STAT. ERROR KNOWN) $N_{\rm rep}=300~{\rm PER}$ value of α_s $\alpha_s(M_z) = 0.1191 \pm 0.0006(\text{stat.}) \pm 0.0001(\text{proc.}) = 0.1191 \pm 0.0006(\text{stat.})$

THE RESULT: DIS ONLY DO DIS DATA PREFER A SMALLER VALUE?

NLO NNPDF2.1 DEEP-INELASTIC DATA (ONLY STAT. ERROR KNOWN) DO DIS DATA PREFER A SMALLER VALUE? THE RESULT: DIS ONLY $N_{\mathrm{rep}} = 500 \; \mathrm{PER} \; \mathrm{VALUE} \; \mathrm{OF} \; \alpha_s$

 $\alpha_s(M_z) = 0.1178 \pm 0.0009(\text{stat.})$

- YES
- BUT NOT MUCH SMALLER & WITH LARGER UNCERTAINTY (COMPATIBLE WITHIN UNCERTAINTIES, AS IT OUGHT TO)

THE RESULTS: WHAT ABOUT THEORETICAL UNCERTAINTIES?

THE RESULTS: WHAT ABOUT THEORETICAL UNCERTAINTIES? HEAVY QUARKS

NEGLECT ALL $O(m_c)$ & $O(m_b)$ CORRECTIONS \Rightarrow ZERO-MASS SCHEME (NNPDF2.0)

- EFFECT RATHER LARGER THAN STATISTICAL UNCERTAINTY note old BCDMS & NMC determinations performed in this scheme
- OTHER TH. UNCERTAINTIES:
- VALUES OF HQ MASSES
- HIGHER ORDERS (SCALE VARIATION)
- TH. UNCERTAINTY LIKELY DOMINANT

- DIS EXPERIMENTS (BCDMS+HERA) IN DIS FIT HAVE A "RUNAWAY DIRECTION" AT SMALL α_s ,
- BCDMS SIMILAR TO HERA, NMC PRETTY FLAT
- ABSENT IN GLOBAL FIT

IS THERE A PROBLEM WITH DIS?

CONJECTURE

- IN DIS, GLUON DETERMINED BY SCALING VIOLATIONS \Rightarrow CAN COM-PENSATE SMALLER α_s WITH LARGER GLUON (OR CONVERSELY) ⇒ RUNAWAY DIRECTIONS POSSIBLE IN DIS FIT
- JET DATA ARE AT MUCH LARGER SCALE, IF α_s TOO SMALL OR LARGE ⇒ RUNAWAY DIRECTION QUENCHED IN GLOBAL FIT HIGH-SCALE GLUON WILL COME OUT WRONG χ^2 -PDF CORRELN.

THE EVIDENCE

- COMPUTE THE CORRELATION BETWEEN χ^2 & PDFS AT LARGE (POSITIVE OR NEGATIVE) CORRN. \Leftrightarrow RUNAWAY THE GLOBAL BEST FIT DIRECTION
- OPPOSITE SIGN CORRELATIONS ⇔ DATA PULLING IN OP-POSITE DIRECTIONS

IS THERE A PROBLEM WITH DIS?

CONJECTURE

- IN DIS, GLUON DETERMINED BY SCALING VIOLATIONS \Rightarrow CAN COM-PENSATE SMALLER α_s WITH LARGER GLUON (OR CONVERSELY) ⇒ RUNAWAY DIRECTIONS POSSIBLE IN DIS FIT
- JET DATA ARE AT MUCH LARGER SCALE, IF α_s TOO SMALL OR LARGE ⇒ RUNAWAY DIRECTION GUENCHED IN GLOBAL FIT HIGH-SCALE GLUON WILL COME OUT WRONG χ^2 -PDF CORRELN.

NNPDF2.1 - $Q^2 = 2 \text{ GeV}^2$ - $\alpha_s = 0.114 - \text{Gluon}$

SMALL α_s

THE EVIDENCE

- COMPUTE THE CORRELATION BETWEEN χ^2 & PDFs at ⇔ RUNAWAY LARGE (POSITIVE OR NEGATIVE) CORRN. THE GLOBAL BEST FIT DIRECTION
- OPPOSITE SIGN CORRELATIONS ⇔ DATA PULLING IN OP-POSITE DIRECTIONS
- AT LOW $\alpha_s = 0.114$ DIS FIT HAS A RUNAWAY DIRECTION STABILIZED BY GLUON
- AT HIGH $\alpha_s = 0.122$ FIT IS GENERALLY STABLE, THOUGH STILL SOME PULL IN HERA LOW x

IS THERE A PROBLEM WITH DIS?

CONJECTURE

- IN DIS, GLUON DETERMINED BY SCALING VIOLATIONS \Rightarrow CAN COM-PENSATE SMALLER α_s WITH LARGER GLUON (OR CONVERSELY) ⇒ RUNAWAY DIRECTIONS POSSIBLE IN DIS FIT
- JET DATA ARE AT MUCH LARGER SCALE, IF α_s TOO SMALL OR LARGE ⇒ RUNAWAY DIRECTION GUENCHED IN GLOBAL FIT HIGH-SCALE GLUON WILL COME OUT WRONG χ^2 -PDF CORRELN.

SMALL α_s

THE EVIDENCE

- COMPUTE THE CORRELATION BETWEEN χ^2 & PDFs at ♦ RUNAWAY LARGE (POSITIVE OR NEGATIVE) CORRN. THE GLOBAL BEST FIT DIRECTION
- OPPOSITE SIGN CORRELATIONS ⇔ DATA PULLING IN OP-POSITE DIRECTIONS
- AT LOW $\alpha_s = 0.114$ DIS FIT HAS A RUNAWAY DIRECTION STABILIZED BY GLUON
- AT HIGH $\alpha_s = 0.122$ FIT IS GENERALLY STABLE, THOUGH STILL SOME PULL IN HERA LOW x
- NO PROBLEM WITH DIS DATA, PERHAPS SOME PROBLEM WITH HERA LOW x

ONE MORE RESULT: HERA DATA ONLY

NLO NNPDF2.1 HERA DATA ONLY $N_{\text{rep}} = 500/1000 \text{ per Value of } \alpha_s$

 $\alpha_s(M_z) = 0.1103 \pm 0.0033(\text{stat.}) \pm 0.0003(\text{proc.}) = 0.110 \pm 0.003(\text{stat.})$

- HERA DATA FAVOR LOWER α_s with larger uncertainty
- LIKELY CONSISTENT WITH GLOBAL WITHIN TOTAL UNCERTAINTY
- POSSIBLE ISSUES WITH INADEQUATE NLO THEORY FOR SMALL x HERA DATA? (Caola, s.f., WOULD BE WORSE AT NNLO Rojo, 2010, HERAPDF)

CONCLUSIONS

α_{s} From NLO PDF FITS

NLO determinations of α_{s} (M_{Z}) from PDF Analyses

NNPDF methodology leads to determination of α_s with

- UNUSUALLY SMALL STATISTICAL UNCERTAINTY
- SMALL ("NO") PARAMETRIZATION BIAS
- POSSIBILITY TO STUDY IMPACT OF INDIVIDUAL DATA:
- DIS AND HADRON COLLIDER VALUES CONSISTENT
- NO PROBLEM WITH BCDMS & NMC
- HERA DATA (LOW x?) PREFER LOWER CENTRAL VALUE

EXTRAS

IMPACT OF NMC DATA ON NNPDF2.1

- REPEAT NNPDF2.1 WITH DIFFERENT TREATMENT OF NMC DATA (XSECT INSTEAD OF STRUCTURE FUNCTION)
- REPEAT NNPDF2.1 WITHOUT NMC DATA

- XSECT VS STR FCTN ⇒ STATISTICALLY ALMOST UNDISTINGUISHABLE
- NO NMC \Rightarrow ALMOST NO EFFECT ON CENTRAL VALUE, SLIGHT INCREASE IN UNCERTAINTIES

ARLO DATA GENERATION	CUTERON F_2 DATA (FULL CORRELATED SYSTEMATICS ENERGIES	YSTEMATICS + 1 NORMALIZATION (NMC) OR 6 SYSTEMATICS + RMALIZATIONS (BCDMS), WITH VARIOUS FORMS OF ACH TARGET, OR FOR EACH BEAM ENERGY)	CORDING TO A MULTIGAUSSIAN DISTRIBUTION		$\frac{J(k)}{i,7}\sigma_{N_{b}}\left[F_{i}^{(exp)} + \frac{r_{i,1}^{(k)}f_{b} + r_{i,2}^{(k)}f_{i,s} + r_{i,3}^{(k)}f_{i,r}}{100}F_{i}^{(exp)} + r_{i,s}^{(k)}\sigma_{s}^{i}\right]$	$\begin{bmatrix} L \\ one \ r_{i,s} \end{bmatrix}$ for each data, but single $r_{i,j}$ for all correlated data	Correlations Correlations
MONTE CA	• BCDMS+ NMC PROTON & DEU AVAILABLE), TAKEN AT 4 BEAM E	• ON TOP OF STAT. ERRORS, 4 SYS 1 ABSOLUTE & 2 RELATIVE NORI CORRELATION (FULL, OR FOR EA	GENERATE DATA ACCC	$F_i^{(art)(k)} =$	$(1+r_5^{(k)}\sigma_N)\sqrt{1+r_{i,6}^{(k)}\sigma_{N_t}}\sqrt{1+r_{i,6}^{(k)}}$	r univariate gaussian random nos., on	Central values Central values

DATA MONTE CARLO \Rightarrow PDF MONTE CARLO **CROSS-VALIDATION**

- REPLICAS ARE FITTED TO A DATA SUBSET
- A DIFFERENT SUBSET OF DATA USE FOR EACH REPLICA
- OPTIMAL FIT WHEN FIT TO VALIDATION (CONTROL) DATA STOPS IMPROVING

DATA MONTE CARLO \Rightarrow PDF MONTE CARLO **CROSS-VALIDATION**

- REPLICAS ARE FITTED TO A DATA SUBSET
- A DIFFERENT SUBSET OF DATA USE FOR EACH REPLICA
- OPTIMAL FIT WHEN FIT TO VALIDATION (CONTROL) DATA STOPS IMPROVING
- $\bullet\,$ The best fit is not at the minimum of the χ^2

NNPDF: ONE σ VS. CENTRAL 68% FOR THE MC DISTRIBUTION OF PDFS LIKELIHOOD CONTOURS AND UNCERTAINTIES Example: the gluon distribution in the NNPDF2.0 set

- ENSEMBLE OF REPLICAS \leftrightarrow PROBABILITY DISTRIBUTION OF PDFS
- EXPECTED CENTRAL VALUE \leftrightarrow MEAN; UNCERTAINTY \leftrightarrow STANDARD DEVIATION
- ANY FEATURES OF DISTRIBUTION CAN BE DETERMINED (C.L., CORRELATIONS...)
- DISTRIBUTION NEED NOT BE GAUSSIAN \rightarrow STANDARD DEVIATION $\neq 68\%$ C.L. (GLUON \Leftrightarrow STRUCTURE FUNCTION POSITIVITY CONSTRAINTS)

- χ^2 to replica peaked around 2, χ^2 to data peaked around 1
- χ^2 of average smaller than average of χ^2
- AVERAGE UNCERTAINTY OF PREDICTION
 SMALLER THAN AVERAGE UNCERTAINTY ON DATA
- ⇒ FIT "LEARNS" UNDERLYING LAW

$\chi^2_{+\circ+}$	1.16
$\langle E \rangle \stackrel{\text{def}}{\pm} \sigma_{E}$	2.24 ± 0.09
$\langle E_{ m tr} \rangle \pm \sigma_{E_{tr}}^{L}$	2.22 ± 0.11
$\left< E_{ m val} \right> \pm \sigma_{E}$,	2.28 ± 0.12
$\langle TL \rangle \pm \sigma_{TL}$	$(1.6\pm0.6)~10^4$
$\left\langle \chi^{2(k)} \right\rangle \pm \sigma_{\chi^2}$	1.25 ± 0.09
$\left<\sigma^{(\mathrm{exp})}\right>$	11.3%
$\left< \sigma^{(\mathrm{net})} \right>_{\mathrm{dat}}^{\mathrm{dat}}$	4.4%
$\left< ho^{(\mathrm{exp})} ight>_{\mathrm{Jot}}$	0.18
$\left< ho^{(\mathrm{net})} \right>_{\mathrm{dat}}$	0.56

SCALING & STABILITY

- COMPARE RESULTS BETWEEN DIFFERENT SETS OF REPLICAS \Rightarrow STATISTICALLY EGUIVALENT
- Repeat comparison for different $N_{\text{rep}} \Rightarrow$ fluctuations scale with N_{rep} !

PARAMETRIZATION INDEPENDENCE

COMPARE RESULTS OBTAINED WITH DIFFERENT ARCHITECTURE

OF NEURAL NETWORK: 2-4-3-1 VS 2-5-3-1 (31 PARAMETERS VS 37)

DESPITE USING $6 \times 7 = 42$ LESS PARAMETERS

STATISTICALLY EQUIVALENT!

CONSISTENT INFORMATION PROCESSING

NEW DATA \Rightarrow **BAYES' THEOREM**

$$\langle \mathcal{O} \rangle_{\text{new}} = \int \mathcal{O}[f] \mathcal{P}_{\text{new}}(f) Df, = \mathcal{N}_{\chi} \int \mathcal{O}[f] \mathcal{P}(\chi^2 | f) \mathcal{P}_{\text{old}}(f) Df,$$

IN A MONTE CARLO APPROACH ...

$$\langle \mathcal{O} \rangle_{\text{new}} = rac{1}{N_{\text{rep}}} \sum_{k=1}^{N_{\text{rep}}} \mathcal{N}_{\chi} \mathcal{P}(\chi^2 | f_k) \mathcal{O}[f_k] = rac{1}{N_{\text{rep}}} \sum_{k=1}^{N_{\text{rep}}} w_k \, \mathcal{O}[f_k], \ w_k = \mathcal{N}(\chi_k^2)^{n/2-1} e^{-rac{1}{2}\chi_k^2}$$

 \Rightarrow EFFECT OF NEW DATA IS ACCOUNTED FOR BY

REWEIGHTING MONTE CARLO AVERAGES

DETERMINE PDFS INCLUDING SOME DATA BY BAYES' THEOREM

(REWEIGHTING)

• DETERMINE PDFS BY ENLARGING THE DATASET TO THE NEW DATA

(REFITTING)

• COMPARE RESULTS \Rightarrow STRONG CONSISTENCY CHECK

CONSISTENT INFORMATION PROCESSING II

INCLUSION OF JET DATA: REWEIGHTING VS. REFITTING

NNPDF2.0DIS+DY vs. NNPDF2.0FULL

GLUON

DISTANCES

EXCELLENT CONSISTENCY!

THE PROBLEM OF BENCHMARK FITS... (HERALHC 2005-2008)

- PERFORM A MRST (MRSTBENCH) FIT TO A CONSISTENT SUBSET OF DATA, USE $\Delta \chi^2 = 1$ ⇒ RESULTS NOT CONSISTENT, UNCERTAINTY DOES NOT GROW AS DATASET DECREASES
- ...BUT MRST WAS DONE WITH TOLERANCE 50: REPEAT WITH DYNAMICAL TOLERANCE [MSTW08BENCH]
- ⇒ MUST TUNE PARAMETRIZATION AND STATISTICAL TREATMENT TO DATASET IMPROVEMENT, BUT PROBLEM NOT SOLVED

... AND THE NNPDF SOLUTION (HERALHC 2008)

NNPDF: BENCH VS REF

NNPDF BENCH VS MRST/MSTW

- SINGLE PARAMETRIZATION AND STAT. TREATMENT CAN ACCOMMODATE DIFFERENT DATASETS
- IMPACT OF DATA CAN BE STUDIED INDEPENDENT OF THEORETICAL FRAMEWORK

THE IMPACT OF NEW DATA: ADDING JET DATA TO A DIS FIT

	DIS	DIS+JET	NNPDF2.0
$\chi^2_{ m tot}$	1.20	1.18	1.21
NMC-pd	0.85	0.86	0.99
NMC	1.69	1.66	1.69
SLAC	1.37	1.31	1.34
BCDMS	1.26	1.27	1.27
HERAI	1.13	1.13	1.14
CHORUS	1.13	1.11	1.18
FLH108	1.51	1.49	1.49
NMQATN	0.71	0.75	29.0
ZEUS-H2	1.50	1.49	1.51
CDFR2KT	16.0	62'0	08.0
D0R2CON	1.00	£6'0	0.93
DYE605	7.32	10.35	0.88
DYE866	2.24	2.59	1.28
CDFWASY	13.06	14.13	1.85
CDFZRAP	3.12	3.31	2.02
D0ZRAP	0.65	0.68	0.47

- HIGH E_T JET DATA WELL REPRODUCED EVEN WHEN NOT FITTED \Rightarrow LARGE *x* GLUON WELL DETERMINED BY SCALING VIOLATIONS!
- SIGNIFICANT IMPROVEMENT IN LARGE xGLUON ACCURACY
- OTHER PDFS UNCHANGED

THE IMPACT OF NEW DATA: ADDING DRELL-YAN (AND W, Z) TO DIS+JETS

NNPDF2.0	1.21	0.99	1.69	1.34	1.27	1.14	1.18	1.49	0.67	1.51	0.80	0.93	0.88	1.28	1.85	2.02	0.47
DIS+JET	1.18	0.86	1.66	1.31	1.27	1.13	1.11	1.49	0.75	1.49	0.79	0.93	10.35	2.59	14.13	3.31	0.68
DIS	1.20	0.85	1.69	1.37	1.26	1.13	1.13	1.51	0.71	1.50	0.91	1.00	7.32	2.24	13.06	3.12	0.65
	$\chi^2_{ m tot}$	NMC-pd	NMC	SLAC	BCDMS	HERAI	CHORUS	FLH108	NTVDMN	ZEUS-H2	CDFR2KT	D0R2CON	DYE605	DYE866	CDFWASY	CDFZRAP	D0ZRAP

- VERY SUBSTANTIAL IMPROVEMENT IN FIT QUALITY WHEN DATA INCLUDED \Rightarrow SOME PDF COMBINATIONS POORLY DE-TERMINED WITHOUT THESE DATA
- HUGE IMPROVEMENT IN SEA ASYM $\overline{u} - \overline{d}$ & STRANGENESS $s - \overline{s}$
- VALENCE $(\sum_{i} (q_i \bar{q}_i))$ & ISOTRIPLET $(u + \bar{u} (d + \bar{d}))$ SIGNIFICANT IMPROVEMENT IN TOTAL

NNPDF2.0 DIS+JE

NNPDF2.0

DATA COMPATIBILITY DIS VS. HADRONIC DATA A SENSITIVE TEST: IS THE IMPACT OF A DATASET INDEP. OF THE DATA IT IS ADDED TO?

JIB	
PAJ	
MC	
U U	
ATA	
20	

- INCONSISTENT DATA \Leftrightarrow UNDERESTIMATED UNCERTAINTIES
- RESCALE ALL UNCERTAINTIES IN A GIVEN EXPERIMENT BY SOME FACTOR α : $\chi^2_{\alpha}=\chi^2/\alpha$ (TOLERANCE)
- DETERMINE PROBABILITY DISTRIBUTION OF α VALUES BY BAYES' THEOREM \Rightarrow REWEIGHTING: $\mathcal{P}(\alpha) = \frac{N}{\alpha} \sum_{k=1}^{N} w_k w_k(\alpha)$.

- JETS: \Rightarrow CONSISTENT DATA
- UNCERTAINTIES UNDERESTIMATED BY ~ 30% (PROB. PEAKS AT $\alpha \sim 1.7$) W^{\pm} CHARGE ASYMMETRIES, DO INCLUSIVE *e* DATA \Rightarrow
- W^{\pm} charge asymmetries, D0 e data with $E_T > 35$ GeV \Rightarrow inconsistent data

ASN'T	ALY
THAT W	ANOM
OVERY	UTEV.
A DISCO	THE N

$$R_{\rm PW} \equiv \frac{\sigma(\nu \mathcal{N} \to \nu X) - \sigma(\bar{\nu} \mathcal{N} \to \bar{\nu} X)}{\sigma(\nu \mathcal{N} \to \ell X) - \sigma(\bar{\nu} \mathcal{N} \to \bar{\ell} X)}$$
$$= \frac{1}{2} - \sin^2 \theta_{\rm W} + \left(\frac{(U^- - D^-) + (C^- - S^-)}{2} \frac{1}{6} \left(3 - 7\sin^2 \theta_{\rm W}\right)\right)$$

- PASCHOS-WOLFENSTEIN RATIO CAN BE MEASURED IN NEUTRINO DIS
- RESULT DEPENDS ON EW MIXING ANGLE, VALENCE ISOSPIN BREAKING (WITH ISOSINGLET TARGET), STRANGENESS VALENCE MOMENTUM ASYMMETRY
- ASSUMED BY NUTEV TO VANISH \Rightarrow THREE σ DISCREPANCY WITH GLOBAL FIT STRANGENESS VALENCE MOMENTUM

... IS GONE

- NNPDF: s, \overline{s} LIKE ANY OTHER PDF $\rightarrow 37$ PARMS. EACH (CTEQ6.6: $s = \overline{s}$, TWO PARMS; MSTW08, S4S4, \overline{s} TWO PARMS EACH)
- IF STRANGENESS UNCERTAINTY KEPT INTO ACCOUNT (DIS ONLY FIT: NNPDF1.2) \Rightarrow EFFECT LOSES STAT. SIGNIFICANCE
- IF HADRONIC DATA INCLUDED (NNPDF2.0 GLOBAL FIT) \Rightarrow STRANGENESS ASYMMETRY DETERMINED GUITE ACCURATELY \rightarrow CORRECTED RESULT IN IMPRESSIVE AGREEMENT WITH SM GLOBAL FIT

(NNPDF2.1, 2010)

CKM MATRIX ELEMENTS CAN BE DETERMINED WITH SURPRIZING ACCURACY

- FIRST DETERMINATION OF CKM MATRIX ELEMENTS FROM DIS
- NNPDF1.2: ONLY DIS DATA
- MORE ACCURATE (V_{cs}) or competitive (V_{cd}) than other direct DETERMINATIONS

- BACKWARD EVOLVED FIT LIES SYSTEMATICALLY BELOW DATA
- WITH MORE PRECISE DATA, THE FIT NO LONGER MANAGES TO COMPENSATE BY
 - READJUSTING THE PDFS: EVEN FULL FIT LIES BELOW DATA

 $\langle d^2 \rangle$ VS x SLICES

- QUALITY OF UNCUT FIT DETERIORATES IN LOW xREGIONS
- GUALITY OF CUT FIT INCREASINGLY POOR AS xDECREASES
- DISTANCE RISES DESPITE HUGE INCREASE IN UN-CERTAINTY

 $\langle d^2 \rangle$ VS x SLICES

- GUALITY OF UNCUT FIT DETERIORATES IN LOW x χ_{data}^2 /Mpts 3.0 REGIONS
- QUALITY OF CUT FIT INCREASINGLY POOR AS xDECREASES
- DISTANCE RISES DESPITE HUGE INCREASE IN UN-CERTAINTY
- IN HESSIAN FIT (CTEQ) RESULTS DEPEND ON PARAMETRIZATION \Rightarrow EVIDENCE INCONCLUSIVE

+V100 (CTEQ) +V50 (MRST) -V100 (CTEQ) -V50 (MRST) Eigenvector number 12 13 14 15 16 17 18 19 20 STANDARD $\Delta \chi^2 = 1$ BANDS TOO NARROW \Rightarrow LARGE DISCREPANCIES FOR INDIVIDUAL **MSTW 2008 NLO PDF fit** GLOBAL MSTW TOLERANCE MSTW/CTEQ: ONE σ is defined up to a "Tolerance" ÷ 9 10 • DYNAMICAL \Rightarrow SEPARATELY DETERMINED FOR EACH HESSIAN EIGENVECTOR n-ve de u œ 2 9 ŝ THE TOLERANCE PROBLEM 4 ო 2 ~ TOLERANCE \Rightarrow ENVELOPE OF UNCERTAINTIES OF EXPERIMENTS -15 -20 20 15 5 Ŷ -9 Tolerance $T = \sqrt{\Delta \chi^2_{global}}$ 68% C.L. 90% C.L 90% C.L. 68% C.L. CDE II DO II DE II Z LED DO II M→i∧ sexhur CDE II M→i∧ sexhur DO II M→i∧ sexhur DO II M→i∧ sexhur DO II M→i∧ sexhur DO II DE II C LED II DE II C LED DO II C LED MSTW TOLERANCE PLOT FOR 13TH EIGENVEC. CTEQ TOLERANCE PLOT FOR 4TH EIGENVEC. **MSTW 2008 NLO PDF fit** H1/ZEUS ep 5-00 incl. jet 22 ep 99-00 incl. jet 25 ep 96-00 incl. jet JOI _{שופעס}ב de SUEZ/FH 2020 00-66 de SUEZ 2020 00-66 de FH 2020 00-66 de FH \$093 **CCER3** (щi←N∨VeTuN vvo00-79 qe fH Eigenvector 4 CHK5 ссев ∧и⇒іні ax Nvsusoha SUBS W2/2FVC E Eigenvector number 13 SLAC op F e ITI a EP92 TO 50 E EP92 TO 50 E SP92 TO 5 SP92 TO 5 NWC TO 5 NMC TO PSWGDF **d**SMG20 CDW2 IT9 E 8 20 10 0 - 10 -20 -30 6 distance 20 -20 ¹⁶ζχ_∇Λ = eonstaid 2001Collins, Pumplin EXPERIMENTS 30 2 \$ MINIMUM χ^2_i VS GLOBAL χ $\Delta \chi^2_{\rm tot}$ õ 6 BCDMS F₂μp 7 BCDMS F₅μd 2 E605 pp D-Y 3 H1 F2 ep NMC µp/µn 5 Zeus F, ep 2 γ₁ γ₂ -10 8 -40

WHERE IS THE UNCERTAINTY COMING FROM? WHY DOES ONE NEED LARGE TOLERANCES?

DATA INCOMPATIBILITY(Pumplin, 2009)

- 20 JəqunN CAN "REDIAGONALIZE": DIAGONALIZE SIMULTANEOUSLY χ^2 FOR TOTAL AND i-TH EXPT \Rightarrow COMPATIBILITY OF EACH EXPT WITH GLOBAL FIT
 - STUDY DISTRIBUTION OF DISCREPANCIES
- 2 APPROX. GAUSSIAN WITH UNCERTAINTIES RESCALED BY $\Delta \chi^2 \sim 10$ for 90%c.l.

- ONE- σ VARIATION ABOUT FAKE MIN CORRESP. TO LARGE χ^2 VARIATION
- USE OF CHEBYSHEV POLYNOMIALS SUGGESTS COMPATIBLE WITH "MOST GENERAL" PARM. COMPATI $\Delta \chi^2 = 100$ range of CT10 parm.

↑

ø

5

ດ (x)9x

THE HERALHC BENCHMARK

(Feltesse, Glazov, Radescu + NNPDF 2008)

- TRY EXPERIMENTAL SYSTEMATICS GIVEN BY EITHER GAUS-SIAN OR LOGNORMAL DISTRIBUTION
- LOGNORMAL OR GAUSSIAN, IN EITHER CASE DETERMINE UN-WITH MONTECARLO CERTAINTY EITHER WITH HESSIAN OR MONTECARLO REPEAT (BENCHMARK) HERAPDF,

NO DIFFERENCE BETWEEN LOGNORMAL, GAUSSIAN, MC, HESSIAN

4

0

ĉ

9

SIZABLE DIFFERENCE WR TO FLEXIBLE NNPDF PARAMETRIZATION

- IN HESSIAN APPROACH CAN VARY THE FUNCTIONAL FORM, ASSUMPTIONS, STARTING SCALE
- VARIATION OF STRANGENESS FRACTION, LARGE x BEHAVIOUR, HIGHER FIT: DONE IN THE HERAPDF1.0 ORDER POLYNOMIAL TERMS
- NO TOLERANCE ($\Delta \chi^2 = 1$), UNCERTAINTY DOUBLED

ORTHOGONAL POLYNOMIALS

- EXPAND PDFS OVER BASIS OF ORTHOGONAL POLYNOMIALS OLD IDEA (PARISI, SOURLAS, 1978; ZOMER 1996):
- GLAZOV, RADESCU, 2009: COUPLED TO MONTE CARLO METHOD
- LENGTH PENALTY TO STABILIZE THE FIT

WHERE IS THE UNCERTAINTY COMING FROM? CENTRAL VALUES: VARYING PARTITION VS FIXED PARTITION

E different abairan		vioita abtair	d noviition
~ 0.03	0.035	0.039	$\langle \sigma^{ m dat} angle$
$\sim 1.6\pm 0.2$	1.65 ± 0.20	2.79 ± 0.24	$\langle \chi^2 angle_{ m rep}$
~ 1.3	1.32	1.32	χ^2
FIXED PARTITION	CENTRAL VALUE	REPLICAS	

fixed partition results obtained averaging over 5 different choices of partition (100 replicas each); more partitions needed for accurate results

- **QUALITY OF FIT UNCHANGED**
- $\langle \chi^2 \rangle_{\text{rep}}$ UNCHANGED \Rightarrow CENTRAL FIT UNCHANGED
- UNCERTAINTY ON PREDICTION (I.E. ON PDFS) REDUCED

FUNCTIONAL UNCERTAINTY

- MORE THAN HALF OF UNCERTAINTY DUE TO "FUNCTIONAL FORM": $\langle \sigma^{dat} \rangle = \sim 0.03$ smaller for HERA data
- REMAINING UNCERTAINTY ROUGHLY SCALES WITH DATA UN-CERTAINTY: $\langle \sigma^{\rm dat} \rangle = \sim 0.005$ CENT.; $\langle \sigma^{\rm dat} \rangle = \sim 0.009$ REP.

NORMALIZATION UNCERTAINTIES

- ⇒ MĂXIMUM-LIKELIHOOD RESULT BIASED (d'Agostini, 1994) NORMALIZATION UNCERTAINTIES IN COVARIANCE MATRIX $(\operatorname{cov}_{t_0})_{IJ} = \sigma_{I,n} \sigma_{J,n} F_I F_J$
- \Rightarrow ALSO BIASED, THOUGH BIAS DOES NOT GROW WITH $N_{\rm dat}$ TO χ^2 "PENALTY TRICK": RESCALE BY λ & ADD $\frac{(\lambda-1)^2}{(\lambda-1)^2}$ SOMETIMES ALSO HIGHER ORDER POWERS
- (NONGAUSSIAN AND IMPROPERLY NORMALIZED LIKELIHOOD) BIAS DUE TO χ^2 NOT GUADRATIC IN MEASURED GUANTITY

THE
$$t_0$$
 METHOD (R.D. Ball et al., 2010)

- NORMALIZATION UNCERTAINTIES IN COVARIANCE MATRIX, BUT COMPUTED AS FUNCTION OF RESULT OF PREVIOUS FIT $F_I^{(0)}$: $(\cos_{t_0})_{IJ} = \sigma_{I,n} \sigma_{J,n} F_I^{(0)} F_J^{(0)}$
- ITERATE UNTIL CONVERGENCE

$r \left[\chi^2, n ight]$	0.131	0.050	-0.130	-0.068	-0.069	-0.055	-0.015
$r \left[\chi^2, m \right]$	-0.018	-0.002	-0.023	0.003	0.000	0.021	-0.027
$[n_{\min}, n_{\max}]$	[1.05, 1.35]	[1.05, 1.35]	[0, 0.5]	[0, 0.5]	[-0.95, -0.65]	[1.05, 1.35]	$\begin{bmatrix} 0 & 0 \\ 2 \end{bmatrix}$
$[m_{ m min},m_{ m max}]$	[2.55, 3.45]	[1.05, 1.35]	[2.55, 3.45]	[2.55, 3.45]	[12, 14]	[2.55, 3.45]	[9,55,3,45]
PDF	$\Sigma(x,Q_0^2)$	$g(x,Q_0^2)$	$T_3(x,Q_0^2)$	$V_T(x,Q_0^2)$	$\Delta_S(x,Q_0^2)$	$s^{+}(x, Q_{0}^{2})$	$\mathbf{e}^{-}(r, O^{2})$

THE "HESSIAN MONTE CARLO"

G: IF ONE PICKS REPLICAS AT RANDOM ON THE ONE-SIGMA CONTOUR A:DETERMINE THE PROBABILITY FOR AT LEAST ONE REPLICA TO BE WHAT IS THE CHANCE OF "FILLING" THE ENVELOPE? WITHIN ANGLE θ of direction ∇X of max

TWO PARAMETERS: ONE REPLICA WITH $\theta < \theta_0 \Rightarrow P(2, 1: \theta_0) = \frac{\theta_0}{\pi}$ $\Rightarrow \text{ALL } n \text{ REPLICAS HAVE } \theta > \theta_0 \Rightarrow P(2,n;\theta_0) = \left(1 - \frac{\theta_0}{\pi}\right)^n$ $\Rightarrow P(d,1:\theta_0) = \frac{\frac{1}{\sqrt{\pi}}\left(\frac{2}{2}\right)}{(d-1)\sqrt{\pi}\Gamma\left(\frac{d-1}{2}\right)} \theta_0^{d-1}(1+O(\theta_0)) \approx \frac{\theta_0^{d-1}}{\sqrt{2\pi d}}$ PROBABILITY OF MAX(ENVELOPE)= $\sigma_X \cos \theta_0$ PROBABILITY OF MAX(ENVELOPE)= $\sigma_X \cos \theta_0$ $\Rightarrow P(d, n; \theta_0) = \left(1 - \frac{\theta_0^{d-1}}{\sqrt{2\pi d}}\right)^n$ d parameters: one replica with $\theta < \theta_0$

TO BE SMALLER BY A FACTOR R THAN THE STANDARD DEVIATION σ_X d=23 parameters and $n=10,\,100,\,500,\,1000$ replicas PROBABILITY FOR THE WIDTH OF THE ENVELOPE PLOTTED VS R FOR

MONTE CARLO ERROR ESTIMATES PARAMETER SPACE: NOT ADVISABLE	DBSERVABLE X DEPENDS ON PARAMETERS \vec{z} ARIANCE: $\sigma_X^2 = \langle X^2 \rangle - \langle X \rangle^2$ WERAGES: $\langle X \rangle = \int d^d z X(\vec{z}) P(\vec{z})$, WITH $P(\vec{z}) \Rightarrow$ PROBABILITY DISTN. OF PARAMETER VALUES & INTEGRAL PERFORMED BY MONTE CARLO SAMPLING NANY REPLICAS DOES ONE NEED? THREE BINS PER PARM $\Rightarrow 3^d$ BINS FOR 23 PARMS., NEED $> 10^{11}$ REPLICAS	DATA SPACE	DIAGONALIZATION: CHOOSE PARM z_1 ALONG $\vec{\nabla}X$ ALL OTHER PARMS \Rightarrow FLAT DIRECTIONS VERAGES: $\langle X \rangle = \int dz_1 X(\vec{z}) P(z_1)$ HOW MANY REPLICAS DOES ONE NEED? ONE-DIMENSIONAL AVERAGE OF <i>n</i> REPLICAS CONVERGES TO TRUE AVERAGE WITH STANDARD DEV. $\frac{\sigma}{\sqrt{n}}$ 10 REPLICAS ENOUGH FOR $\frac{\sigma}{3}$ ACCURACY 3 : HOW IS IT DONE IN PRACTICE? 4 : CHOOSE REPLICAS OF THE DATA, DISTRIBUTED AS THE DATA
---	---	------------	---

COMPARED TO OTHER GLOBAL PDF SETS (MSTW08, CT10) NNPDF2.1 PDFS NONSINGLET SECTOR

TOTAL VALENCE

ISOSPIN TRIPLET

