

HERAPDF

Burkard Reisert

Max-Planck-Institut für Physik München

α_s-Workshop at MP, Munich 9th -11th February

Outline

- Deep Inelastic Scattering at HERA
- HERAPDF analysis framework
- HERAPDF1.0 and HERAPDF1.5
- New Developments

Deep Inelastic Scattering (DIS)

Neutral Current Cross Section

$$\frac{d^2 \sigma^{NC}(e^{\pm}p)}{dx dQ^2} = \frac{2\pi\alpha^2}{xQ^4} \left[Y_+ \tilde{F}_2^{\mp} \mp Y_- x \tilde{F}_3^{\pm} - y^2 \tilde{F}_L^{\pm} \right] \qquad \begin{array}{c} Y_{\pm} = 1 \pm (1-y)^2 \\ \kappa = \frac{1}{4\sin^2\theta_w \cos^2\theta_w} \frac{Q^2}{Q^2 + M_Z^2} \end{array}$$

Generalized structure functions:

$$\tilde{F}_{2}^{\pm} = F_{2}^{\gamma} + \kappa(-v_{e} \pm P_{e}a_{e})F_{2}^{\gamma Z} + \kappa^{2}(v_{e}^{2} + a_{e}^{2} \pm 2P_{e}v_{e}a_{e})F_{2}^{Z}$$
$$x\tilde{F}_{3}^{\pm} = \kappa(-a_{e} \mp P_{e}v_{e})xF_{3}^{\gamma Z} + \kappa^{2}(2v_{e}a_{e} \pm P_{e}(v_{e}^{2} + a_{e}^{2}))xF_{3}^{Z}$$

$$\begin{bmatrix} F_2^{\gamma}, F_2^{\gamma Z}, F_2^{Z} \end{bmatrix} = \sum_{q} \begin{bmatrix} e_q^2, 2e_q v_q, v_q^2 + a_q^2 \end{bmatrix} x \underbrace{(q + \bar{q})}^{\text{Sum of quarks and}}_{\text{anti-quarks}}$$
$$\begin{bmatrix} xF_3^{\gamma Z}, xF_3^{Z} \end{bmatrix} = \sum_{q} \begin{bmatrix} e_q a_q, v_q a_q \end{bmatrix} 2x \underbrace{(q - \bar{q})}^{\text{Valence quarks}}_{\text{Valence quarks}}$$

Burkard Reisert, HERAPDF, α_s MPI Munich, February 9 - 11

Example NC cross sections

- Precise measurements from two experiments
- For Q² ≤ 100 GeV²

 $δ_{stat}$ ≤1%, $δ_{sys}$ ≤3% for Q² ≥ 1000 GeV² $δ_{stat}$ > $δ_{sys}$

- Combine dataset from both experiments:
 Key assumption
 H1 and ZEUS measure the same cross section at the same x,Q²,y
- Model independent combination by minimizing a χ² →

Charged Current Cross Section

$$\frac{d^2 \sigma^{CC}(e^{\pm}p)}{dx dQ^2} = (1 \pm P_e) \frac{G_F^2}{4\pi x} \left(\frac{M_W^2}{M_W^2 + Q^2}\right)^2 \tilde{\sigma}_{CC}^{e^{\pm}p}$$
CC reduced cross section

e⁺/e⁻ sensitive to different quark densities:

$$ilde{\sigma}_{CC}^{e^+p} = x \left[\bar{u} + \bar{c}
ight] + (1 - y)^2 x \left[d + s
ight]$$
 $ilde{\sigma}_{CC}^{e^-p} = x \left[u + c
ight] + (1 - y)^2 x \left[\bar{d} + \bar{s}
ight]$

CC gives sensitivity to different combinations of quarks as NC.

Quark Antiquark Decomposition

Data of the entire HERA II data sets (LH and RH, corrected to P_e=0) H1 Preliminary ZEUS

Burkard Reisert, HERAPDF, α_s MPI Munich, February 9 - 11

Datasets in HERAPDF

NC and CC Inclusive Data

- Combined HERA I inclusive data [JHEP01(2010) 109]:
 - □ HERAPDF1.0
 - □ In other PDF sets: NNPDF2.0, CT10, ABKM
- Combined HERA I + high Q2 HERA II Data [prelim]
 - Accurate measurements in high Q2 region sensitive to the valence distributions
 - □ HERAPDF1.5

Additional Datasets

- Low Energy Data HERA II [prelim]
 - □ Accurate measurements in Q2≥2.5GeV2, sensitive to structure function FL
- Combined Charm F2 data [prelim]
- HERA Jet Data [published data] fits [work in progress]

HERAPDF Analysis Framework

QCD Fit settings:

- NLO (and NNLO) DGLAP evolution equations
- TR-VFNS (as for MSTVV08)
 - Other schemes were investigated as well: RT (optimal), ACOT (full and χ), FFNS
- PDF parametrised at the starting scale Q₀²:

$$\mathbf{G}, \mathbf{u_{val}}, \mathbf{d_{val}}, \overline{\mathbf{U}} = \overline{\mathbf{u}}(+\overline{\mathbf{c}}), \overline{\mathbf{D}} = \overline{\mathbf{d}} + \overline{\mathbf{s}}(+\overline{\mathbf{b}})$$

 $xf(x,Q_0^2) = Ax^B(1-x)^C(1+Dx+Ex^2)$

- Fermion number and momentum sum rules are applied
- The optimum number of parameters chosen by saturation of the χ^2
 - central fit with 10 free parameters
 - χ²/dof=574/582

Scheme	TRVFNS
Evolution	QCDNUM
Order	NLO
Q_0^2	$1.9 \ { m GeV^2}$
$f_s = s/D$	0.31
Renorm. scale	Q^2
Factor. scale	Q^2
Q^2_{min}	$3.5 \ { m GeV^2}$
$\alpha_S(M_Z)$	0.1176
M_c	$1.4 { m GeV}$
M_b	$4.75~{ m GeV}$

Sources of HERAPDF uncertainties

Experimental:

- Consistent data sets \rightarrow use $\Delta \chi^2 = I$
- Model:

•

Following variations have been considered

Variation	Standard Value	Lower Limit	Upper Limit
f_s	0.31	0.23	0.38
m_c [GeV]	1.4	1.35	1.65
m_b [GeV]	4.75	4.3	5.0
Q^2_{min} [GeV ²]	3.5	2.5	5.0

Parametrisation:

- An envelope is formed from PDF fits using variants of param. form at Q₀²
 - ${\bf \nabla}~$ Scanning of 11 parameter space
 - ∇Q_0^2 variation and negative gluon parametrisation
 - v Relaxing assumptions used for central fit

In addition variation of α_s is available: 0.1176 (central), 0.1156 (low), 0.1196 (high)

HERAPDF1.5 vs. HERAPDF1.0

• xg, xu_v, xd_v, xSea (xSea= $x\overline{U}+x\overline{D}$) at the scale $Q_0^2=10$ GeV²

- Inclusion of the HERA II data reduces the uncertainties on PDFs in the high x region especially visible on the valence distributions!
 - See HERAPDF1.5(prel) vs HERAPDF1.0

HERAPDF1.0 at NNLO

- Fits performed to HERA I data (as used for HERAPDF1.0) at NNLO using RT-VFNS:
 - $\alpha_{s}(Mz)$ at NNLO = 0.1176 and $\alpha_{s}(Mz)$ at NNLO = 0.1145

• Using the same settings as for NLO, the NNLO fit does not yell better results for this scheme.

scheme	NNLO α _s (Mz)=0.1145	NNLO α _s (Mz)=0.1176	NLO $\alpha_{\rm S}$ (Mz)=0.1176
All χ^2 /dof	623.7/582	638.3/582	574.4/582

LHAPDF Grid Files are available at HI-ZEUS website: https://www.desy.de/h1zeus/combined_results/index.php

HERAPDF1.5 vs. DIS data

Burkard Reisert, HERAPDF, α_s MPI Munich, February 9 - 11

Sensitivity to the Gluon and α_s via Scaling violations

Longitudinal Structure Function F_L

Scattering of longitudinally polarized photons on quarks in helicity frame

 J_z conservation not possible

$$F_L \propto \sigma_L = 0 \qquad \qquad F_L = \frac{\alpha_s}{4\pi} x^2 \int_x^1 \frac{dz}{z^3} \left[\frac{16}{3} \sum_q z e_q^2 (q + \bar{q}) + 8 \sum_q e_q^2 \left(1 - \frac{x}{z} \right) \cdot zg \right]$$

access to gluon density \checkmark

Burkard Reisert, HERAPDF, α_s MPI Munich, February 9 - 11

H1 + ZEUS Combined F

Good agreement between data and predictions for $Q^2 > 10 \text{ GeV}^2$. F_L at low Q^2 above prediction using HERAPDF1.0

Variants of Predictions for F_L

Burkard Reisert, HERAPDF, α_{s} MPI Munich, February 9 - 11

Combined F₂^{cc} vs. various Theories

October 2009

HERA Heavy Flavour Working Group

 $Q^2 = 6.5 GeV^2$

1.1111

 $Q^2 = 35 GeV^2$

Q²=200 GeV²

HERA (prel.)

CTEQ 6.6

ABKM BMSN

ABKM FFNS NLO

ABKM FFNS NNLO

GJR08

MSTW08 NNLO MSTW08 NLO

1.111.00

r r r r ml

1.11111

-2

Х

10

0

10

-2

10

10

10

10

 data can distinguish between different

• FFNS: GJR08 ABKM FFNS

 GM-VFNS: MSTW08 **CTEQ6.6** ABKM BMSN

Z cross sections at LHC

(\star indicate σ with PDFs at $m_c^{model}(opt)$)

- cross section predictions for each scheme vary \sim 7% for 1.2 < m_c^{model} < 1.8 GeV

 predictions for all schemes vary ~7% for given m_c^{model}

BUT:

predictions for m_c^{model} (opt)
 has much smaller spread:
 <1% (~2% with ZMVFNS)

Z cross sections at LHC

Jet data example: Dijet in Photoproduction

Summary

- HERA delivered a wealth of ep DIS data
- H1 and ZEUS measurements reach their ultimate precision
- Flavour separated sets of PDFs extracted
- Work in progress:
 Use Jet data, low energy and F2charm to simultaneously extract as and gluon

More material on

- PDF parameterization
- FL extraction
- F2charm
- LHC W cross sections

PDF Determination in HERAPDF1.0

DGLAP at NLO \rightarrow QCD predictions

PDFs parametrised (at starting scale Q²₀) using standard parametrisation form:

$$\begin{aligned} xg(x) &= A_g x^{B_g} (1-x)^{C_g}, \\ xu_v(x) &= A_{u_v} x^{B_{u_v}} (1-x)^{C_{u_v}} \left(1+E_{u_v} x^2\right), \\ xd_v(x) &= A_{d_v} x^{B_{d_v}} (1-x)^{C_{d_v}}, \\ x\bar{U}(x) &= A_{\bar{U}} x^{B_{\bar{U}}} (1-x)^{C_{\bar{U}}}, \\ x\bar{D}(x) &= A_{\bar{D}} x^{B_{\bar{D}}} (1-x)^{C_{\bar{D}}}. \end{aligned}$$

A: overall normalisation B: small x behavior C: $x \rightarrow 1$ shape

The optimal number of parameters chosen by saturation of the χ^2 - central fit with 10 free parameters

xg, xu_v, xd_v, xŪ, xD where xU=xu and xD=xd+xs at the starting scale (xs=f_xxD with f_s=0.31)

 A_g , A_{uv} , A_{dv} are fixed by sum rules extra constrains for small x behavior of d- and u-type quarks: $B_{uv}=B_{dv}$, $B_{\overline{U}}=B_{\overline{D}}$, $A_{\overline{U}}=A_{\overline{D}}(1-f_s)$ for $\overline{u}=\overline{d}$ as $x \rightarrow 0$

Measurement of FL

Measure cross sections $\sigma_r = F_2(x,Q^2) - \frac{y^2}{Y_+}F_L(x,Q^2)$ at same *x* and Q² but different y = Q²/x·s \rightarrow vary s

- Change proton beam energy to change cms energy
 - E_p = 920 GeV, High Energy Run (HER)
 - E_p = 575 GeV, Medium Energy Run (MER):
 - E_p = 460 GeV, Low Energy Run
- Large lever arm in y^2/Y_+
- Measure at high y in LER
- Extended measurement to high y region $y = 1 - E'_e / E_e (1 - \cos \theta) \rightarrow \text{high } y \text{ means low } E'_e$

Combined low E_p Cross Sections

Burkard Reisert, HERAPDF, α_s MPI Munich, February 9 - 11

Extracted F_L and F₂

 First F₂ measurement without assumptions on F_L

Data support a non-zero F_L

Predictions for F₂ and F_L are consistent with data

H1 + ZEUS Combined F

Good agreement between data and predictions for $Q^2 > 10 \text{ GeV}^2$. F_L at low Q^2 above prediction using HERAPDF1.0

Adding combined $F_2^{c\bar{c}}$ to HERAPDF1.0 Fit

• Fit HERA I + $F_2^{c\bar{c}}$ $Q^2 > 3.5 \text{ GeV}^2$ $(Q^2 = 2 \text{ GeV}^2 \text{ bin} \text{ excluded})$

41 charm points

- RT GM-VFNS
- $m_c = 1.4 \text{ GeV}$ $\chi^2_{\text{charm}} = 134.5/41$ $m_c = 1.65 \text{ GeV}$ $\chi^2_{\text{charm}} = 43.5/41$

H1-ZEUS combined F^{cc}₂ vs. HERAPDF1.0

- HERAPDF 1.0 fit to inclusive HERA I data
- RT GM-VENS (as MSTW08)
- Central curve: $m_c = 1.4 \text{ GeV}$

band: $m_c = 1.3 \text{GeV} \text{ (upper)}$ $m_c = 1.65 \text{GeV}$ (lower) [pole mass (PDG):

W⁺ cross sections at LHC

(\star indicate σ with PDFs at $m_c^{model}(opt)$)

W⁻ cross section ay LHC

(\star indicate σ with PDFs at $m_c^{model}(opt)$)