Lattice QCD Calculations and α_{s}

Andreas S. Kronfeld
北 Fermilab
11 February 2011
Workshop on Precision Measurements of α_{s} Max-Planck-Insitut für Physik, München

Requirements for α_{s} Determinations

- A dimensionless quantity, R, sensitive to QCD at a (range of) short distance(s), Q^{-1};
- if not dimensionless, use Q to make it so; then $R=\mathcal{R}\left(\alpha_{s}\left(Q_{s}\right)\right)+\mathrm{o}\left(\left(\Lambda_{\mathrm{QCD}} / Q\right)^{r}\right)$.
- A theoretical framework—or at least a notion-to separate short-distance scales from $\Lambda_{\text {QCD }}$ (and other long-distance scales).
- An $\mathrm{N}^{n} \mathrm{LO} / \mathrm{N}^{n} \mathrm{LL}$ calculation of $\mathcal{R}\left(\alpha_{s}\left(Q_{s}\right)\right.$; recall $\alpha_{s}^{-1}(Q) \approx 2 \beta_{0} \ln \left(Q / \Lambda_{s}\right)$.
- Measurements of R over a range of Q large enough to control power-law effects, ($\left.\Lambda_{\mathrm{QCD}} / Q\right)^{r}$.
- Control of non-QCD physics at scales probed by Q (e.g., electroweak or new physics).
- A measurement of Q-usually a calibration, in contrast to event counting for R.

Tevatron α_{s} from Inclusive-Single-Jet Production

CDF, arXiv:hep-ex/0108034

- $Q=E_{T}, R=E_{F}^{2} \mathrm{~d} \sigma / \mathrm{d} E_{T} \propto \alpha_{s}^{2} @ \mathrm{LO}$.
- Factorization; \mathcal{R} to NLO [Ellis \& Sexton].
- 33 independent E_{T} bins; range $\times 8$.
- $\alpha_{s}=0.1178 \pm 0.0022 \pm 0.0082 \pm 0.0085:$
- errors from R (stats+norm), \mathcal{R}, Q.
- Calibration measurement of $Q!!!$
- Quark substructure for $E_{T}>250 \mathrm{GeV}$?

α_{s} from Lattice QCD

- How is R "measured"?
- What's Q ?
- Frameworks for scale separation.
- Perturbative calculations of $\mathcal{R}\left(\alpha_{s}\left(Q_{s}\right)\right)$ at NNLO or $\mathrm{N}^{3} \mathrm{LO}$.
- How many "measurements"?
- Extrapolate from computer to QCD.
- How is Q calibrated?
- Compute R from QCD functional integral.
- $Q=a^{-1}$ (lattice), $Q, 2 m_{Q}, L^{-1}$ (box).
- Symanzik EFT, OPE, duality....
- Lattice perturbation theory ($Q=a^{-1}$); continuum perturbation theory (else).
- Several to numerous.
- Discretization; unphysical quark masses.
- Ultimately hadron masses: $Q=(Q a / M a) M$.

Outline

- Introduction: How to Determine α_{s}
- Lattice Gauge Theory in a Nutshell
- From Computer to QCD
- Overview of Lattice QCD α_{s} Methods
- Summary \& Outlook

Lattice Gauge Theory in a Nutshell

Lattice Gauge Theory

K. Wilson, $\underline{\text { PRD } 10 \text { (1974) } 2445}$

- Invented to understand asymptotic freedom without the need for gauge-fixing and ghosts [Wilson, hep-lat/0412043].
- Gauge symmetry on a spacetime lattice:
- mathematically rigorous definition of QCD functional integrals;

$$
\langle\bullet\rangle=\frac{1}{Z} \int \mathcal{D} U \mathcal{D} \psi \mathcal{D} \bar{\psi} \exp (-S)[\bullet]
$$

- enables theoretical tools of statistical mechanics in quantum field theory and provides a basis for constructive field theory.
- Lowest-order strong coupling expansion demonstrates confinement.

Numerical Lattice QCD

- Nowadays "lattice QCD" usually implies a numerical technique.
- Integrate the functional integral on a $N 3 \times N_{4}$ lattice (spacing a) numerically:

$$
\langle\bullet\rangle=\frac{1}{Z} \int \mathcal{D} U \mathcal{D} \psi \mathcal{D} \bar{\psi} \exp (-S)[\bullet]
$$

- Finite lattice: can evaluate integrals on a computer; dimension $\sim 10^{8}$, using importance sampling.

$$
L=N_{S} a
$$

- Healthy research field to devise MC algorithms.

Numerical Lattice QCD

- Nowadays "lattice QCD" usually implies a numerical technique.
- Integrate the functional integral on a $N 3 \times N_{4}$ lattice (spacing a) numerically:

$$
\langle\bullet\rangle=\frac{1}{Z} \int \mathcal{D} U \underset{\substack{\mathcal{D} \psi \mathcal{D} \bar{\psi} \\ \text { hand }}}{\substack{ }} \exp (-S)[\bullet]
$$

- Finite lattice: can evaluate integrals on a computer; dimension $\sim 10^{8}$, using importance sampling.

$$
L=N_{S} a
$$

- Healthy research field to devise MC algorithms.

Numerical Lattice QCD

- Nowadays "lattice QCD" usually implies a numerical technique.
- Integrate the functional integral on a $N 3 \times N_{4}$ lattice (spacing a) numerically:

$$
\langle\bullet\rangle=\frac{1}{Z} \int \begin{gathered}
\substack{\mathcal{D} U \\
\mathrm{MC} \psi \mathcal{D} \\
\text { hand }}
\end{gathered} \exp (-S)[\bullet]
$$

- Finite lattice: can evaluate integrals on a computer; dimension $\sim 10^{8}$, using importance sampling.

$$
L=N_{S} a
$$

- Healthy research field to devise MC algorithms.
- Some compromises:
- finite human lifetime \Rightarrow Wick rotate to Euclidean time: $x^{4}=i x^{0}$;
- finite memory \Rightarrow finite space volume \& finite time extent; nonzero lattice spacing;
- finite CPU power \Rightarrow light quarks heavier than up and down; nonzero lattice spacing.
- The first introduces no error, but can be an obstacle (e.g., fragmentation functions).
- Finite volume unimportant for stable hadrons.
- Continuum and chiral limits are crucial when calibrating physical units (i.e., computing mass spectrum), but for α_{s} recall $\delta M \Rightarrow \delta \alpha_{s}=1 / 2 \beta_{0} \alpha_{s}^{2} \delta M$.

Some Jargon

- QCD observables (quark integrals by hand):

$$
\langle\bullet\rangle=\frac{1}{Z} \int \mathcal{D} U \prod_{f=1}^{n_{f}} \operatorname{det}\left(\not D+m_{f}\right) \exp \left(-S_{\text {gauge }}\right)[\bullet]
$$

- Quenched means replace det with 1.
- Unquenched means not to do that.
- Partially quenched (usually) doesn"t mean " n_{f} too small", but $m_{\text {val }} \neq m_{\text {sea }}$, or $D_{\text {val }} \neq D_{\text {sea }}$ ("mixed action").

Sea Quarks

- Staggered quarks, with rooted determinant, $\mathrm{O}\left(a^{2}\right)$.
- Wilson quarks, $\mathrm{O}(a)$:
- twisted mass term—auto $\mathrm{O}(a)$ improvement $\Rightarrow \mathrm{O}\left(a^{2}\right)$;
- tree or nonperturbatively $\mathrm{O}(a)$ improved $\Rightarrow \mathrm{O}\left(a^{2}\right)$.
- Ginsparg-Wilson (domain wall or overlap), $\mathrm{O}\left(a^{2}\right)$:
- $I D \gamma_{5}+\gamma_{5} D D=2 a D^{2}$ implemented $w / \operatorname{sign}\left(D_{\mathrm{W}}\right)$.

Sea Quarks

- Staggered quarks, with rooted determinant, $\mathrm{O}\left(a^{2}\right)$.
- Wilson quarks, $\mathrm{O}(a)$:
- twisted mass term—auto $\mathrm{O}(a)$ improvement $\Rightarrow \mathrm{O}\left(a^{2}\right)$;
- tree or nonperturbatively $\mathrm{O}(a)$ improved $\Rightarrow \mathrm{O}\left(a^{2}\right)$.
- Ginsparg-Wilson (domain wall or overlap), $\mathrm{O}\left(a^{2}\right)$:
- $I D \gamma_{5}+\gamma_{5} D D=2 a D^{2}$ implemented $w / \operatorname{sign}\left(D_{\mathrm{W}}\right)$.
- Many numerical simulations with sea quarks are called (perhaps misleadingly) "full QCD."
- $n_{f}=2$: with same mass, omitting strange sea;
- $n_{f}=3$: may (or may not) imply 3 of same mass;
- $n_{f}=2+1$: strange sea +2 as light as possible for up and down;
- $n_{f}=2+1+1$: add charmed sea to $2+1$.
- "Full QCD" can also just mean the unitary setup with $m_{\mathrm{val}}=m_{\text {sea }}$ and $D_{\mathrm{val}}=D_{\text {sea }}$.
- Many numerical simulations with sea quarks are called (perhaps misleadingly) "full QCD."
- $n_{f}=2$: with same mass, omitting strange sea;
- $n_{f}=3$: may (or may not) imply 3 of same mass;
- $n_{f}=2+1$: strange sea +2 as light as possible for up and down;
- $n_{f}=2+1+1:$ add charmed sea to $2+1$
- "Full QCD" can also just mean the unitary setup with $m_{\mathrm{val}}=m_{\text {sea }}$ and $D_{\text {val }}=D_{\text {sea }}$.

From the Computer to QCD

The QCD Lagrangian

- $\operatorname{SU}(3)$ gauge symmetry and $1+n_{f}+1$ parameters:

$$
\begin{aligned}
\mathcal{L}_{\mathrm{QCD}} & =\frac{1}{g_{0}^{2}} \operatorname{tr}\left[F_{\mu \nu} F^{\mu \nu}\right] \\
& -\sum_{f} \bar{\psi}_{f}\left(\not D+m_{f}\right) \psi_{f} \\
& +\frac{i \theta}{32 \pi^{2}} \varepsilon^{\mu \nu \rho \sigma} \operatorname{tr}\left[F_{\mu \nu} F_{\rho \sigma}\right]
\end{aligned}
$$

- Observable CP violation $\propto \vartheta=\theta-\arg \operatorname{det} m_{f}$ (if all masses nonvanishing):
- neutron electric-dipole moment sets limit $\vartheta \leqslant 10^{-11}$.

The QCD Lagrangian

- $\operatorname{SU}(3)$ gauge symmetry and $1+n_{f}+1$ parameters:

$$
\begin{aligned}
\mathcal{L}_{\mathrm{QCD}} & =\frac{1}{g_{0}^{2}} \operatorname{tr}\left[F_{\mu \nu} F^{\mu \nu}\right] & & m_{\Omega} \text { or } \mathrm{Y}(2 \mathrm{~S}-1 \mathrm{~S}) \text { or } f_{\pi} \text { or } r_{1} \text { or } \ldots \\
& -\sum_{f} \bar{\psi}_{f}\left(\not D+m_{f}\right) \psi_{f} & & m_{\pi}, m_{K}, m_{D s} \text { or } m_{\mathrm{J} / \psi}, m_{B s} \text { or } m_{\mathrm{Y}}, \ldots \\
& +\frac{i \theta}{32 \pi^{2}} \varepsilon^{\mu \nu \rho \sigma} \operatorname{tr}\left[F_{\mu \nu} F_{\rho \sigma}\right] & & \theta=0 .
\end{aligned}
$$

- Observable CP violation $\propto \vartheta=\theta-\arg \operatorname{det} m_{f}$ (if all masses nonvanishing):
- neutron electric-dipole moment sets limit $\vartheta \leqslant 10^{-11}$.

Systematic Uncertainties and Effective Field Theories

ASK, hep-lat/0205021

- Multi-scale problem: $m_{\mathrm{u}}, m_{\mathrm{s}}, m_{\pi}, m_{K}, \Lambda_{\mathrm{QCD}}, m_{\mathrm{c}}, m_{\mathrm{b}}, m_{\mathrm{t}} ; Q^{2} ; a^{-1} ; L^{-1}$.

- Most conveniently handled with effective field theories.

Scale	Effective field theory	Small parameter	Physics
a^{-1}	Symanzik EFT	Λa	Discretization errors: o(($\left.\Lambda a)^{\mathrm{n}}\right)$
m_{Q}	HQET	Λ / m_{Q}	Nearly static heavy quark
m_{q}, m_{PS}	NRQCD	$p / m_{Q} \sim v$	Slowly orbiting $\overline{\mathrm{QQ}}$
L^{-1}	Chiral PT $(\chi \mathrm{PT})$	$\left(m_{\mathrm{PS}} / 4 \pi f_{\pi}\right)^{2} \sim m_{q} / \Lambda$	Chiral symmetry constrains pion cloud

- Symanzik EFT (outgrowth of Callan-Symanzik equation) provides a framework for
- "improving" the action;
- guiding the continuum limit.
- Chiral perturbation theory removes the (too massive, too compact) pion cloud of the computer, and replaces it with the real one: $m_{q} \rightarrow m_{\mathrm{u}}$.
- Some recent work (PACS-CS, BMW) has m_{q} so close to m_{d} that $\chi \mathrm{PT}$ isn't needed.

Symanzik Effective Field Theory

K. Symanzik, NPB 226 (1983) 187, ibid. 205; P. Weisz, NPB 212 (1983) 1; NPB 236 (1984) 397

- Illustrate with pure gauge theory. Classically,

$$
\mathcal{L}_{\mathrm{LGT}} \approx \frac{1}{g_{0}^{2}}\left\{\operatorname{tr} F_{\mu \nu} F^{\mu \nu}+a^{2} \mathcal{K}_{1} \operatorname{tr}\left[D_{\mu} F_{\mu \nu} D^{\mu} F^{\mu \nu}\right]+a^{2} \mathscr{K}_{2} \operatorname{tr}\left[F_{\mu}^{\nu} F_{\nu}^{\rho} F_{\rho}^{\mu}\right]+a^{2} \mathcal{K}_{3} \operatorname{tr}\left[D^{\mu} F_{\mu \nu} D_{\rho} F^{\rho \nu}\right]+\cdots\right\}
$$

- Symanzik formalizes this idea to include radiative corrections:

$$
\mathcal{L}_{\mathrm{LGT}} \doteq \frac{1}{g^{2}}\left\{\operatorname{tr} F_{\mu \nu} F^{\mu \nu}+a^{2} \mathcal{K}_{1}\left(g^{2}\right) \operatorname{tr}\left[D_{\mu} F_{\mu \nu} D^{\mu} F^{\mu \nu}\right]+a^{2} \mathcal{K}_{2}\left(g^{2}\right) \operatorname{tr}\left[F_{\mu}^{\nu} F_{v}^{\rho} F_{\rho}^{\mu}\right]+\text { redundant }+\cdots\right\}
$$

- Consider these operators to be renormalized, i.e., with power divergences subtracted off.
- Structure established in perturbation theory and believed to hold nonperturbatively.
- Symanzik provides a "continuum-QCD description" of lattice QCD's discretization effects.

Fermions and Chiral Symmetry

- Lattice fermions coexist uneasily with axial symmetries:

Discretization	$\mathrm{U}_{\mathrm{V}}(1)$	$\mathrm{SU}_{\mathrm{V}}\left(n_{f}\right)$	$\mathrm{SU}_{\mathrm{A}}\left(n_{f}\right)$	$\mathrm{U}_{\mathrm{A}}(1)$
Ginsparg-Wilson *	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	magic
Wilson	$\sqrt{ }$	$\sqrt{ }$	broken, o (a)	broken, ala
Staggered †	$\sqrt{ }$	Γ_{4}	$\mathrm{U}_{\mathrm{A}}\left(n_{r}\right)$	broken, ala
Rooted staggered	$\sqrt{ }$	$\mathrm{SU}\left(n_{f}\right) \subset \mathrm{SU}\left(4 n_{f}\right)$	broken, ala	

* symmetries exact for overlap; domain-wall fermions break axial symmetries at o $\left(\exp \left(-m L_{5}\right)\right)$
${ }^{\dagger}$ with n_{r} staggered fermion fields, the number of physical species $n_{f}=4 n_{r}$
- If the lattice action is ultra-local, then there is either a 16-fold replication of species (naive), the axial symmetries are explicitly broken (Wilson), or a compromise (staggered/Susskind).
- Lattice-artifact chiral-symmetry breaking still treatable with chiral perturbation theory.
- Broad consensus that (unrooted) staggered, Wilson, domain-wall, \& overlap all yield QCD.
- To reduce the 4-fold replication of staggered species (aka "tastes"), one can replace sea

$$
\operatorname{det}_{4}\left(D_{\text {stag }}+m\right) \rightarrow\left[\operatorname{det}\left(D_{4}+m\right)\right]^{1 / 4}
$$

- Weak coupling suggests, and numerical simulation corroborates, that staggered fermions have a "taste" basis in which

$$
D_{\mathrm{stag}}+m \doteq\left(\begin{array}{ccc}
\not D+m & & a \Delta \\
& D D+m & \\
a \Delta & \not D+m & \\
& & \\
\hline D+m
\end{array}\right)
$$

where $a \Delta$ leads to discretization errors of $\mathrm{o}\left(a^{2}\right)$.

- This structure suggests that the fourth root yields one species in the continuum limit.
- Rooting violates unitarity at nonzero $a \neq 0$, but if $\operatorname{SU(4)}$ emerges as a "phantom" symmetry, it provides a "safe house" for these effects, cf. scalar and longitudinal gluon polarizations.
- Numerical evidence that these effects can be handled with "rooted staggered chiral perturbation theory"; for example, $n_{r}=0.28(2)(3)$ [MILC, arXiv:0710.1118 [hep-lat]].
- Concerns remain along two lines of reasoning:
- UV: perhaps rooted sea leads to anomalous dimension -1 for $a \Delta$;
- IR: symmetries of the 't Hooft vertex incompatible with rooting.
- Assuming correctness, uncertainties from rooting are part of chiral extrapolation error bar.
- Everyone agrees that calculations with rooted staggered sea should be repeated with other formulations of sea quarks.
- Rooting violates unitarity at nonzero $a \neq 0$, but if $\operatorname{SU(4)}$ emerges as a "phantom" symmetry, it provides a "safe house" for these effects, cf. scalar and longitudinal gluon polarizations.
- Numerical evidence that these effects can be handled with "rooted staggered chiral perturbation theory"; for example, $n_{r}=0.28(2)(3)$ [MILC, arXiv:0710.1118 [hep-lat]].
- Concerns remain along two lines of reasoning:
- UV: perhaps rooted sea leads to anomalous dimension -1 for $a \Delta$;
- IR: symmetries of the 't Hooft vertex incompatible with rooting.
no evidence
wrong derivation
- Assuming correctness, uncertainties from rooting are part of chiral extrapolation error bar.
- Everyone agrees that calculations with rooted staggered sea should be repeated with other formulations of sea quarks.

2+1 Sea Quarks!

HPQCD, MILC, Fermilab Lattice, hep-lat/0304004

- $a=0.12 \& 0.09 \mathrm{fm}$;
- $\mathrm{O}\left(a^{2}\right)$ improved: asqtad;
- FAT7 smearing;
- $2 m_{l}<m_{q}<m_{s}$;
- $\pi, K, \mathrm{Y}(2 \mathrm{~S}-1 \mathrm{~S})$ input.

Predictions

Fermilab Lattice, MILC, HPQCD, hep-ph/0408306, hep-lat/0411027, hep-lat/0506030

Hadron Spectrum

e.g., BMW Collaboration: Science 322 (2008) 1224

QCD postdicts the low-lying hadron masses

Light Quark Masses

- The nonzero pion (kaon) mass is very sensitive to the light (strange) masses.
- Chiral perturbation theory predicts ratios of masses, but not the overall scale.

Lattice QCD	$\underline{\text { MILC }}$	$\underline{\text { RBC }}$	$\underline{\text { BMW }}$	$\underline{H P Q C D}$
$\bar{m}_{u}(2 \mathrm{MeV})$	1.9 ± 0.2	2.24 ± 0.35	2.15 ± 0.11	
$\bar{m}_{u}(2 \mathrm{MeV})$	4.6 ± 0.3	4.65 ± 0.35	4.79 ± 0.14	
$\bar{m}_{s}(2 \mathrm{MeV})$	88 ± 5	97.6 ± 6.2	95.5 ± 1.9	92.4 ± 1.5
$\bar{m}_{c}\left(\bar{m}_{c}\right)$				1268 ± 9

- Competitive results for m_{s} from elsewhere?

Pertinent Synopsis

- The spectrum results suggest that the calibration step is understood:
- Continuum limit under control: 3-5 different lattice spacings-up to $\times 3$;
- Chiral extrapolation under control;
- Finite-volume effects small (as expected for masses of stable particles);
- Several groups (MILC, PACS-CS, BMW) with 2+1 spectrum and few \% errors.
- Influential results: matrix elements for flavor physics (aids search for NP in B decays and mixing), thermodynamics (early universe, heavy ions), chiral condensate (Nambu's pion), nucleon sigma term (relevant to DM search), nucleon structure (parton densities), nucleon interactions (neutron stars)

Methods for $\alpha_{\text {s }}$

Matching

(Obsolete)

- Lattice perturbation theory is completely well-defined.
- Compute a renormalized (e.g., BPHZ) coupling $\alpha_{\mathrm{R}}(=R)$ with lattice and dimensional regulators.
- Equate $\alpha_{R}=\alpha_{R}$, obtaining $\bar{\alpha}^{-1}(\mu)=\alpha_{0}^{-1}-\bar{C}_{0}(\mu a)+\cdots$; asymptotically, $\Lambda_{\overline{\mathrm{MS}}}=\Lambda_{0} \exp \left[\bar{C}_{0}(1) / 2 \beta_{0}\right]$.
- Theory of power effects is Symanzik EFT.
- Range of $Q=a^{-1}$ limited.
- With standard lattice actions, asymptopia is too far away and convergence is too slow to be useful.

Lattice Perturbation Theory

- The lattice gauge field is $U_{\mu}(x)=\mathrm{P} \exp \left[a g_{0} \int_{x}^{x+a e_{\mu}} \mathrm{d} s A_{\mu}\left(x+s a e_{\mu}\right)\right]$.
- In the perturbation expansion, the second-order part of U_{μ} leads to an extra-gluon vertex, suppressed by a.
- These vertices lead to tadpole diagrams. Pre-factors of a are cancelled by inverse powers from UV divergent loop integrals.
- Tadpoles lead to large coefficients of α_{s} and explain the bad behavior of the previous slide.
- These cancel in various "tadpole-improved" combinations of short-distance coefficients.
- A further key to making lattice perturbation theory viable is to eliminate g_{0}, for example, by re-expanding short-distance quantities in a (quasi-)renormalized coupling.

Small Wilson Loops

- Wilson loop $W(\mathcal{P})=\operatorname{Re}\left\langle\operatorname{tr} \exp \oint_{\mathcal{P}} d z \cdot A\right\rangle$ has UV singularities.
- Creutz ratios $\chi\left(N_{1}, M_{1}, N_{2}, M_{2}\right)=\frac{W\left(N_{1} \times M_{1}\right) W\left(N_{2} \times M_{2}\right)}{W\left(N_{2} \times M_{1}\right) W\left(N_{1} \times M_{2}\right)}$ cancels these, but still has UV behavior.

- Tadpole-improved Wilson loops: cancel sides.
- OPE/Symanzik: $W_{N \times M}=Z_{N \times M}\left(\alpha_{s}\right)+a^{4} \mathcal{K}_{N \times M}\left(\alpha_{s}\right) \alpha_{s} \operatorname{tr} G_{\mu \nu} G^{\mu \nu}$ so some condensate information must be accounted for.

- $R=-\ln W,-\ln \chi ; Q=d / a$, with d estimated via BLM.
- Range of Q at present is $\sim 6=1.8 / 0.3$.
- \mathcal{R} to NNLO.

Small Wilson Loops

- Wilson loop $W(\mathcal{P})=\operatorname{Re}\left\langle\operatorname{tr} \exp \oint_{\mathcal{P}} d z \cdot A\right\rangle$ has UV singularities.
- Creutz ratios $\chi\left(N_{1}, M_{1}, N_{2}, M_{2}\right)=\frac{W\left(N_{1} \times M_{1}\right) W\left(N_{2} \times M_{2}\right)}{W\left(N_{2} \times M_{1}\right) W\left(N_{1} \times M_{2}\right)}$ cancels these, but still has UV behavior.
- Tadpole-improved Wilson loops: cancel sides.
- OPE/Symanzik: $W_{N \times M}=Z_{N \times M}\left(\alpha_{s}\right)+a^{4} \mathcal{K}_{N \times M}\left(\alpha_{s}\right) \alpha_{s} \operatorname{tr} G_{\mu \nu} G^{\mu \nu}$ so some condensate information must be accounted for.
- $R=-\ln W,-\ln \chi ; Q=d / a$, with d estimated via BLM.
- Range of Q at present is $\sim 6=1.8 / 0.3$.
- \mathcal{R} to NNLO.

Adler Function

- Vacuum polarization at space-like momentum transfer-ideal for Euclidean field theory:

$$
\mathrm{FT}\left\langle J_{\mu}(x) J_{\nu}(0)\right\rangle=\left(\delta_{\mu \nu} Q^{2}-Q_{\mu} Q_{\nu}\right) \Pi_{J}^{(1)}\left(Q^{2}\right)+Q_{\mu} Q_{\nu} \Pi_{J}^{(0)}\left(Q^{2}\right)
$$

- Let $\Pi=\Pi_{V}^{(0)}+\Pi_{V}^{(1)}+\Pi_{A}^{(0)}+\Pi_{A}^{(1)}$ and $R\left(Q^{2}\right)=D\left(Q^{2}\right)=-Q^{2} \mathrm{~d} \Pi / \mathrm{d} Q^{2}$, which has a continuum limit. Use nonsinglet currents.
- Operator product expansion (OPE):

$$
R\left(Q^{2}\right)=\mathcal{R}\left(\alpha_{s}\left(Q^{2}\right)\right)+\frac{\bar{m}^{2}}{Q^{2}} \mathcal{R}_{m}\left(\alpha_{s}\left(Q^{2}\right)\right)+\text { condensates }
$$

known to $\mathrm{N}^{3} \mathrm{LO}$ in continuum pQCD. (Cited JLQCD publication uses NNLO.)

- Compute $R\left(Q^{2}\right)$ for $a \ll Q^{-1} \ll \Lambda_{\mathrm{QCD}}$, take continuum limit, extract α_{s}.

Moments of the Charmonium Correlator

Bochkarev \& de Forcrand, hep-lat/9505025; HPQCD+KIT, arXiv:0805.2999

- Similar idea, but now J is a $\bar{c} c$ current; in particular $m_{c} \bar{c} \gamma^{5} c$. Take moments:

$$
G_{n}=a \sum_{t} t^{n} a^{3} \sum_{x} m_{c}^{2}\left\langle\bar{c} \gamma^{5} c(x, t) \bar{c} \gamma^{5} c(0)\right\rangle=\frac{\mathcal{R}_{a}\left(\alpha_{s}\left(2 m_{c}\right)\right)}{\left[\bar{m}_{c}\left(2 m_{c}\right)\right]^{n-4}}+\mathrm{o}\left(\left(m_{c} a\right)^{2}\right)+\mathrm{o}\left(\left(\Lambda / 2 m_{c}\right)^{2}\right)
$$

where \mathcal{R}_{n} is computed in continuum PT ; known to NNLO.

- Use $G_{4}=\mathcal{R}_{4}$ for α_{s}; others for m_{c} (and cross checks).
- Moments correspond to derivatives of the Fourier transformed correlator at $q^{2}=0$, where the charmed quarks are far off shell, so the relevant short distance is $Q=\left(2 m_{c}\right)^{-1}$.
- Virtuality depends on n.
- Continuum power effects from OPE.

Other Such Quantities

- The theme of the previous two methods can be generalized.
- Other examples include the static-quark potential (or force).
- In general, they require $a^{-1} \gg Q \gg \Lambda_{\mathrm{QCD}}$, or at least $a^{-1} \gg Q \& 2 Q \gg \Lambda_{\mathrm{QCD}}$.
- A key advantage is that you can take the CL data from the lattice paper, and carry out your own α_{s} analysis [Maltman, arXiv:0807.2020].
- A disadvantage is that Q will be limited, though not more so than many determinations from high-energy scattering.

Schrödinger Functional

Wolff, NPB 265 (1986) 506, 567; Lüscher, Narayanan, Weisz, Wolff, NPB 384 (1992) 168

- QCD in a can (well, on a 3-torus), typically $L^{3} \times 2 L, Q=L^{-1}$.
- Apply boundary conditions at caps, filling the can with some sort of chromodynamic muck. Femtoscale hadronization?!
- Parton-hadron duality says energy in can, for $Q \gg \Lambda_{Q C D}$, can be computed with partons, i.e., with perturbation theory.
- Actually, $R^{-1}=-L^{-1} \mathrm{~d} \ln Z\left(A_{\Omega}\right) / \mathrm{d} A_{\Omega}$ (removing an additive UV divergence; $A_{\Omega}=$ boundary potential).
- Vary $Q=L^{-1}$ over potentially enormous range: $\times 10^{3}$ [A/pha].

- No theory of effects suppressed by of $\left(L \Lambda_{Q C D}\right)^{s}$.

Schrödinger Functional

Wolff, NPB 265 (1986) 506, 567; Lüscher, Narayanan, Weisz, Wolff, NPB 384 (1992) 168

- QCD in a can (well, on a 3-torus), typically $L^{3} \times 2 L, Q=L^{-1}$.
- Apply boundary conditions at caps, filling the can with some sort of chromodynamic muck. Femtoscale hadronization?!
- Parton-hadron duality says energy in can, for $Q \gg \Lambda_{Q C D}$, can be computed with partons, i.e., with perturbation theory.
- Actually, $R^{-1}=-L^{-1} \mathrm{~d} \ln Z\left(A_{\Omega}\right) / \mathrm{d} A_{\Omega}$ (removing an additive UV divergence; $A_{\Omega}=$ boundary potential).
- Vary $Q=L^{-1}$ over potentially enormous range: $\times 10^{3}$ [A/pha].

- No theory of effects suppressed by of $\left(L \Lambda_{Q C D}\right)^{s}$.

Running with 4 Flavors

- Reminiscent of the CDF plot, but:
- no pdf uncertainties
- no question of non-QCD contributions
- energy calibration will be good and crosschecked (eventually)

Summary \& Outlook

Selected $\alpha_{s}\left(M_{z}\right)$ Results from Lattice QCD

$\alpha_{\frac{\text { MS }}{}}^{(5)}\left(M_{Z}\right)$	R	Q range	\mathcal{R}	sea	collab	when
0.1170(12)	Wilson loops	3	NNLO	$2+1 \sqrt{ }$ stag	HPQCD	2005
0.1183(8)		7			HPQ	2008
$0.1192(11)$					Maltman ...	2008
$0.1174(12)$	QQ correlator	1-2	NNLO	$2+1 \sqrt{ }$ stag	$\begin{gathered} \text { HPQCD } \\ + \text { KIT } \end{gathered}$	$\underline{2008}$
0.1183(7)		3-6				2010
0.1181(3)(+14/-12)	Adler	5	NNLO	2+1 overlap	JLQCD	2010
$0.1205(8)(5)(+0 /-17)$	Schrödinger	80	asymptote	2+1 Wilson	PACS-CS	$\underline{2009}$
$\Lambda^{(2)} \mathrm{MS}=245(23) \frac{0.5 \mathrm{fm}}{r_{0}} \mathrm{MeV}$	Schrödinger	270	asymptote	2 Wilson	Alpha	$\underline{2004}$
$0.1 \mathrm{xxx}(\mathrm{y})$		1000	asymptote	2+1+1 Wilson		$\underline{2012}$

- Superseded; re-analysis.

Has $\alpha_{s}\left(M_{z}\right)$ from Lattice QCD Changed?

- In 1992, one of the first lattice QCD results reported $\alpha_{s}\left(M_{Z}\right)=0.107 \pm 0.004$.
- Attracted some interest.

- Quenched approximation, so scale not clear.
- Focus on charmonium splittings for Q, argued insensitive to quenching.
- Potential-model argument to justify a correction for $n_{f}=0$ running between $0.75-5.0 \mathrm{GeV}$.
- NNLO PT \& restoring sea quarks could both easily explain 2σ shift.

Future of α_{1}

- Many determinations of α_{s} from lattice QCD are \& will be available.
- No important error from experiment.
- Transparent theory.
- Small uncertainties.
- Tempting to use lattice QCD α_{s} as input for high-energy scattering to:
- understand QCD;
- search for new physics.

Future of α_{1}

Schrödinger (NNLO)	0	Alpha
Schrödinger (NNLO)	-o	PACS-CS
Adler (NNLO)	-	JLQCD
QQ correlator (NNLO)	0	HPQCD
T decays (N3LO)		
Small loops (NNLO) Y decays (NLO)		HPQCD
DIS F_{2} (N3LO)		
DIS jets (NLO)		
$\mathrm{e}^{+} \mathrm{e}^{-}$pre-LEP (NNLO)		
EW fits (N3LO)		
$\mathrm{e}^{+} \mathrm{e}^{-}$events LEP (NNLO)		
0.11	0.1	0.13
O existing result	$a_{s}(N$	

- Many determinations of α_{s} from lattice QCD are \& will be available.
- No important error from experiment.
- Transparent theory.
- Small uncertainties.
- Tempting to use lattice QCD α_{s} as input for high-energy scattering to:
- understand QCD;
- search for new physics.

Homework

- MILC, ETMC, others are generating ensembles of gauge fields with $2+1+1$ sea quarks:
- α_{s} calculations will be repeated here, tested perturbativity of charmed threshold.
- Other methods that can exploit continuum PT will appear.
- Your homework:
- study and familiarize yourself with lattice QCD error budgets;
- ask why unfamiliar items are included;
- ask why expected items are left out.

