

alpha_s from JLQCD

Shoji Hashimoto (KEK) @ alpha_s workshop, Feb 11, 2011.

This work is from ...

JLQCD collaboration

- running a project of dynamical overlap fermion (since 2006).
 Unique applications with exact chiral symmetry
 - Dirac operator spectrum (and chiral condensate), topological susceptibility, VV-AA correlator, nucleon strange quark content,
 - ▶ and alpha_s.
- E. Shintani et al. [JLQCD and TWQCD collaborations], arXiv: 0807.0556 [hep-lat], Phys. Rev. D79, 074510 (2009).
 - Attempt of the method on two-flavor configs.
- E. Shintani et al. [JLQCD collaboration], arXiv:1002.0371 [heplat], Phys. Rev. D80, 074505 (2010).
 - Improved method with the conserved current.
 - Physical 2+1-flavor result.

Extraction of α_s from lattice calc

Basic inputs:

L. Lattice scale

- meson/baryon masses, decay constants (any physical quantity with non-zero mass dimension; there are practical (dis)advantages, though)
- after tuning quark masses to their physical ones.
- 2. Perturbative quantity calculated non-perturbatively on the lattice
 - Perturbative expansion needed to be known at least to α_s^2 .
 - ex: heavy quark potential at short distances, small Wilson loops, ...
 - For better convergence, recommended NOT to use the lattice bare coupling. Better to use some renormalized coupling (Lapage-Mackenzie).

Vacuum polarization

• As the "perturbative" quantity, we chose

 $\int d^4 x e^{iQx} \left\langle 0 \left| J^a_{\mu}(x) J^{b\dagger}_{\nu}(0) \right| 0 \right\rangle = \delta^{ab} \left[(\delta_{\mu\nu} Q^2 - Q_{\mu} Q_{\nu}) \Pi^{(1)}_J(Q) - Q_{\mu} Q_{\nu} \Pi^{(0)}_J(Q) \right]$

- *a*, *b* : isospin indices (we consider flavor non-singlet)
- ▶ J: vector (V) or axial-vector (A) current
- $\Pi_{J}^{(1)}(Q)$: vacuum polarization function (transverse part)
- $\Pi_{J}^{(0)}(Q)$: vacuum polarization function (longitudinal part), vanish for V, proportional to *m* for A
- Q: Euclidean (= space-like) momentum
- Perturbative expansion (+ OPE) known to α_s^4 in the continuum theory.

Euclidean?

Ground state

Typically, we (lattice theorists) use the asymptotic behavior

$$C(t,\mathbf{p}) = \int dp_0 e^{ipx} \frac{Z}{p_0^2 + \mathbf{p}^2 + m^2} \sim \frac{Z}{2E} \exp(-Et), \quad E = \sqrt{m^2 + \mathbf{p}^2}$$

to extract the ground state. Not directly looking at the pole.

Direct look at the correlator

In principle, the same info can be obtained by directly analyzing the correlator

$$\frac{Z_1}{p^2 + m_1^2} + \frac{Z_2}{p^2 + m_2^2} + \dots$$

in the Euclidean ($p^2>0$) region. Here, we consider the large p^2 region (above I GeV²), which is perturbative.

Perturbative expansion

► Vacuum polarization function at high Q²:

expandend using OPE

 $\Pi_J(Q) = \Pi_J^{(1)}(Q) + \Pi_J^{(0)}(Q)$

 $= c + C_0(Q^2, \mu^2, \alpha_s) + C_m^J(Q^2, \mu^2, \alpha_s) \frac{\overline{m}^2(Q)}{Q^2}$

$$+\sum_{q=u,d,s}C^{J}_{\bar{q}q}(Q^{2},\alpha_{s})\frac{\left\langle m_{q}\overline{q}q\right\rangle}{Q^{4}}+C_{GG}(Q^{2},\alpha_{s})\frac{\left\langle (\alpha_{s}/\pi)GG\right\rangle}{Q^{4}}+O\left(\frac{1}{Q^{6}}\right)$$

- c: scheme dependent divergence.
 - derivative is a physical quantity (Adler function)

$$D(Q^2) = -Q^2 \frac{d\Pi(Q^2)}{dQ^2}$$

- Other terms are finite:
 - Perturbative expansion in the continuum scheme (MSbar) is directly applicable to analyze the lattice data. α_s in MSbar appears.
 - C_0 : known to $O(\alpha_s^4)$

Strategy

• Simple, in principle

- L Calculate the V and A two-point functions on the lattice
- 2. Fit the data at high Q^2 with the continuum perturbative formula.
 - Fit parameters: c, $\alpha_s(\mu)$, and condensates.
- 3. Determine the scale 1/a from other quantities. Then, $\alpha_s(\mu)$ is obtained.

Need to be careful about

- Discretization effects? : more important at high Q². how are they estimated?
- Window? : can we find the region where the pert formula safely applies while disc error is small enough?
- Enough sensitivity? : can we get enough precision for $\alpha_s(\mu)$ to be interesting?

Lattice

JLQCD simulations

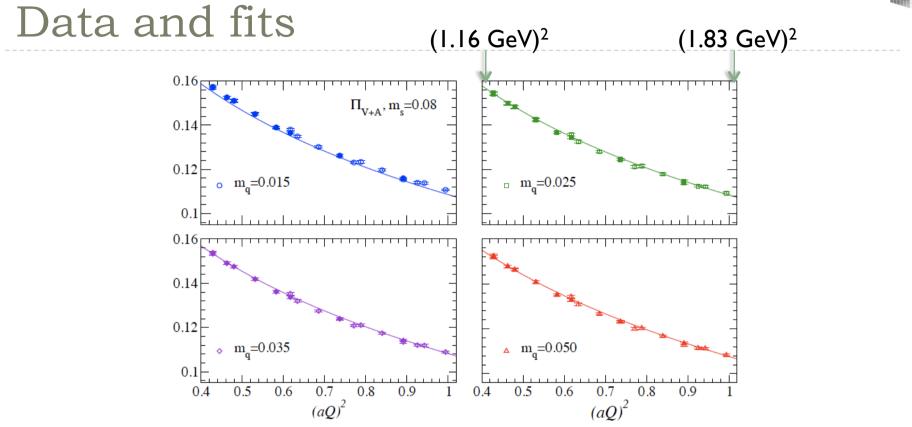
- Dynamical overlap fermion: exact chiral symmetry at m=0, continuum-like Ward-Takahashi identities.
- Lattice is modest, at single a
 - ▶ β=2.30 (Iwasaki), *a*=0.11 fm (1/*a*=1.83 GeV), 16³x48
 - N_f=2+1:5 ud quark masses, covering $m_s/6 \sim m_s$ (x2) s quark masses

Advantage:

- chiral condensate $\langle m_q qq \rangle$ is guaranteed to vanish at $m_q=0$. Additional terms such as $I/(aQ)^2$ or $I/(aQ)^4$ are expected without chiral symmetry.
- $\langle qq \rangle$ calculated from other sources = not a fit parameter, but an input.

Disadvantage:

significantly more costly. Continuum extrapolation is hard (now).

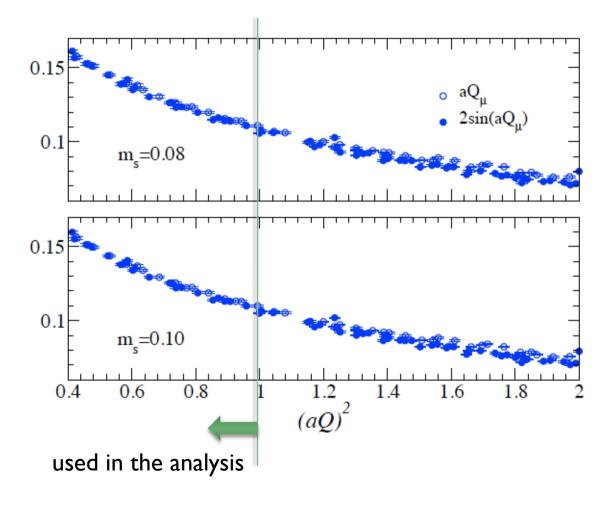


- Filled symbols: $Q_{\mu} \leq 2\pi/L$, open symbols: $Q_{\mu} < 4\pi/L$
- Different Q² points are (highly) correlated. Our fit gives χ²/dof=1.7 for filled symbols or O(100) including open symbols.

(Lattice artifact is not included in the fit function.)

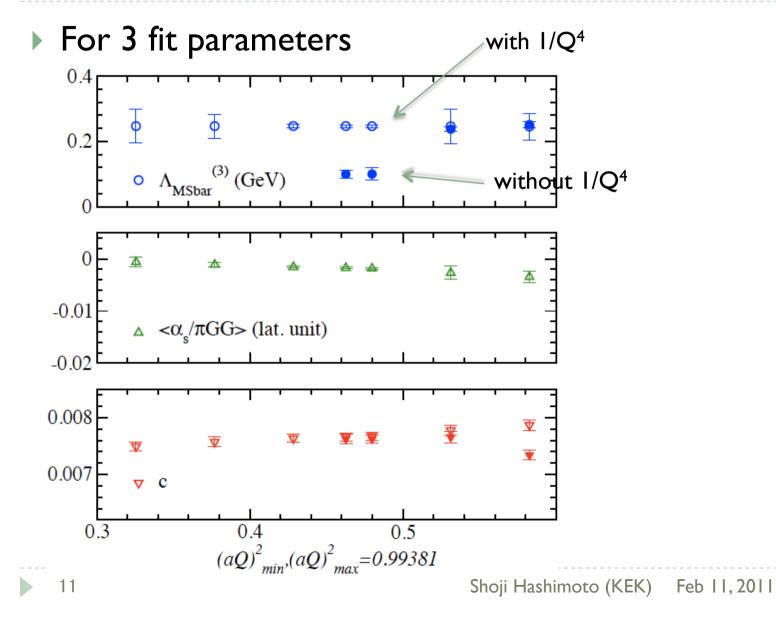
High end of Q^2

With different momentum definitions



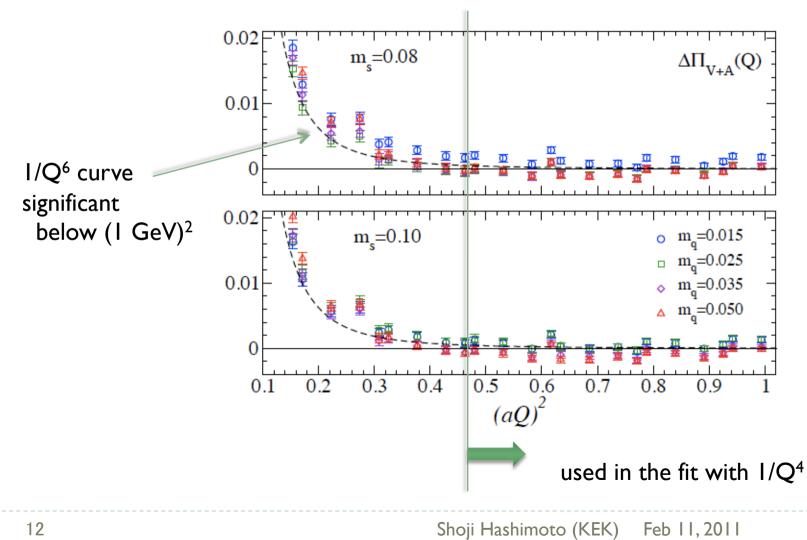
Shoji Hashimoto (KEK) Feb 11, 2011

Low end of Q^2



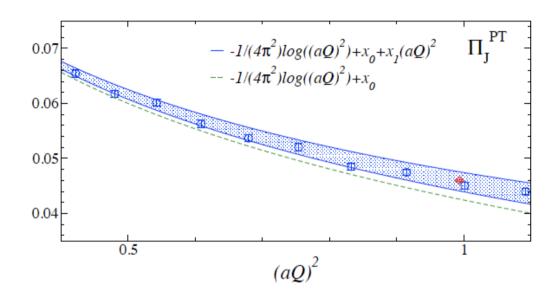
Low end of Q^2

Lattice - Pert



Discretization effect

• One-loop calculation with the lattice (overlap) fermion



Deviation is seen from the continuum form:

$$\Pi_{V+A}(Q) = c - \frac{1}{2\pi^2} \ln(aQ)^2 + 0.0062(40) \cdot (aQ)^2$$

included in the error estimate.

Discretization effect

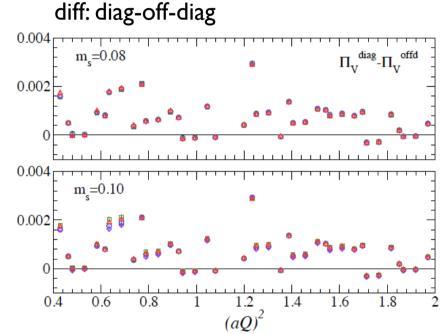
Currents used on the lattice is partly not conserved.

$$\widetilde{\langle J_{\mu}^{(cv)} J_{\nu}^{(loc)\dagger} \rangle}(Q) = (\delta_{\mu\nu}Q^2 - Q_{\mu}Q_{\nu})\Pi_J^{(1)}(Q) - Q_{\mu}Q_{\nu}\Pi_J^{(0)}(Q) + \Delta_{\mu\nu}^J(Q)$$

can be proved by looking at diagonal (μ=ν) and off-diagonal (μ≠ν) determinations:
 Π^{diag}_J(Q) = ⟨J^{cv}_μJ^{loc}_μ⟩(Q)/(Q² - Q̂_μQ̂_μ),

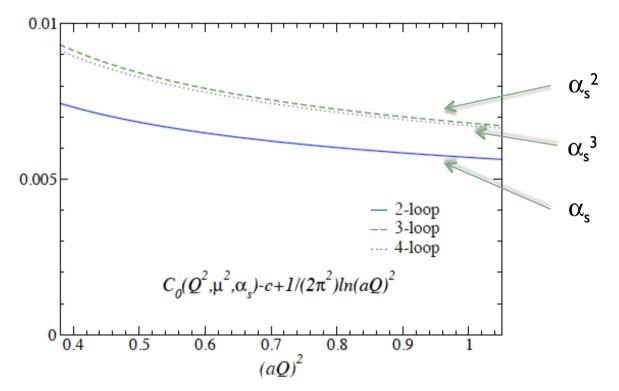
 $\Pi_J^{\text{offd}}(Q) = \langle J_{\mu}^{\text{cv}} J_{\nu}^{\text{loc}} \rangle(Q) / (-\hat{Q}_{\mu} \hat{Q}_{\nu}),$

 Difference is smaller than the estimate given in the previous page.



Perturbative expansion

Convergence



• The contribution of $O(\alpha_s^3)$ is not substantial. The correction of $O(\alpha_s^4)$ is about the same size.

Baikov, Chetyrkin, Kuhn (2008)

Systematic errors

• Error to $\alpha_s^{(5)}(M_Z)$

Sources	Estimated error in $\alpha_s^{(5)}(M_z)$	
Uncorrelated fit	± 0.0003	
Lattice artifact $(\mathcal{O}(a^2) \text{ effect})$	+0.0003	
$\Delta^{V+A}_{\mu u}$	± 0.0002	
Quark condensate	± 0.0001	
Z_m	± 0.0001	
Perturbative expansion	± 0.0003	Dominant error: I <i>la</i> =
$1/Q^2$ expansion	< 0.0001	1.83(1) GeV r ₀ =0.49 fm
$m_{c,b}$	$+0.0001 \\ -0.0003$	1.97(4) GeV f_{π}
Lattice spacing	+0.0013 -0.0010	1.76(8) GeV m_{Ω}
Total (in quadrature)	$^{+0.0014}_{-0.0012}$	

Result and conclusion

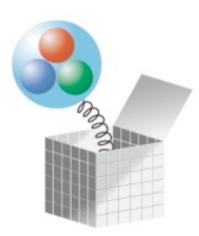
• Our result: Shintani et al., Phys. Rev. D82, 074505 (2010).

$$\alpha_s^{(5)}(M_Z) = 0.1181(3)(^{+14}_{-12})$$

- consistent with other lattice groups
- similar in precision

Final remarks:

- vacuum polarization function:
 - much more useful than I initially thought. (There is the window.)
 - room for improvement (to the level of ± 0.0005)
 - every lattice groups would calculate this anyway. Analytic formulae are available. Should try!



Thank you for your attention.

Backup slides

Shoji Hashimoto (KEK) Feb 11, 2011

Overlap fermion Neuberger, Narayanan (1998)

$$D = \frac{1}{a} \left[1 + \frac{X}{\sqrt{X^{\dagger}X}} \right], X = aD_W - 1$$
$$= \frac{1}{a} \left[1 + \gamma_5 \operatorname{sgn}(aH_W) \right], aH_W = \gamma_5 (aD_W - 1)$$

$$D\gamma_5 + \gamma_5 D = a D\gamma_5 D$$

• Exact chiral symmetry via the Ginsparg-Wilson relation.

$$\delta \overline{\psi} = i \alpha \overline{\psi} \left(1 - \frac{a}{2} D \right) \gamma_5, \, \delta \psi = i \alpha \gamma_5 \left(1 - \frac{a}{2} D \right) \psi$$

- Continuum-like Ward-Takahashi identities hold.
- Index theorem (relation to topology) satisfied.
- Topology change is costly; large-scale simulation is feasible only at fixed topology
 - induces O(I/V) effects in general; can be accounted for in the spectral function analysis

Parameters

$N_f = 2 runs$

- β=2.30 (Iwasaki), a=0.12 fm, 16³x32
- 6 sea quark masses covering $m_s/6 \sim m_s$
- Q=0 sector only, except for Q=-2, -4 runs at m_q =0.050

• ϵ -regime run at m=0.002 (m_q~ 3 MeV), β =2.30

$N_f = 2 + 1 runs$

 β =2.30 (Iwasaki), *a*=0.11 fm, 16^{3} x 48 • 5 ud quark masses, covering $m_s/$ **6~***m*_s x 2 s quark masses Q=0 sector only, except for Q=1 at $m_{ud}=0.015$ Larger volume lattice 24³x48 running at $m_{ud} = 0.015, 0.025$. • ϵ -regime run at m=0.002 (m_a ~ 3 MeV)

