α_{S} from Bottomonium

NORA BRAMBILLA

α_{S} from Bottomonium

NORA BRAMBILLA
N. B., Xavier Garcia, Joan Soto, Antonio Vairo Phys. Rev. D75, 074014 (2007)

α_{s} from PDG06

From W.-M. Yao et al., J. Phys. G 33, 1 (2006)

α_{s} from PDG06

From W.-M. Yao et al., J. Phys. G 33, 1 (2006)

α_{s} from PDG06

From W.-M. Yao et al., J. Phys. G 33, 1 (2006)

Notice that this is an important determination: one of the few at relatively low energy with a relatively small error

We have obtained a new extraction of α_{s} from

$$
R_{\gamma} \equiv \frac{\Gamma(\Upsilon(1 S) \rightarrow \gamma X)}{\Gamma(\Upsilon(1 S) \rightarrow X)}
$$

based on

We have obtained a new extraction of α_{s} from

$$
R_{\gamma} \equiv \frac{\Gamma(\Upsilon(1 S) \rightarrow \gamma X)}{\Gamma(\Upsilon(1 S) \rightarrow X)}
$$

based on

- New data from CLEO (HEP-Ex/0512061)

We have obtained a new extraction of α_{s} from

$$
R_{\gamma} \equiv \frac{\Gamma(\Upsilon(1 S) \rightarrow \gamma X)}{\Gamma(\Upsilon(1 S) \rightarrow X)}
$$

based on

- New data from CLEO (HEP-Ex/0512061)
- Combined use of NRQCD, pNRQCD and SCET
-> make possible a QCD description of the photon spectrum X. Garcia, J. SOTO 04, 05

We have obtained a new extraction of α_{s} from

$$
R_{\gamma} \equiv \frac{\Gamma(\Upsilon(1 S) \rightarrow \gamma X)}{\Gamma(\Upsilon(1 S) \rightarrow X)}
$$

based on

- New data from CLEO (Heprex/0512061)
- Combined use of NRQCD, pNRQCD and SCET
-> make possible a QCD description of the photon spectrum X. GARCIA, J. SOTO O4, 05
- Accurate estimates of the octet contributions from the lattice (boowin, lee, sinclair os) and from continuum (GARCIA, SOTO 05)
- Recent CLEO measurement of the photon spectrum

[^0]
Two types of contributions to the photon spectrum:

Two types of contributions to the photon spectrum:

Fragmentation Contribution

$$
\frac{d \Gamma^{f r a g}}{d z}=\sum_{a} C_{a} \otimes D_{a \rightarrow \gamma} \quad-\infty>\infty \quad 1 \quad+\infty
$$

- GARCIA, SOTO 05

Two types of contributions to the photon spectrum:

Fragmentation Contributions Direct Contributions

- GARCIA, SOTO 05
Two types of contributions to the photon spectrum:

Fragmentation Contributions

Direct Contributions

it is described by NRQCD

$$
\frac{d \Gamma}{d z}=\sum_{i} C_{i}(M, z)\langle\Upsilon| \mathcal{O}_{i}|\Upsilon\rangle
$$

and valid in the central region

-GARCIA, SOTO 05

Two types of contributions to the photon spectrum:

Fragmentation Contributions

- For $z \rightarrow 1$ NRQCD expansion breaks down. Collinear degrees of freedom become relevant
- Large $\log (1-z)$ need to be resummed

Photiadis '85; Bauer et al. '01; Fleming and Leibovich '02 '04

- Shape functions must be introduced. Rothstein and Wise '97 Can be calculated assuming Coulombic state x.g.t. and Soto '04

Taking into account all these contributions the complete spectrum can be well described Garcia, soto o5

Taking into account all these contributions the complete spectrum can be well described garcia, soto os

- from the data plus the theory description a value for $\Gamma_{\gamma g g}^{\text {direct }}$ can be obtained

Taking into account all these contributions the complete spectrum can be well described garcia, soto os

- from the data plus the theory description a value for $\Gamma_{\gamma g g}^{\text {direct }}$ can be obtained
- $\Gamma_{g g g}$ is determined experimentally
in this way $\quad R_{\gamma}=\frac{\Gamma_{g g \gamma}^{\text {direct }}}{\Gamma_{g g g}}=\frac{N_{g g \gamma}^{\text {direct }}}{N_{g g g}}$ is measured ${ }_{R_{\gamma}} \sim \frac{\alpha}{\alpha_{\mathrm{s}}}$
$R_{\gamma}^{e x p}=0.0245 \pm 0.0001 \pm 0.0013$
in this way $\quad R_{\gamma}=\frac{\Gamma_{g g \gamma}^{\text {direct }}}{\Gamma_{g g g}}=\frac{N_{g g \gamma}^{\text {direct }}}{N_{g g g}}$ is measured ${ }_{R_{\gamma} \sim \frac{\alpha}{\alpha_{s}}}$

$$
R_{\gamma}^{e x p}=0.0245 \pm 0.0001 \pm 0.0013
$$

in this way $\quad R_{\gamma}=\frac{\Gamma_{g g \gamma}^{\text {direct }}}{\Gamma_{g g g}}=\frac{N_{g g \gamma}^{\text {direct }}}{N_{g g g}}$ is measured $R_{\gamma} \sim \frac{\alpha}{\alpha_{\mathrm{s}}}$

$$
\frac{R_{\gamma}^{e x p}=0.0245 \pm 0.0001 \pm 0.0013}{\text { Statistical systematic }}
$$

Now we need to obtain a precise theoretical calculation of R_{γ}
in this way $\quad R_{\gamma}=\frac{\Gamma_{g g \gamma}^{\text {direct }}}{\Gamma_{g g g}}=\frac{N_{g g \gamma}^{\text {direct }}}{N_{g g g}}$ is measured $R_{\gamma} \sim \frac{\alpha}{\alpha_{\mathrm{s}}}$

$$
R_{\gamma}^{\exp =} 0.0245 \pm 0.0001 \pm 0.0013
$$

Now we need to obtain a precise theoretical calculation of R_{γ}

From the comparison of the two we get α_{s}
we use NRQCD to calculate the decay

$$
\Gamma(\Upsilon(1 S) \rightarrow X)=\sum_{n} \frac{C_{n}}{m^{d_{n}-4}}\langle\Upsilon(1 S)| O_{n}^{4-\text { fermions }}|\Upsilon(1 S)\rangle
$$

we use NRQCD to calculate the decay
$\Gamma(\Upsilon(1 S) \rightarrow X)=\sum_{n} \frac{C_{n}}{\pi^{d_{n}-4}}\langle\Upsilon(1 S)| O_{n}^{4-\text { fermions }}|\Upsilon(1 S)\rangle$
short distance matching coefficients
we use NRQCD to calculate the decay
$\Gamma(\Upsilon(1 S) \rightarrow X)=\sum_{0} \frac{C_{n}}{\pi^{d_{n}-4}}\langle\Upsilon(1 S)| O_{n}^{4-\text { fermions }}|\Upsilon(1 S)\rangle$
nonperturbative matrix coefficients elements: contain singlet and octet operators
we use NRQCD to calculate the decay
$\Gamma(\Upsilon(1 S) \rightarrow X)=\sum_{0} \frac{C_{n}}{\overbrace{}^{d_{n}-4}}\langle\Upsilon(1 S)| O_{n}^{4-\text { fermions }}|\Upsilon(1 S)\rangle$
nonperturbative matrix coefficients elements: contain singlet and octet operators
we assume the situation:
we use NRQCD to calculate the decay
$\Gamma(\Upsilon(1 S) \rightarrow X)=\sum_{n} \frac{C_{n}}{m^{d_{n}-4}}\langle\Upsilon(1 S)| O_{n}^{4-\text { fermions }}|\Upsilon(1 S)\rangle$
nonperturbative matrix coefficients elements: contain singlet and octet operators
we assume the situation:

- $m_{b} v \gg \Lambda_{Q C D}$
we use NRQCD to calculate the decay
$\Gamma(\Upsilon(1 S) \rightarrow X)=\sum_{n} \frac{C_{n}}{m^{d_{n}-4}}\langle\Upsilon(1 S)| O_{n}^{4-\text { fermions }}|\Upsilon(1 S)\rangle$
nonperturbative matrix coefficients elements: contain singlet and octet operators
we assume the situation:
- $m_{b} v \gg \Lambda_{Q C D}$
- $\frac{\alpha_{s}\left(M_{\Upsilon(1 S)}\right)}{\pi} \sim v^{2} \sim \alpha_{s}^{2}\left(m_{b} v\right)$
we use NRQCD to calculate the decay

short distance matching coefficients
nonperturbative matrix elements: contain singlet and octet operators
we assume the situation:
- $m_{b} v \gg \Lambda_{Q C D}$
- $\frac{\alpha_{s}\left(M_{\Upsilon(1 S)}\right)}{\pi} \sim v^{2} \sim \alpha_{s}^{2}\left(m_{b} v\right)$
- $v^{2}=0.08$

$$
R_{\gamma} \equiv \frac{\Gamma(\Upsilon(1 S) \rightarrow \gamma X)}{\Gamma(\Upsilon(1 S) \rightarrow X)}=\frac{36}{5} \frac{e_{b}^{2} \alpha}{\alpha_{s}} \frac{N}{D}
$$

$$
\begin{aligned}
& N=1+C_{g g \gamma} \frac{\alpha_{s}}{\pi}+C_{\mathcal{P}_{1}\left({ }^{3} S_{1}\right)} \mathcal{R}_{\mathcal{P}_{1}\left({ }^{3} S_{1}\right)}+ \\
& +\frac{\pi}{\alpha_{s}} C_{\gamma O_{8}\left({ }^{1} S_{0}\right)} \mathcal{R}_{O_{8}\left({ }^{1} S_{0}\right)}+\frac{\pi}{\alpha_{s}} C_{\gamma O_{8}\left({ }^{3} P_{0}\right)} \mathcal{R}_{O_{8}\left({ }^{3} P_{0}\right)}+\mathcal{O}_{N}\left(v^{3}\right)
\end{aligned}
$$

$$
\left[\begin{array}{l}
D=1+C_{g g g} \frac{\alpha_{\mathrm{s}}}{\pi}+C_{\mathcal{P}_{1}\left({ }^{3} S_{1}\right)} \mathcal{R}_{\mathcal{P}_{1}\left({ }^{3} S_{1}\right)}+\frac{\pi}{\alpha_{\mathrm{s}}} C_{O_{8}\left({ }^{3} S_{1}\right)} \mathcal{R}_{O_{8}\left({ }^{3} S_{1}\right)} \\
+\frac{\pi}{\alpha_{s}} C_{O_{8}\left({ }^{3} S_{1}\right)} \mathcal{R}_{O_{8}\left({ }^{3} S_{1}\right)}+\frac{\pi}{\alpha_{s}} C_{O_{8}\left({ }^{1} S_{0}\right)} \mathcal{R}_{O_{8}\left({ }^{1} S_{0}\right)}+\frac{\pi}{\alpha_{s}} C_{O_{8}\left({ }^{3} P_{0}\right)} \mathcal{R}_{O_{8}\left({ }^{3} P_{0}\right)}+\mathcal{O}_{D}\left(v^{3}\right)
\end{array}\right)
$$

$$
R_{\gamma} \equiv \frac{\Gamma(\Upsilon(1 S) \rightarrow \gamma X)}{\Gamma(\Upsilon(1 S) \rightarrow X)}=\frac{36}{5} \frac{e_{b}^{2} \alpha}{\alpha_{s}} \frac{N}{D}
$$

$$
\begin{aligned}
& N=1+C_{g g \gamma} \frac{\alpha_{s}}{\pi}+C_{\mathcal{P}_{1}\left({ }^{3} S_{1}\right)} \mathcal{R}_{\mathcal{P}_{1}\left({ }^{3} S_{1}\right)}+ \\
& +\frac{\pi}{\alpha_{s}} C_{\gamma O_{8}\left({ }^{1} S_{0}\right)} \mathcal{R}_{O_{8}\left({ }^{1} S_{0}\right)}+\frac{\pi}{\alpha_{s}} C_{\gamma O_{8}\left({ }^{3} P_{0}\right)} \mathcal{R}_{O_{8}\left({ }^{3} P_{0}\right)}+\mathcal{O}_{N}\left(v^{3}\right)
\end{aligned}
$$

$$
\binom{D=1+C_{g g g} \frac{\alpha_{\mathrm{s}}}{\pi}+C_{\mathcal{P}_{1}\left({ }^{3} S_{1}\right)} \mathcal{R}_{\mathcal{P}_{1}\left({ }^{3} S_{1}\right)}+\frac{\pi}{\alpha_{\mathrm{s}}} C_{O_{8}\left({ }^{3} S_{1}\right)} \mathcal{R}_{O_{8}\left({ }^{3} S_{1}\right)}}{+\frac{\pi}{\alpha_{s}} C_{O_{8}\left({ }^{3} S_{1}\right)} \mathcal{R}_{O_{8}\left({ }^{3} S_{1}\right)}+\frac{\pi}{\alpha_{s}} C_{O_{8}\left({ }^{1} S_{0}\right)} \mathcal{R}_{O_{8}\left({ }^{1} S_{0}\right)}+\frac{\pi}{\alpha_{s}} C_{O_{8}\left({ }^{3} P_{0}\right)} \mathcal{R}_{O_{8}\left({ }^{3} P_{0}\right)}+\mathcal{O}_{D}\left(v^{3}\right)}
$$

WITH

$$
\mathcal{R}_{O}=\frac{\langle\Upsilon(1 S)| O|\Upsilon(1 S)\rangle}{\left(m_{b}^{\Delta_{d}}\langle\Upsilon(1 S)| O_{1}\left({ }^{3} S_{1}\right)|\Upsilon(1 S)\rangle\right)}
$$

$$
R_{\gamma} \equiv \frac{\Gamma(\Upsilon(1 S) \rightarrow \gamma X)}{\Gamma(\Upsilon(1 S) \rightarrow X)}=\frac{36}{5} \frac{e_{b}^{2} \alpha}{\alpha_{s}} \frac{N}{D}
$$

$$
\begin{aligned}
& N=1+C_{g g \gamma} \frac{\alpha_{s}}{\pi}+C_{\mathcal{P}_{1}\left({ }^{3} S_{1}\right)} \mathcal{R}_{\mathcal{P}_{1}\left({ }^{3} S_{1}\right)}+ \\
& +\frac{\pi}{\alpha_{s}} C_{\gamma O_{8}\left({ }^{1} S_{0}\right)} \mathcal{R}_{O_{8}\left({ }^{1} S_{0}\right)}+\frac{\pi}{\alpha_{s}} C_{\gamma O_{8}\left({ }^{3} P_{0}\right)} \mathcal{R}_{O_{8}\left({ }^{3} P_{0}\right)}+\mathcal{O}_{N}\left(v^{3}\right)
\end{aligned}
$$

$$
\binom{D=1+C_{g g g} \frac{\alpha_{\mathrm{s}}}{\pi}+C_{\mathcal{P}_{1}\left({ }^{3} S_{1}\right)} \mathcal{R}_{\mathcal{P}_{1}\left({ }^{3} S_{1}\right)}+\frac{\pi}{\alpha_{\mathrm{s}}} C_{O_{8}\left({ }^{3} S_{1}\right)} \mathcal{R}_{O_{8}\left({ }^{3} S_{1}\right)}}{+\frac{\pi}{\alpha_{s}} C_{O_{8}\left({ }^{3} S_{1}\right)} \mathcal{R}_{O_{8}\left({ }^{3} S_{1}\right)}+\frac{\pi}{\alpha_{s}} C_{O_{8}\left({ }^{1} S_{0}\right)} \mathcal{R}_{O_{8}\left({ }^{1} S_{0}\right)}+\frac{\pi}{\alpha_{s}} C_{O_{8}\left({ }^{3} P_{0}\right)} \mathcal{R}_{O_{8}\left({ }^{3} P_{0}\right)}+\mathcal{O}_{D}\left(v^{3}\right)}
$$

WITH

$$
\mathcal{R}_{O}=\frac{\langle\Upsilon(1 S)| O|\Upsilon(1 S)\rangle}{\left(m_{b}^{\Delta_{d}}\langle\Upsilon(1 S)| O_{1}\left({ }^{3} S_{1}\right)|\Upsilon(1 S)\rangle\right)}
$$

$\mathcal{O}_{1}\left({ }^{3} S_{1}\right)=\psi^{\dagger} \boldsymbol{\sigma} \chi \cdot \chi^{\dagger} \boldsymbol{\sigma} \psi, \quad \mathcal{O}_{8}\left({ }^{1} S_{0}\right)=\psi^{\dagger} T^{a} \chi \chi^{\dagger} T^{a} \psi$,
$\mathcal{O}_{8}\left({ }^{3} S_{1}\right)=\psi^{\dagger} \boldsymbol{\sigma} T^{a} \chi \cdot \chi^{\dagger} \boldsymbol{\sigma} T^{a} \psi . \quad \mathcal{P}_{1}\left({ }^{3} S_{1}\right)=\frac{1}{2}\left[\psi^{\dagger} \boldsymbol{\sigma} \chi \cdot \chi^{\dagger} \boldsymbol{\sigma}\left(-\frac{i}{2} \stackrel{\leftrightarrow}{\mathbf{D}}\right)^{2} \psi+\right.$ h.c. $]$,
$\mathcal{O}_{8}\left({ }^{3} P_{0}\right)=\frac{1}{3} \psi^{\dagger}\left(-\frac{i}{2} \overrightarrow{\mathbf{D}} \cdot \sigma\right) T^{a} \chi \chi^{\dagger}\left(-\frac{i}{2} \overrightarrow{\mathbf{D}} \cdot \sigma\right) T^{a} \psi$

$$
R_{\gamma} \equiv \frac{\Gamma(\Upsilon(1 S) \rightarrow \gamma X)}{\Gamma(\Upsilon(1 S) \rightarrow X)}=\frac{36}{5} \frac{e_{b}^{2} \alpha}{\alpha_{s}} \frac{N}{D}
$$

$$
\begin{aligned}
& N=1+C_{g g \gamma} \frac{\alpha_{s}}{\pi}+C_{\mathcal{P}_{1}\left({ }^{3} S_{1}\right)} \mathcal{R}_{\mathcal{P}_{1}\left({ }^{3} S_{1}\right)}+ \\
& +\frac{\pi}{\alpha_{s}} C_{\gamma O_{8}\left({ }^{1} S_{0}\right)} \mathcal{R}_{O_{8}\left({ }^{1} S_{0}\right)}+\frac{\pi}{\alpha_{s}} C_{\gamma O_{8}\left({ }^{3} P_{0}\right)} \mathcal{R}_{O_{8}\left({ }^{3} P_{0}\right)}+\mathcal{O}_{N}\left(v^{3}\right)
\end{aligned}
$$

$$
D=1+C_{g g g} \frac{\alpha_{\mathrm{s}}}{\pi}+C_{\mathcal{P}_{1}\left({ }^{3} S_{1}\right)} \mathcal{R}_{\mathcal{P}_{1}\left({ }^{3} S_{1}\right)}+\frac{\pi}{\alpha_{\mathrm{s}}} C_{O_{8}\left({ }^{3} S_{1}\right)} \mathcal{R}_{O_{8}\left({ }^{3} S_{1}\right)}
$$

$$
+\frac{\pi}{\alpha_{s}} C_{O_{8}\left({ }^{3} S_{1}\right)} \mathcal{R}_{O_{8}\left({ }^{3} S_{1}\right)}+\frac{\pi}{\alpha_{s}} C_{O_{8}\left({ }^{1} S_{0}\right)} \mathcal{R}_{O_{8}\left({ }^{1} S_{0}\right)}+\frac{\pi}{\alpha_{s}} C_{O_{8}\left({ }^{3} P_{0}\right)} \mathcal{R}_{O_{8}\left({ }^{3} P_{0}\right)}+\mathcal{O}_{D}\left(v^{3}\right)
$$

The matching coefficients are known in the literature:

$$
\begin{array}{cl}
C_{O_{8}\left({ }^{1} S_{0}\right)}=81 /\left(8 \pi^{2}-72\right) & C_{\mathcal{P}_{1}\left({ }^{3} S_{1}\right)}=-\left(19 \pi^{2}-132\right) /\left(12 \pi^{2}-108\right) \\
C_{O_{8}\left({ }^{3} S_{1}\right)}=81 n_{f} /\left(20 \pi^{2}-180\right) & C_{O_{8}\left({ }^{3} P_{0}\right)}=567 /\left(8 \pi^{2}-72\right) \\
C_{\gamma O_{8}\left({ }^{1} S_{0}\right)}=27 /\left(4 \pi^{2}-36\right) & C_{\gamma O_{8}\left({ }^{3} P_{0}\right)}=189 /\left(4 \pi^{2}-36\right) \\
C_{g g \gamma}=-1.71\left(\text { for } n_{f}=4\right) & C_{g g g}=3.79 \pm 0.54\left(\text { for } n_{f}=4\right)
\end{array}
$$

$$
\begin{aligned}
& N=1+C_{g g \gamma} \frac{\alpha_{s}}{\pi}+C_{\mathcal{P}_{1}\left({ }^{3} S_{1}\right)} \mathcal{R}_{\mathcal{P}_{1}\left({ }^{3} S_{1}\right)}+ \\
& +\frac{\pi}{\alpha_{s}} C_{\gamma O_{8}\left({ }^{1} S_{0}\right)} \mathcal{R}_{O_{8}\left({ }^{1} S_{0}\right)}+\frac{\pi}{\alpha_{s}} C_{\gamma O_{8}\left({ }^{3} P_{0}\right)} \mathcal{R}_{O_{8}\left({ }^{3} P_{0}\right)}+\mathcal{O}_{N}\left(v^{3}\right)
\end{aligned}
$$

$D=1+C_{g g g} \frac{\alpha_{\mathrm{s}}}{\pi}+C_{\mathcal{P}_{1}\left({ }^{3} S_{1}\right)} \mathcal{R}_{\mathcal{P}_{1}\left({ }^{3} S_{1}\right)}+\frac{\pi}{\alpha_{\mathrm{s}}} C_{O_{8}\left({ }^{3} S_{1}\right)} \mathcal{R}_{O_{8}\left({ }^{3} S_{1}\right)}$
$+\frac{\pi}{\alpha_{s}} C_{O_{8}\left({ }^{3} S_{1}\right)} \mathcal{R}_{O_{8}\left({ }^{3} S_{1}\right)}+\frac{\pi}{\alpha_{s}} C_{O_{8}\left({ }^{1} S_{0}\right)} \mathcal{R}_{O_{8}\left({ }^{1} S_{0}\right)}+\frac{\pi}{\alpha_{s}} C_{O_{8}\left({ }^{3} P_{0}\right)} \mathcal{R}_{O_{8}\left({ }^{3} P_{0}\right)}+\mathcal{O}_{D}\left(v^{3}\right)$

Octet matrix elements:

$$
R_{\gamma} \equiv \frac{\Gamma(\Upsilon(1 S) \rightarrow \gamma X)}{\Gamma(\Upsilon(1 S) \rightarrow X)}=\frac{36}{5} \frac{e_{b}^{2} \alpha}{\alpha_{s}} \frac{N}{D}
$$

$$
\begin{aligned}
& N=1+C_{g g \gamma} \frac{\alpha_{s}}{\pi}+C_{\mathcal{P}_{1}\left({ }^{3} S_{1}\right)} \mathcal{R}_{\mathcal{P}_{1}\left({ }^{3} S_{1}\right)}+ \\
& +\frac{\pi}{\alpha_{s}} C_{\gamma O_{8}\left({ }^{1} S_{0}\right)} \mathcal{R}_{O_{8}\left({ }^{1} S_{0}\right)}+\frac{\pi}{\alpha_{s}} C_{\gamma O_{8}\left({ }^{3} P_{0}\right)} \mathcal{R}_{O_{8}\left({ }^{3} P_{0}\right)}+\mathcal{O}_{N}\left(v^{3}\right)
\end{aligned}
$$

$D=1+C_{g g g} \frac{\alpha_{\mathrm{s}}}{\pi}+C_{\mathcal{P}_{1}\left({ }^{3} S_{1}\right)} \mathcal{R}_{\mathcal{P}_{1}\left({ }^{3} S_{1}\right)}+\frac{\pi}{\alpha_{\mathrm{s}}} C_{O_{8}\left({ }^{3} S_{1}\right)} \mathcal{R}_{O_{8}\left({ }^{3} S_{1}\right)}$
$+\frac{\pi}{\alpha_{s}} C_{O_{8}\left({ }^{3} S_{1}\right)} \mathcal{R}_{O_{8}\left({ }^{3} S_{1}\right)}+\frac{\pi}{\alpha_{s}} C_{O_{8}\left({ }^{1} S_{0}\right)} \mathcal{R}_{O_{8}\left({ }^{1} S_{0}\right)}+\frac{\pi}{\alpha_{s}} C_{O_{8}\left({ }^{3} P_{0}\right)} \mathcal{R}_{O_{8}\left({ }^{3} P_{0}\right)}+\mathcal{O}_{D}\left(v^{3}\right)$

Octet matrix elements:

$$
R_{\gamma} \equiv \frac{\Gamma(\Upsilon(1 S) \rightarrow \gamma X)}{\Gamma(\Upsilon(1 S) \rightarrow X)}=\frac{36}{5} \frac{e_{b}^{2} \alpha}{\alpha_{s}} \frac{N}{D}
$$

$$
\begin{aligned}
& N=1+C_{g g \gamma} \frac{\alpha_{s}}{\pi}+C_{\mathcal{P}_{1}\left({ }^{3} S_{1}\right)} \mathcal{R}_{\mathcal{P}_{1}\left({ }^{3} S_{1}\right)}+ \\
& +\frac{\pi}{\alpha_{s}} C_{\gamma O_{8}\left({ }^{1} S_{0}\right)} \mathcal{R}_{O_{8}\left({ }^{1} S_{0}\right)}+\frac{\pi}{\alpha_{s}} C_{\gamma O_{8}\left({ }^{3} P_{0}\right)} \mathcal{R}_{O_{8}\left({ }^{3} P_{0}\right)}+\mathcal{O}_{N}\left(v^{3}\right)
\end{aligned}
$$

$D=1+C_{g g g} \frac{\alpha_{\mathrm{s}}}{\pi}+C_{\mathcal{P}_{1}\left({ }^{3} S_{1}\right)} \mathcal{R}_{\mathcal{P}_{1}\left({ }^{3} S_{1}\right)}+\frac{\pi}{\alpha_{\mathrm{s}}} C_{O_{8}\left({ }^{3} S_{1}\right)} \mathcal{R}_{O_{8}\left({ }^{3} S_{1}\right)}$
$+\frac{\pi}{\alpha_{s}} C_{O_{8}\left({ }^{3} S_{1}\right)} \mathcal{R}_{O_{8}\left({ }^{3} S_{1}\right)}+\frac{\pi}{\alpha_{s}} C_{O_{8}\left({ }^{1} S_{0}\right)} \mathcal{R}_{O_{8}\left({ }^{1} S_{0}\right)}+\frac{\pi}{\alpha_{s}} C_{O_{8}\left({ }^{3} P_{0}\right)} \mathcal{R}_{O_{8}\left({ }^{3} P_{0}\right)}+\mathcal{O}_{D}\left(v^{3}\right)$

Octet matrix elements:

- $\mathcal{O}_{8}\left({ }^{1} S_{0}\right)$ and $\mathcal{O}_{8}\left({ }^{3} P_{0}\right)$ have been estimated in the continuum (weak coupling)

$$
R_{\gamma} \equiv \frac{\Gamma(\Upsilon(1 S) \rightarrow \gamma X)}{\Gamma(\Upsilon(1 S) \rightarrow X)}=\frac{36}{5} \frac{e_{b}^{2} \alpha}{\alpha_{s}} \frac{N}{D}
$$

$$
\begin{aligned}
& N=1+C_{g g \gamma} \frac{\alpha_{s}}{\pi}+C_{\mathcal{P}_{1}\left({ }^{3} S_{1}\right)} \mathcal{R}_{\mathcal{P}_{1}\left({ }^{3} S_{1}\right)}+ \\
& +\frac{\pi}{\alpha_{s}} C_{\gamma O_{8}\left({ }^{1} S_{0}\right)} \mathcal{R}_{O_{8}\left({ }^{1} S_{0}\right)}+\frac{\pi}{\alpha_{s}} C_{\gamma O_{8}\left({ }^{3} P_{0}\right)} \mathcal{R}_{O_{8}\left({ }^{3} P_{0}\right)}+\mathcal{O}_{N}\left(v^{3}\right)
\end{aligned}
$$

$D=1+C_{g g g} \frac{\alpha_{\mathrm{s}}}{\pi}+C_{\mathcal{P}_{1}\left({ }^{3} S_{1}\right)} \mathcal{R}_{\mathcal{P}_{1}\left({ }^{3} S_{1}\right)}+\frac{\pi}{\alpha_{\mathrm{s}}} C_{O_{8}\left({ }^{3} S_{1}\right)} \mathcal{R}_{O_{8}\left({ }^{3} S_{1}\right)}$
$+\frac{\pi}{\alpha_{s}} C_{O_{8}\left({ }^{3} S_{1}\right)} \mathcal{R}_{O_{8}\left({ }^{3} S_{1}\right)}+\frac{\pi}{\alpha_{s}} C_{O_{8}\left({ }^{1} S_{0}\right)} \mathcal{R}_{O_{8}\left({ }^{1} S_{0}\right)}+\frac{\pi}{\alpha_{s}} C_{O_{8}\left({ }^{3} P_{0}\right)} \mathcal{R}_{O_{8}\left({ }^{3} P_{0}\right)}+\mathcal{O}_{D}\left(v^{3}\right)$

Octet matrix elements:

- $\mathcal{O}_{8}\left({ }^{1} S_{0}\right)$ and $\mathcal{O}_{8}\left({ }^{3} P_{0}\right)$ have been estimated in the continuum (weak coupling)
- $\mathcal{O}_{8}\left({ }^{3} S_{1}\right)$ and $\mathcal{O}_{8}\left({ }^{1} S_{0}\right)$ have been calculated on the lattice

$$
R_{\gamma} \equiv \frac{\Gamma(\Upsilon(1 S) \rightarrow \gamma X)}{\Gamma(\Upsilon(1 S) \rightarrow X)}=\frac{36}{5} \frac{e_{b}^{2} \alpha}{\alpha_{s}} \frac{N}{D}
$$

$$
\begin{aligned}
& N=1+C_{g g \gamma} \frac{\alpha_{s}}{\pi}+C_{\mathcal{P}_{1}\left({ }^{3} S_{1}\right)} \mathcal{R}_{\mathcal{P}_{1}\left({ }^{3} S_{1}\right)}+ \\
& +\frac{\pi}{\alpha_{s}} C_{\gamma O_{8}\left({ }^{1} S_{0}\right)} \mathcal{R}_{O_{8}\left({ }^{1} S_{0}\right)}+\frac{\pi}{\alpha_{s}} C_{\gamma O_{8}\left({ }^{3} P_{0}\right)} \mathcal{R}_{O_{8}\left({ }^{3} P_{0}\right)}+\mathcal{O}_{N}\left(v^{3}\right)
\end{aligned}
$$

$D=1+C_{g g g} \frac{\alpha_{\mathrm{s}}}{\pi}+C_{\mathcal{P}_{1}\left({ }^{3} S_{1}\right)} \mathcal{R}_{\mathcal{P}_{1}\left({ }^{3} S_{1}\right)}+\frac{\pi}{\alpha_{\mathrm{s}}} C_{O_{8}\left({ }^{3} S_{1}\right)} \mathcal{R}_{O_{8}\left({ }^{3} S_{1}\right)}$

$$
\left.+\frac{\pi}{\alpha_{s}} C_{O_{8}\left({ }^{3} S_{1}\right)} \mathcal{R}_{O_{8}\left({ }^{3} S_{1}\right)}+\frac{\pi}{\alpha_{s}} C_{O_{8}\left({ }^{1} S_{0}\right)} \mathcal{R}_{O_{8}\left({ }^{1} S_{0}\right)}+\frac{\pi}{\alpha_{s}} C_{O_{8}\left({ }^{3} P_{0}\right)} \mathcal{R}_{O_{8}\left({ }^{3} P_{0}\right)}+\mathcal{O}_{D}\left(v^{3}\right)\right]
$$

Octet matrix elements:

- $\mathcal{O}_{8}\left({ }^{1} S_{0}\right)$ and $\mathcal{O}_{8}\left({ }^{3} P_{0}\right)$ have been estimated in the continuum (weak coupling)
- $\mathcal{O}_{8}\left({ }^{3} S_{1}\right)$ and $\mathcal{O}_{8}\left({ }^{1} S_{0}\right)$ have been calculated on the lattice

The continuum and lattice calculation of $\mathcal{O}_{8}\left({ }^{1} S_{0}\right)$ are compatible

$$
R_{\gamma} \equiv \frac{\Gamma(\Upsilon(1 S) \rightarrow \gamma X)}{\Gamma(\Upsilon(1 S) \rightarrow X)}=\frac{36}{5} \frac{e_{b}^{2} \alpha}{\alpha_{s}} \frac{N}{D}
$$

$$
\begin{aligned}
& N=1+C_{g g \gamma} \frac{\alpha_{s}}{\pi}+C_{\mathcal{P}_{1}\left({ }^{3} S_{1}\right)} \mathcal{R}_{\mathcal{P}_{1}\left({ }^{3} S_{1}\right)}+ \\
& +\frac{\pi}{\alpha_{s}} C_{\gamma O_{8}\left({ }^{1} S_{0}\right)} \mathcal{R}_{O_{8}\left({ }^{1} S_{0}\right)}+\frac{\pi}{\alpha_{s}} C_{\gamma O_{8}\left({ }^{3} P_{0}\right)} \mathcal{R}_{O_{8}\left({ }^{3} P_{0}\right)}+\mathcal{O}_{N}\left(v^{3}\right)
\end{aligned}
$$

$$
\left(\begin{array}{l}
D=1+C_{g g g} \frac{\alpha_{\mathrm{s}}}{\pi}+C_{\mathcal{P}_{1}\left({ }^{3} S_{1}\right)} \mathcal{R}_{\mathcal{P}_{1}\left({ }^{3} S_{1}\right)}+\frac{\pi}{\alpha_{\mathrm{s}}} C_{O_{8}\left({ }^{3} S_{1}\right)} \mathcal{R}_{O_{8}\left({ }^{3} S_{1}\right)} \\
+\frac{\pi}{\alpha_{s}} C_{O_{8}\left({ }^{3} S_{1}\right)} \mathcal{R}_{O_{8}\left({ }^{3} S_{1}\right)}+\frac{\pi}{\alpha_{s}} C_{O_{8}\left({ }^{1} S_{0}\right)} \mathcal{R}_{O_{8}\left({ }^{1} S_{0}\right)}+\frac{\pi}{\alpha_{s}} C_{O_{8}\left({ }^{3} P_{0}\right)} \mathcal{R}_{O_{8}\left({ }^{3} P_{0}\right)}+\mathcal{O}_{D}\left(v^{3}\right)
\end{array}\right.
$$

$$
R_{\gamma} \equiv \frac{\Gamma(\Upsilon(1 S) \rightarrow \gamma X)}{\Gamma(\Upsilon(1 S) \rightarrow X)}=\frac{36}{5} \frac{e_{b}^{2} \alpha}{\alpha_{s}} \frac{N}{D}
$$

$$
\begin{aligned}
& N=1+C_{g g \gamma} \frac{\alpha_{s}}{\pi}+C_{\mathcal{P}_{1}\left({ }^{3} S_{1}\right)} \mathcal{R}_{\mathcal{P}_{1}\left({ }^{3} S_{1}\right)}+ \\
& +\frac{\pi}{\alpha_{s}} C_{\gamma O_{8}\left({ }^{1} S_{0}\right)} \mathcal{R}_{O_{8}\left({ }^{1} S_{0}\right)}+\frac{\pi}{\alpha_{s}} C_{\gamma O_{8}\left({ }^{3} P_{0}\right)} \mathcal{R}_{O_{8}\left({ }^{3} P_{0}\right)}+\mathcal{O}_{N}\left(v^{3}\right)
\end{aligned}
$$

$$
\binom{D=1+C_{g g g} \frac{\alpha_{\mathrm{s}}}{\pi}+C_{\mathcal{P}_{1}\left({ }^{3} S_{1}\right)} \mathcal{R}_{\mathcal{P}_{1}\left({ }^{3} S_{1}\right)}+\frac{\pi}{\alpha_{\mathrm{s}}} C_{O_{8}\left({ }^{3} S_{1}\right)} \mathcal{R}_{O_{8}\left({ }^{3} S_{1}\right)}}{+\frac{\pi}{\alpha_{s}} C_{O_{8}\left({ }^{3} S_{1}\right)} \mathcal{R}_{O_{8}\left({ }^{3} S_{1}\right)}+\frac{\pi}{\alpha_{s}} C_{O_{8}\left({ }^{1} S_{0}\right)} \mathcal{R}_{O_{8}\left({ }^{1} S_{0}\right)}+\frac{\pi}{\alpha_{s}} C_{O_{8}\left({ }^{3} P_{0}\right)} \mathcal{R}_{O_{8}\left({ }^{3} P_{0}\right)}+\mathcal{O}_{D}\left(v^{3}\right)}
$$

- we include all contributions up to $O\left(v^{2}\right)$ in our counting: radiative, relativistic, octet

$$
R_{\gamma} \equiv \frac{\Gamma(\Upsilon(1 S) \rightarrow \gamma X)}{\Gamma(\Upsilon(1 S) \rightarrow X)}=\frac{36}{5} \frac{e_{b}^{2} \alpha}{\alpha_{s}} \frac{N}{D}
$$

$$
\begin{aligned}
& N=1+C_{g g \gamma} \frac{\alpha_{s}}{\pi}+C_{\mathcal{P}_{1}\left({ }^{3} S_{1}\right)} \mathcal{R}_{\mathcal{P}_{1}\left({ }^{3} S_{1}\right)}+ \\
& +\frac{\pi}{\alpha_{s}} C_{\gamma O_{8}\left({ }^{1} S_{0}\right)} \mathcal{R}_{O_{8}\left({ }^{1} S_{0}\right)}+\frac{\pi}{\alpha_{s}} C_{\gamma O_{8}\left({ }^{3} P_{0}\right)} \mathcal{R}_{O_{8}\left({ }^{3} P_{0}\right)}+\mathcal{O}_{N}\left(v^{3}\right)
\end{aligned}
$$

$$
\left(\begin{array}{l}
D=1+C_{g g g} \frac{\alpha_{\mathrm{s}}}{\pi}+C_{\mathcal{P}_{1}\left({ }^{3} S_{1}\right)} \mathcal{R}_{\mathcal{P}_{1}\left({ }^{3} S_{1}\right)}+\frac{\pi}{\alpha_{\mathrm{s}}} C_{O_{8}\left({ }^{3} S_{1}\right)} \mathcal{R}_{O_{8}\left({ }^{3} S_{1}\right)} \\
+\frac{\pi}{\alpha_{s}} C_{O_{8}\left({ }^{3} S_{1}\right)} \mathcal{R}_{O_{8}\left({ }^{3} S_{1}\right)}+\frac{\pi}{\alpha_{s}} C_{O_{8}\left({ }^{1} S_{0}\right)} \mathcal{R}_{O_{8}\left({ }^{1} S_{0}\right)}+\frac{\pi}{\alpha_{s}} C_{O_{8}\left({ }^{3} P_{0}\right)} \mathcal{R}_{O_{8}\left({ }^{3} P_{0}\right)}+\mathcal{O}_{D}\left(v^{3}\right)
\end{array}\right.
$$

- we include all contributions up to $O\left(v^{2}\right)$ in our counting: radiative, relativistic, octet $-->$ accurate at NLO in v^{2} and α_{s}

$$
R_{\gamma} \equiv \frac{\Gamma(\Upsilon(1 S) \rightarrow \gamma X)}{\Gamma(\Upsilon(1 S) \rightarrow X)}=\frac{36}{5} \frac{e_{b}^{2} \alpha}{\alpha_{s}} \frac{N}{D}
$$

$$
\begin{aligned}
& N=1+C_{g g \gamma} \frac{\alpha_{s}}{\pi}+C_{\mathcal{P}_{1}\left({ }^{3} S_{1}\right)} \mathcal{R}_{\mathcal{P}_{1}\left({ }^{3} S_{1}\right)}+ \\
& +\frac{\pi}{\alpha_{s}} C_{\gamma O_{\mathbf{s}}\left({ }^{1} S_{0}\right)} \mathcal{R}_{O_{\mathbf{s}}\left({ }^{1} S_{0}\right)}+\frac{\pi}{\alpha_{s}} C_{\gamma_{\mathbf{s}}\left({ }^{3} P_{0}\right)} \mathcal{R}_{O_{\mathbf{8}}\left({ }^{3} P_{0}\right)}+\mathcal{O}_{N}\left(v^{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& D=1+C_{g g g} \frac{\alpha_{\mathrm{s}}}{\pi}+C_{\mathcal{P}_{1}\left({ }^{3} S_{1}\right)} \mathcal{R}_{\mathcal{P}_{1}\left(S_{1}\right)}+\frac{\pi}{\alpha_{\mathrm{s}}} C_{O_{\mathbf{s}}\left(S_{S_{1}}\right)} \mathcal{R}_{\mathbf{o}_{\mathbf{s}}\left({ }_{S} S_{1}\right)} \\
& +\frac{\pi}{\alpha_{s}} C_{o_{8}\left(3 S_{1}\right)} \mathcal{R}_{O_{s}\left({ }^{3} S_{1}\right)}^{\pi}+\frac{\pi}{\alpha_{s}} C_{o_{s}\left(1 S_{0}\right)} \mathcal{R}_{o_{s}\left(1 S_{0}\right)}+\frac{\pi}{\alpha_{s}} C_{o_{\mathbf{s}}\left(3 P_{0}\right)} \mathcal{R}_{o_{8}\left(3 P_{0}\right)}+\mathcal{O}_{D}\left(v^{3}\right)
\end{aligned}
$$

- we include all contributions up to $O\left(v^{2}\right)$ in our counting: radiative, relativistic, octet $-->$ accurate at NLO in v^{2} and α_{s}
- the nonperturbative contributions are the same in N and D apart from $\mathcal{R}_{O_{8}\left({ }^{3} S_{1}\right)}$ that turns out to be small

Two different extractions

- C (for continuum)
- L (for lattice)

The Analysis

Two different extractions

- C (for continuum)

Uses all the weak-coupling expressions available and lattice calculation for $\mathcal{O}_{8}\left({ }^{3} S_{1}\right)$
L (for lattice)

The Analysis

Two different extractions
C (for continuum)
Uses all the weak-coupling expressions available and lattice calculation for $\mathcal{O}_{8}\left({ }^{3} S_{1}\right)$
L (for lattice)
Uses all lattice calculations available and NRQCD v-scaling for $\mathcal{O}_{8}\left({ }^{3} P_{0}\right)$

The Analysis

Two different extractions

C (for continuum)

Uses all the weak-coupling expressions available and lattice calculation for $\mathcal{O}_{8}\left({ }^{3} S_{1}\right)$
L (for lattice)
Uses all lattice calculations available and NRQCD v-scaling for $\mathcal{O}_{8}\left({ }^{3} P_{0}\right)$

The two procedures give very similar results. We take the average as the final value and as error the range of the two determinations

The Analysis

Two different extractions

C (for continuum)

Uses all the weak-coupling expressions available and lattice calculation for $\mathcal{O}_{8}\left({ }^{3} S_{1}\right)$
L (for lattice)
Uses all lattice calculations available and NRQCD v-scaling for $\mathcal{O}_{8}\left({ }^{3} P_{0}\right)$

The two procedures give very similar results. We take the average as the final value and as error the range of the two determinations

Common features of C and L :

The Analysis

Two different extractions

C (for continuum)

Uses all the weak-coupling expressions available and lattice calculation for $\mathcal{O}_{8}\left({ }^{3} S_{1}\right)$
L (for lattice)
Uses all lattice calculations available and NRQCD v-scaling for $\mathcal{O}_{8}\left({ }^{3} P_{0}\right)$

The two procedures give very similar results. We take the average as the final value and as error the range of the two determinations

Common features of C and L :

- We do not expand the $\mathrm{O}(\mathrm{v} \wedge 2)$ terms in the denominator-
> small terms add up to almost one

The Analysis

Two different extractions

C (for continuum)

Uses all the weak-coupling expressions available and lattice calculation for $\mathcal{O}_{8}\left({ }^{3} S_{1}\right)$

- L (for lattice)

Uses all lattice calculations available and NRQCD v-scaling for $\mathcal{O}_{8}\left({ }^{3} P_{0}\right)$

The two procedures give very similar results. We take the average as the final value and as error the range of the two determinations

Common features of C and L :

- We do not expand the $O\left(v^{\wedge} 2\right)$ terms in the denominator-
$>$ small terms add up to almost one
- Results are rather insensitive to the values of $O_{8}\left({ }^{1} S_{0}\right) \quad O_{8}\left({ }^{3} P_{0}\right)$ they would be sensitive to $O_{8}\left({ }^{3} S_{1}\right)$ that however is very small rom the lattice evaluation (smaller than NRQCD power counting)

- L (for lattice)

$$
\begin{aligned}
& 0 \leq \mathcal{R}_{O_{8}\left({ }^{1} S_{0}\right)} \leq 4.8 \times 10^{-3} \\
& 0 \leq \mathcal{R}_{O_{8}\left({ }^{3} S_{1}\right)} \leq 1.6 \times 10^{-4} \\
&-2.4 \times 10^{-4} \leq \mathcal{R}_{O_{8}\left({ }^{3} P_{0}\right)} \leq 2.4 \times 10^{-4} \\
&-0.052 \leq \mathcal{R}_{\mathcal{P}_{1}\left({ }^{3} S_{1}\right)} \leq-0.035
\end{aligned}
$$

- L (for lattice)

- L (for lattice)

L (for lattice)

$2.4 \times 10^{-4} \leq \mathcal{R}_{O_{8}\left({ }^{3} P_{0}\right)} \leq 2.4 \times 10^{-4}$
maximum value
$0 \leq \mathcal{R}_{O_{8}\left({ }^{1} S_{0}\right)} \leq 4.8 \times 10^{-3} \quad$ lattice data plus 100%
$0 \leq \mathcal{R}_{O_{8}\left({ }^{3} S_{1}\right)} \leq 1.6 \times 10^{-4}$

Gremm Kapustin $\mathcal{R}_{\mathcal{P}_{1}\left({ }^{3} S_{1}\right)}=\frac{E_{\text {bin }}}{m_{b}}=-\frac{\left(C_{F} \alpha_{\mathrm{s}}\right)^{2}}{4}$,
The uncertainty on α_{s} induced by a given parameter is evaluated by varying it in the range and keeping all other parameters at their central values. We obtain
$\delta_{C_{g g 9}} \alpha_{\mathrm{s}}=0.0026$,
$\delta_{\mathcal{R}_{O_{8}\left({ }^{1} S_{0}\right)}} \alpha_{\mathrm{s}}=0.0040$,
$\delta_{\mathcal{R}_{O_{8}\left({ }^{3} S_{1}\right)}} \alpha_{\mathrm{s}}=0.0026$,
$\delta_{\mathcal{R}_{O_{8}\left({ }^{3} P_{0}\right)}} \alpha_{\mathrm{s}}=0.0027$,
$\delta_{\mathcal{R}_{\mathcal{P}_{1}\left({ }^{3} S_{1}\right)}} \alpha_{\mathrm{s}}=0.0014$,
$\delta_{\mathcal{R}_{\mathcal{O}_{N}\left(v^{3}\right)}} \alpha_{\mathrm{s}}=0.0044$,
$\delta_{\mathcal{R}_{\mathcal{O}_{D}\left(v^{3}\right)}} \alpha_{\mathrm{s}}=0.0033$,
$\delta_{R_{\gamma}}^{\exp \alpha_{\mathrm{s}}}=0.0085$.
estimate higher order corr $-0.04 \leq \mathcal{O}_{N}\left(v^{3}\right), \mathcal{O}_{D}\left(v^{3}\right) \leq 0.04$

We sum up linearly the errors $\delta_{\mathcal{R}_{O_{8}\left({ }^{1} S_{0}\right)}}$ and $\delta_{\mathcal{R}_{O_{8}\left({ }^{3} S_{1}\right)}}$, which are correlated, : sum the rest quadratically

$$
\begin{gathered}
\alpha_{\mathrm{s}}\left(M_{\Upsilon(1 S)}\right)=0.183 \pm 0.013 . \\
\alpha_{\mathrm{s}}\left(M_{Z}\right)=0.119 \pm 0.005 .
\end{gathered}
$$

L (for lattice)

$2.4 \times 10^{-4} \leq \mathcal{R}_{O_{8}\left({ }^{3} P_{0}\right)} \leq 2.4 \times 10^{-4}$
maximum value
$0 \leq \mathcal{R}_{O_{8}\left({ }^{1} S_{0}\right)} \leq 4.8 \times 10^{-3} \quad$ lattice data plus 100%
$0 \leq \mathcal{R}_{O_{8}\left({ }^{3} S_{1}\right)} \leq 1.6 \times 10^{-4}$

Gremm Kapustin $\mathcal{R}_{\mathcal{P}_{1}\left({ }^{3} S_{1}\right)}=\frac{E_{\text {bin }}}{m_{b}}=-\frac{\left(C_{F} \alpha_{\mathrm{s}}\right)^{2}}{4}$,

$$
\alpha_{\mathrm{s}}\left(M_{\Upsilon(1 S)}\right)=0.183
$$

The uncertainty on α_{s} induced by a given parameter is evaluated by varying it in the range and keeping all other parameters at their central values. We obtain
$\delta_{C_{g g 9}} \alpha_{\mathrm{s}}=0.0026$,
$\delta_{\mathcal{R}_{\mathcal{O}_{8}\left({ }^{1}{ }^{1}\right)}} \alpha_{\mathrm{s}}=0.0040$,
$\delta_{\mathcal{R}_{O_{8}\left({ }^{3} S_{1}\right)}} \alpha_{\mathrm{s}}=0.0026$,
$\delta_{\mathcal{R}_{O_{8}\left({ }^{3} P_{0}\right)}} \alpha_{\mathrm{s}}=0.0027$,
$\delta_{\mathcal{R}_{\mathcal{P}_{1}\left(S_{1}\right)}} \alpha_{\mathrm{s}}=0.0014$,
$\delta_{\mathcal{R}_{\mathcal{O}_{N}\left(v^{3}\right)}} \alpha_{\mathrm{s}}=0.0044$,
$\delta_{\mathcal{R}_{\mathcal{O}_{D}\left(v^{3}\right)}} \alpha_{\mathrm{s}}=0.0033$,
$\delta_{R_{\gamma}} \exp \alpha_{\mathrm{s}}=0.0085$.
estimate higher order corr $\quad-0.04 \leq \mathcal{O}_{N}\left(v^{3}\right), \mathcal{O}_{D}\left(v^{3}\right) \leq 0.04$

We sum up linearly the errors $\delta_{\mathcal{R}_{\mathcal{O}_{8}\left({ }^{1} S_{0}\right)}}$ and $\delta_{\mathcal{R}_{O_{8}\left(3 S_{1}\right)}}$, which are correlated, : sum the rest quadratically

$$
\begin{gathered}
\alpha_{\mathrm{s}}\left(M_{\Upsilon(1 S)}\right)=0.183 \pm 0.013 . \\
\alpha_{\mathrm{s}}\left(M_{Z}\right)=0.119 \pm 0.005 .
\end{gathered}
$$

- C (for continuum $)$

In weak coupling the matrix elements can be calculated, the same central value used to fit the photon spectrum in Garcia-Soto 04 is used
$\langle\Upsilon(1 S)| O_{1}\left({ }^{3} S_{1}\right)|\Upsilon(1 S)\rangle$ is needed at NNLO
$\mathcal{R}_{\mathcal{P}_{1}\left({ }^{3} S_{1}\right)}=-0.015$,

$$
\mathcal{R}_{O_{8}\left({ }^{3} S_{1}\right)}=8 \times 10^{-5} .
$$

$\mathcal{R}_{O_{8}\left({ }^{1} S_{0}\right)}=0.0012$,
$\mathcal{R}_{O_{8}\left({ }^{3} P_{0}\right)}=0.0011$.

- C (for continuum $)$

In weak coupling the matrix elements can be calculated, the same central value used to fit the photon spectrum in Garcia-Soto 04 is used
$\langle\Upsilon(1 S)| O_{1}\left({ }^{3} S_{1}\right)|\Upsilon(1 S)\rangle$ is needed at NNLO

$$
\begin{array}{ll}
\mathcal{R}_{\mathcal{P}_{1}\left({ }^{3} S_{1}\right)}=-0.015, & \mathcal{R}_{O_{8}\left({ }^{3} S_{1}\right)}=8 \times 10^{-5} \\
\mathcal{R}_{O_{8}\left({ }^{(} S_{0}\right)}
\end{array}
$$

To get the errors we make the variation

$$
\begin{aligned}
& 0.18 \leq \alpha_{\mathrm{s}}\left(m_{b} v\right) \leq 0.38 \\
& 0.32 \leq \alpha_{\mathrm{S}}\left(m_{b} v^{2}\right) \leq 1.3 \\
& 0 \leq \mathcal{R}_{O_{8}\left({ }^{3} S_{1}\right)} \leq 1.6 \times 10^{-4}
\end{aligned}
$$

- C (for continuum)

In weak coupling the matrix elements can be calculated, the same central value used to fit the photon spectrum in Garcia-Soto 04 is used
$\langle\Upsilon(1 S)| O_{1}\left({ }^{3} S_{1}\right)|\Upsilon(1 S)\rangle$ is needed at NNLO

$$
\begin{array}{ll}
\mathcal{R}_{\mathcal{P}_{1}\left({ }^{3} S_{1}\right)}=-0.015, & \mathcal{R}_{O_{8}\left({ }^{3} S_{1}\right)}=8 \times 10^{-5} \\
\mathcal{R}_{O_{8}\left({ }^{1} S_{0}\right)} & =0.0012 \\
\mathcal{R}_{O_{8}\left({ }^{3} P_{0}\right)} & =0.0011
\end{array}
$$

To get the errors we make the variation

$$
\begin{array}{ll}
0.18 \leq \alpha_{\mathrm{s}}\left(m_{b} v\right) & \leq 0.38 \\
0.32 \leq \alpha_{\mathrm{s}}\left(m_{b} v^{2}\right) & \leq 1.3
\end{array}
$$

$$
0 \leq \mathcal{R}_{O_{8}\left({ }^{3} S_{1}\right)} \leq 1.6 \times 10^{-4}
$$

this large variation expected to account for uncertainties
$O\left(\Lambda_{Q C D}\right)$
in the weak coupling estimate of the octets

- C (for continuum)

In weak coupling the matrix elements can be calculated, the same central value used to fit the photon spectrum in Garcia-Soto 04 is used
$\langle\Upsilon(1 S)| O_{1}\left({ }^{3} S_{1}\right)|\Upsilon(1 S)\rangle$ is needed at NNLO

$$
\begin{array}{ll}
\mathcal{R}_{\mathcal{P}_{1}\left({ }^{3} S_{1}\right)}=-0.015, & \mathcal{R}_{O_{8}\left({ }^{3} S_{1}\right)}=8 \times 10^{-5} \\
\mathcal{R}_{O_{8}\left({ }^{1} S_{0}\right)} & =0.0012 \\
\mathcal{R}_{O_{8}\left({ }^{3} P_{0}\right)} & =0.0011
\end{array}
$$

To get the errors we make the variation

$$
\begin{array}{rlr}
0.18 \leq \alpha_{\mathrm{s}}\left(m_{b} v\right) \leq 0.38 & \text { this large variation expected to } \\
0.32 \leq \alpha_{\mathrm{s}}\left(m_{b} v^{2}\right) \leq 1.3 & \text { account for uncertainties } \\
0 \leq \mathcal{R}_{O_{8}\left(S_{1}\right)} \leq 1.6 \times 10^{-4} & O\left(\Lambda_{Q C D}\right)
\end{array} \quad \begin{array}{ll}
\text { in the weak coupling } \\
\text { the upper limit of } O_{8}\left({ }^{3} S_{1}\right) & \text { estimate of the octets }
\end{array}
$$

corresponds to twice the lattice value

- C (for continuum)

The uncertainty on α_{s} induced by a given parameter is evaluated by varying it in the range and keeping all other parameters at their central values. We obtain

$$
\begin{aligned}
& \delta_{C_{g g g}} \alpha_{\mathrm{s}}=0.0009, \\
& \delta_{\alpha_{\mathrm{s}}\left(m_{b} v\right)} \alpha_{\mathrm{s}}={ }_{-0.0064}^{+0.0006}, \\
& \delta_{\alpha_{\mathrm{s}}\left(m_{b} v^{2}\right)} \alpha_{\mathrm{s}}={ }_{-0.0076}^{+0.0083}, \\
& \delta_{\mathcal{R}_{O_{8}\left({ }^{3} S_{1}\right)}} \alpha_{\mathrm{s}}=0.0016, \\
& \delta_{\mathcal{R}_{\mathcal{O}_{N}\left(v^{3}\right)}} \alpha_{\mathrm{s}}={ }_{-0.0034}^{+0.0035} \\
& \delta_{\mathcal{R}_{\mathcal{O}_{D}\left(v^{3}\right)}} \alpha_{\mathrm{s}}={ }_{-0.0025}^{+0.0026} \\
& \delta_{R_{\gamma}^{\exp } \alpha_{\mathrm{s}}}=0.01 .
\end{aligned}
$$

We assume these errors to be independent and sum them up quadratically, obtaining

$$
\begin{aligned}
& \alpha_{\mathrm{s}}\left(M_{\Upsilon(1 S)}\right)=0.185_{-0.015}^{+0.014} \\
& \alpha_{\mathrm{S}}\left(M_{Z}\right)=0.120_{-0.006}^{+0.005}
\end{aligned}
$$

Errors Discussion

- Results are rather insensitive to the values of $O_{8}\left({ }^{1} S_{0}\right) \quad O_{8}\left({ }^{3} P_{0}\right)$ they would be sensitive to $O_{8}\left({ }^{3} S_{1}\right)$ that however is very small from the lattice evaluation (smaller than NRQCD power counting)
- Results are rather insensitive to the values of $O_{8}\left({ }^{1} S_{0}\right) O_{8}\left({ }^{3} P_{0}\right)$
they would be sensitive to $O_{8}\left({ }^{3} S_{1}\right)$ that however is very small from the lattice evaluation (smaller than NRQCD power counting)
How reliable is this extraction?
- Results are rather insensitive to the values of $O_{8}\left({ }^{1} S_{0}\right) \quad O_{8}\left({ }^{3} P_{0}\right)$
they would be sensitive to $O_{8}\left({ }^{3} S_{1}\right)$ that however is very small from the lattice evaluation (smaller than NRQCD power counting)
How reliable is this extraction?
It is an extraction at NLO in alpha_s(m_b) and $v \wedge 2$
- Results are rather insensitive to the values of $O_{8}\left({ }^{1} S_{0}\right) \quad O_{8}\left({ }^{3} P_{0}\right)$
they would be sensitive to $O_{8}\left({ }^{3} S_{1}\right)$ that however is very small from the lattice evaluation (smaller than NRQCD power counting)
How reliable is this extraction?
It is an extraction at NLO in alpha_s(m_b) and $v \wedge 2$ at this order terms corresponding to new feature
(relativistic, radiative, octet) already appear
each of them is of natural size but the sum is of order 1
- Results are rather insensitive to the values of $O_{8}\left({ }^{1} S_{0}\right) \quad O_{8}\left({ }^{3} P_{0}\right)$
they would be sensitive to $O_{8}\left({ }^{3} S_{1}\right)$ that however is very small from the lattice evaluation (smaller than NRQCD power counting)
How reliable is this extraction?
It is an extraction at NLO in alpha_s(m_b) and $v \wedge 2$ at this order terms corresponding to new feature
(relativistic, radiative, octet) already appear
each of them is of natural size but the sum is of order 1 What about the higher order corrections O_N and O_D?
- Results are rather insensitive to the values of $O_{8}\left({ }^{1} S_{0}\right) \quad O_{8}\left({ }^{3} P_{0}\right)$
they would be sensitive to $O_{8}\left({ }^{3} S_{1}\right)$ that however is very small from the lattice evaluation (smaller than NRQCD power counting)

How reliable is this extraction?

It is an extraction at NLO in alpha_s(m_b) and $v \wedge 2$ at this order terms corresponding to new feature
(relativistic, radiative, octet) already appear
each of them is of natural size but the sum is of order 1 What about the higher order corrections O_N and O_D?

They are expected to be small (no new qualitative feautures), they have been calculated partially (in v) for O_D (Bodwin, Petrelli 02) -> if we estimate them we get

$$
0.02 \text { compatible with }-0.04 \leq \mathcal{O}_{N}\left(v^{3}\right), \mathcal{O}_{D}\left(v^{3}\right) \leq 0.04 \text {, }
$$

- Results are rather insensitive to the values of $O_{8}\left({ }^{1} S_{0}\right) \quad O_{8}\left({ }^{3} P_{0}\right)$

they would be sensitive to $O_{8}\left({ }^{3} S_{1}\right)$ that however is very small from the lattice evaluation (smaller than NRQCD power counting))

How reliable is this extraction?

It is an extraction at NLO in alpha_s(m_b) and $v \wedge 2$ at this order terms corresponding to new feature (relativistic, radiative, octet) already appear
each of them is of natural size but the sum is of order 1 What about the higher order corrections O_N and O_D?

They are expected to be small (no new qualitative feautures), they have been calculated partially (in v) for
O_D (Bodwin, Petrelli 02) -> if we estimate them we get

$$
0.02 \text { compatible with }-0.04 \leq \mathcal{O}_{N}\left(v^{3}\right), \mathcal{O}_{D}\left(v^{3}\right) \leq 0.04,
$$

THE MAIN UNCERTAINTY OF OUR DETERMINATION COMES FROM THE SYSTEMATIC EXPERIMENTAL ERROR

Comparison with previous results

with respect to PDG06: Hinchllefe, manohar

Comparison with previous results

with respect to PDG06: Hinchllefe, manohar

- The color octet matrix elements are ignored in $\Gamma(\Upsilon(1 S) \rightarrow \gamma X)$ while we find that they contribute between 30% to 100%; in $\Gamma(\Upsilon(1 S) \rightarrow X)$ they are underestimated

Comparison with previous results

with respect to PDG06: Hinchllefe, manohar

- The color octet matrix elements are ignored in
$\Gamma(\Upsilon(1 S) \rightarrow \gamma X)$ while we find that they contribute
between 30% to 100%; in $\Gamma(\Upsilon(1 S) \rightarrow X)$ they are underestimated
- Older less precise data are used and a model extrapolation to low z

Comparison with previous results

with respect to PDG06: Hinchclifes, manotar

- The color octet matrix elements are ignored in
$\Gamma(\Upsilon(1 S) \rightarrow \gamma X)$ while we find that they contribute
between 30% to 100%; in $\Gamma(\Upsilon(1 S) \rightarrow X)$ they are underestimated
- Older less precise data are used and a model extrapolation to low z
- The extraction is done from $\frac{\Gamma(\Upsilon(1 S) \rightarrow \gamma X)}{\Gamma\left(\Upsilon(1 S) \rightarrow l^{+} l^{-}\right)}$
claiming it is cleaner. But the uncertainty increases due to the an increased sensibility to the octets. Moreover the leptonic width suffer from large corrections in alphas.

We obtain the final result

$$
\alpha_{\mathrm{S}}\left(M_{\Upsilon(1 S)}\right)=0.184_{-0.014}^{+0.015}
$$

corresponding to

We obtain the final result

$$
\alpha_{\mathrm{s}}\left(M_{\Upsilon(1 S)}\right)=0.184_{-0.014}^{+0.015}
$$

corresponding to

$$
\alpha_{\mathrm{s}}\left(M_{Z}\right)=0.119_{-0.005}^{+0.006}
$$

Future Prospects for α_{s} determinations from quarkonia

- More precise data for R_{γ} for $\Upsilon(1 S)$ would allow a more precise extraction of $\alpha_{s}\left(M_{\Upsilon(1 S)}\right)$
- A new measurement of the inclusive photon spectrum at BESIII would provide the possibility to extract $\alpha_{s}\left(M_{J / \psi}\right)$

GARCIA, SOTO 2007

- Previous to its discovery the η_{b} was indicated as the place where a very precise determination of α_{s} a could be obtained from the hyperfine separation

```
KNIEHL,PENIN. PINEDA,SMIRNOV,STEINHAUSER 2007
```


BACKUP

[^0]: [D. Besson et al. [CLEO Collaborationl. Phvs. Rev. D 74 (2006) 012003 (hep-ex/0512061)]

