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" Notice that this is an important determination: °
one of the few aft relatively low energy with o
relatively small error
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e Accurate estimates of the octet contributions
from the lattice RGO

continuum




e New data from CLEO The photon spectrum (T — X~)

B Recent CLEO measurement of the photon spectrum

Ny

(Z = 2E’y/MT)

}
%ﬁ
%ﬁm‘*‘ﬁ:_
"-"h_._‘-

!
3

04 0.6 0.8
Data from CLEO Ill, 2005

[D. Besson et al. [CLEO Collaborationl. Phvs. Rev. D 74 (2006) 012003 (hep-ex/0512061)1
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(z = QEW/MT)

Two types of contributions 1o the
photon specfrum:

Fragmentation Conftributions

Direct Contributions

12,

 Data from CLEO IIl, 2005 T iS described by NRQCD
— Z C;(M, z) (T]|O;|T)

and VO|Id m the centrdl regief
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Two types of contributions 1o the
photon specfrum:

Fragmentation Contributions

i m

N\ A
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Data from CLEO IlI, 2005
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4
B For 2z — 1 NRQCD expansion breaks down. Collinear degrees

of freedom become relevant
¢ Large log(1 — 2z) need to be resummed
Photiadis '85; Bauer et al. '01; Fleming and Leibovich '02 '04
€ Shape functions must be introduced. Rothstein and Wise '97
Can be calculated assuming Coulombic state x.c.T. and soto '04

J
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Fdirect Ndz'rect
inthisway R, = S s )18 is measured

FQQQ Nggg

| RSP = 0.0245 + 0.0001 + 0.0013
| N

Now we need 1o obtain a precise
theoretical | calculation of R,y

From the comparison of the two we get (¢ g
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we use NRQCD to calculate the decay

C(T(1S) = X) = Cn_Jix (18)|08Fermions v (15))
. , ; A y

short distance matching nonperturbative matrix

coefficients elements: contain singlet
and octet operators

we assume the situation:
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e matlching coefficients are known In the literature:
e — 31/(87° — 72 Cp, a5y = —(197° — 132) /(1278
Cos(3s:) = 8lng/(20m* — 180) Cos3r,) = 567/(87% — 72)
@ s = 27/(4x% — 36) Cos3p) = 189/(4n? — 36)
B 7 (for s Coee = 3.79 + 0.54 (for ny = 4)
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Octet matrix elements:

- 08(150) and 08(3P0) have been estimated in the continuum (weak
cou p||ng) GARCIA, SOTO 04
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BODWIN, LEE, SINCLAIR OS5

The continuum and lattice calculation of Og(*Sp)
are compatible
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€ Uses all the weak-coupling expressions available and lattice calculation

for 08(351)
B L (for lattice)

€ Uses all lattice calculations available and NRQCD wv-scaling for

Og(°Py)

P
The two procedures give very similar results. We take the average as the final

value and as error the range of the two determinations
\_

BeOmmon features of C and L;

¢ We do not expand the O(vA2) terms in the denominator-
> small ferms add up to almost one

e Results are rather insensitive to the values of Og(1Sy) Og(°FPp)

\

they would be sensitive to Og( 3S1) that however is very small
rom the lattice evaluation (smaller than NRQCD power coun’ring}
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The uncertainty on a4 induced by a given parameter is evaluated by varying it in the range

and keeping all other parameters at their central values. We obtain

004990 = 0.0026, [es’rima’re higher order corr  —0.04 < Oy(?), Op(@®) < 0.04}
R as = 0.0040,

S
Og(15p)

OoR = (.0026,

@
0g(3s1) °

as = 0.0027

Rog(3py) s ’

o = 0.0014. sum the rest quadratically

A as(Myag)) = 0.183 £ 0.013 .
Bt 2.00%% o (M) = 0.119 4 0.005 .

§ pop g = 0.0085.

We sum up linearly the errors or_ L) and oR_ Gy which are correlated, :
8 0 8 1
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The uncertainty on a4 induced by a given parameter is evaluated by varying it in the range

and keeping all other parameters at their central values. We obtain

004990 = 0.0026, [es’rima’re higher order corr  —0.04 < Oy(?), Op(@®) < 0.04}
R as = 0.0040,

S
Og(15p)

e — 0.0026,
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as(Mz) = 0.119 £ 0.005 .

§ pop g = 0.0085.

We sum up linearly the errors dx and or which are correlated,

Og(15g) Og(3571)’

‘
(



m C (for continuum)

In weak coupling the matrix elements can be
calculated, the same central value used to fit the
photon spectrum in Garcia-Soto 04 is used

(T(19)|0:1(°S)|T(1S)) is needed at NNLO
Rpys,) = —0.015,

Rog(:sgl) =FeR< 10_5.
RO8(1SO) S 00012,

ROS(BPO) —_— 00011 -




m C (for continuum)

In weak coupling the matrix elements can be
calculated, the same central value used to fit the
photon spectrum in Garcia-Soto 04 is used

(T(19)|0:1(°S)|T(1S)) is needed at NNLO
Rpys,) = —0.015,

R08(351) = (01 P4 10_5 .
RO8(1SO) S 00012,

Rogery) = 0.0011.

Io gefl the errors we make the variation
BREEE o (myv) < 0.38
B o () < 1.3

BRI R 55,y =16x107°




m C (for continuum)

In weak coupling the matrix elements can be
calculated, the same central value used to fit the
photon spectrum in Garcia-Soto 04 is used

(T(19)|0:1(°S)|T(1S)) is needed at NNLO
Rpys,) = —0.015,

R08(3S1) = (01 P4 10_5 .
ROS(lso) S 00012,

Rogery) = 0.0011.

Io gefl the errors we make the variation

s o (mpu) < 0.38 this large variation expected tc
B o () < 1.3 account for uncertainties

R o, <l6x10* O(Aqgep)

INn the weak coupling
estimate of the octets




m C (for continuum)

In weak coupling the matrix elements can be
calculated, the same central value used to fit the
photon spectrum in Garcia-Soto 04 is used

(T(19)|0:1(°S)|T(1S)) is needed at NNLO
Rpys,) = —0.015,

R08(3S1) = (01 P4 10_5 .
ROS(lso) S 00012,

Rogery) = 0.0011.

Io gefl the errors we make the variation

s o (mpu) < 0.38 this large variation expected tc
B o () < 1.3 account for uncertainties

B Ro. oy <16x10°* O(Aqgep)

INn the weak coupling
the upper limit of Og(°S;) estimate of the octets

corresponds to twice the lattice value



m C (for continuum)

The uncertainty on ag induced by a given parameter is evaluated by varying it in the

range and keeping all other parameters at their central values. We obtain

dc,,, o = 0.0009,

_ 40.0006
O (mpv) As = _0.0064>

__+0.0083
5as (mpv2)X¥s = _0.0076>

a, = 0.0016,
S

_ 40.0035
s =_0.0034 »

. 40.0026
s =_0.0025 »

We assume these errors to be independent and sum them up quadratically, obtaining

r )
os(Mrs)) = 0.185 5015 -

o (My) = 0.1200007 -

\_
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~ Errors Discussion : ;
e Results are rather insensitive to the values of Og(~Sy) Os(° Py

~

[’rhey would be sensitive to Og(®S1) that however is very small

rom fthe laffice evaluation (smaller than NRQCD power counting)

How reliable is this extractione

It Is an extraction at NLO in alpha_s(m_b) and vA2
at this order terms corresponding to new feature
(relativistic, radiative, octet) already appear

each of them is of natural size but the sum is of order 1

What about the higher order corrections O_N and O_D¢

They are expected to be small (no new qualitative
leciutures), they have been calculated partially (in v) for
O_D (Bodwin, Petrelli 02) -> it we estimate them we get
0.02 compatible with —0.04 < On(v’), Op(v?) < 0.04,

THE MAIN UNCERTAINTY OF OUR DETERMINATION
COMES FROM THE SYSTEMATIC EXPERIMENTAL ERROR
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Comparison with previous results

WI'I'h respeC'I' '|'O PDGOé HINCHCLIFFE, MANOHAR

e The color octet matrix elements are ignored In
['(T(1S) = vX) while we find that they contribute

between 30% to 100%; in T'(Y(1S) — X) they are
underestimated

e Older less precise data are used and a model
extrapolation to low z

Fa s = e
[ G LS 8= e i)
claiming it Is cleaner. But the uncertainty increases due to

the an increased sensibllity to the octets. Moreover the
leptonic width suffer from large corrections in alphas.

e The exiraction is done from
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We obtain the final result

as(My@as)) = 0.1847¢015

corresponding to

o (Mz) = 0.119T5 55

July 2009

& a Deep Inelastic Scattering
oe e'e Annihilation
0@ Heavy Quarkonia

| o Bethke 2009
o PDG 2006 |

¢
¢

D¢E;.

[ =QCD «,(Myz)=0.1184 +0.0007

mQ[GeV] 100




REIlrE Prospects for (g deferminations from quarkonia

* More precise datafor R, for Y(15) would allow a more precise

extraction of Oés(MT(1S))

e A new measurement of the inclusive photon spectrum at BESIII

would provide the possibility fo extract Oés(MJ/w)

GARCIA, SOTO 2007

e Previous to its discovery the 7lb was indicated as the place where

a very precise determination of &s a could be obtained from

the hyperfine separation

KNIEHL, PENIN. PINEDA, SMIRNOV, STEINHAUSER 2007
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