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Notice that this is an important determination: 
one of the few at relatively low energy with a 

relatively small error
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•Accurate estimates of the octet contributions 
from the lattice (bodwin, lee, Sinclair 05) and  from 

continuum (Garcia, Soto 05)
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Figure 1: Direct contributions to the radiative decay of a QQ pair: on the left (a) one of
six colour singlet diagrams, on the right (b) one of two diagrams per colour octet mode.

imperfect cancellation between terms stemming from real and virtual emission of soft gluons
one could expect potentially large logarithms ln(1 − z) to all orders of the perturbation
theory. A resummation of these logarithms would then give rise to a Sudakov suppression
∼ exp(−αs ln2(1 − z)). Though an earlier analysis [10] claimed such a Sudakov damping
factor in the colour singlet mode a more recent work [11] predicts such Sudakov factors in
the colour octet channels only while the logarithms should cancel order by order αs in the
colour singlet mode.

Besides these perturbative contributions several non-perturbative effects have been in-
vestigated as well. They become important near the phase space boundaries where the
photon energy fraction z is small or close to 1, respectively. For low values of z there is a
large fragmentation contribution caused by the collinear emission of a photon from a light
(anti)quark in the final state. Examples for such processes are diagrammed in fig. 2. They
have been investigated in [12] for the colour singlet mode and in [9] for the colour octet
channels.

At the upper endpoint of the spectrum two different sources for non-perturbative effects
exist. The first one is the phase space effect associated with the hadronization of massless
gluons into massive final states. This effect usually is considered by a parton shower
Monte Carlo thereby generating a non-zero invariant mass for the outgoing gluon(s) [13].
Another method based on the introduction of an effective gluon mass [14] could obtain
the appropriate phase space suppression by fitting the values of the effective gluon mass
to data of radiative J/ψ [15] and Υ [16, 17] decays independently [18].

In this article we concentrate on another non-perturbative effect contributing to the
upper endpoint of the spectrum. In this region NRQCD operators connected to the center-
of-mass (cms) movement of the QQ pair inside the quarkonium could become significant
even though they are subleading in the sense of the naive NRQCD power counting [19, 20].
It has been shown in [20] explicitly that the NRQCD velocity expansion breaks down near
the endpoint. The reason for this breakdown is the kinematical enhancement of the cms
operators. In the endpoint region the expansion parameter is v2/ε rather than v2 where
ε = 1−Eγ/mQ is a measure for the distance from the endpoint. Thus the velocity expansion
works fine only for photon energies that are significantly further away from the endpoint
than ∆Eγ ∼ mQv2. However, the range of applicability of NRQCD can be extended to
higher values for Eγ by the resummation of an infinite class of operators into so-called shape

2

•Garcia, Soto 05
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Valid in the central z region
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Rexp
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−2.4 × 10−4 ≤ RO8(3P0) ≤ 2.4 × 10−4

−0.052 ≤ RP1(3S1) ≤ −0.035

Plus errors associated to higher order terms (v3) and experimental errors
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  maximum value 
lattice data plus 100% 

uncertainty 

NRQCD power counting 
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terms in D: it turns out that even though they are individually small they add up to give

a contribution comparable to one; we will comment on this in Sec. III.

A. Extraction L (for lattice)

Concerning the ratios RO, we will take them in the following ranges:

0 ≤ RO8(1S0) ≤ 4.8 × 10−3, (5)

0 ≤ RO8(3S1) ≤ 1.6 × 10−4, (6)

−2.4 × 10−4 ≤ RO8(3P0) ≤ 2.4 × 10−4, (7)

−0.16 ≤ RP1(3S1) ≤ 0. (8)

Equations (5) and (6) correspond to the maximum values obtained in the lattice calculations

[12] taken with a 100% uncertainty. Equation (7) follows from the naive counting

|RO8(3P0)| =
1

9

∣

∣

∣

∣

〈ηb|O8(1P1)|ηb〉

m2
b 〈Υ(1S)|O1(3S1)|Υ(1S)〉

∣

∣

∣

∣

≈
1

9
×

v4

2Nc

, (9)

taken with a 100% uncertainty. The first equality is due to spin symmetry and is valid at

leading order in the velocity expansion, in the second one we have evidenced the color factor

1/(2Nc) [12] (Nc = 3 is the number of colors).

Equation (8) follows from the Gremm–Kapustin relation [19, 20] in the weak-coupling

regime,

RP1(3S1) =
Ebin

mb

≈ −v2, (10)

taken with a 100% uncertainty. Ebin stands for the binding energy. The operators ON(v3)

and OD(v3) are taken in the range

− 0.04 ≤ ON(v3),OD(v3) ≤ 0.04 , (11)

which encompasses both O(v3) and O(α2
s ) corrections.

The fine structure constant is taken at the Υ(1S) mass

α(MΥ(1S)) =
1

132
. (12)

We evaluate the theoretical side of Eq. (2) as it stands, without further expansions.

Taking the central values for Cggg and in Eqs. (5)-(8), (11) and (1), we obtain

αs(MΥ(1S)) = 0.1885 . (13)

4

Gremm Kapustin

The uncertainty on αs induced by a given parameter is evaluated by varying it in the range

and keeping all other parameters at their central values. We obtain

δCgggαs = 0.0025, (14)

δRO8(1S0)
αs = 0.0047, (15)

δRO8(3S1)
αs = 0.0019, (16)

δRO8(3P0)
αs = 0.0032, (17)

δR
P1(3S1)

αs = 0.0106, (18)

δR
ON (v3)

αs = 0.0041, (19)

δR
OD(v3)

αs = 0.0031, (20)

δR
exp
γ

αs = 0.0089. (21)

We sum up linearly the errors δRO8(1S0)
and δRO8(3S1)

, which are correlated, and then all the

errors quadratically, obtaining

αs(MΥ(1S)) = 0.189 ± 0.017 . (22)

The dominant error comes from the uncertainty in RP1(3S1). We can reduce this uncer-

tainty, by noticing that for RP1(3S1) we have an explicit expression, Eq. (10), that we have

only partially exploited. Indeed, in the weak-coupling regime, the exact form of Ebin is

known. At the order we are interested in, it holds that

Ebin

mb

= −
(CFαs)2

4
, CF =

4

3
, (23)

where αs is evaluated at the scale MΥ(1S)CFαs/2, the typical momentum-transfer scale in a

Coulombic bound state. From Eq. (22), we obtain:

αs(MΥ(1S)CF αs/2) = 0.311 ± 0.032 , (24)

which gives

RP1(3S1) =
Ebin

mb

= −(0.043+0.009
−0.008). (25)

Using this value for RP1(3S1) and performing again the above calculation we obtain the new

central value

αs(MΥ(1S)) = 0.183 , (26)
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Taking the central values for Cggg and in Eqs. (5)-(8), (11) and (1), we obtain

αs(MΥ(1S)) = 0.1885 . (13)
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The uncertainty on αs induced by a given parameter is evaluated by varying it in the range

and keeping all other parameters at their central values. We obtain

δCgggαs = 0.0025, (14)
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OD(v3)

αs = 0.0031, (20)

δR
exp
γ

αs = 0.0089. (21)

We sum up linearly the errors δRO8(1S0)
and δRO8(3S1)

, which are correlated, and then all the

errors quadratically, obtaining

αs(MΥ(1S)) = 0.189 ± 0.017 . (22)

The dominant error comes from the uncertainty in RP1(3S1). We can reduce this uncer-

tainty, by noticing that for RP1(3S1) we have an explicit expression, Eq. (10), that we have

only partially exploited. Indeed, in the weak-coupling regime, the exact form of Ebin is

known. At the order we are interested in, it holds that

Ebin

mb

= −
(CFαs)2

4
, CF =

4

3
, (23)

where αs is evaluated at the scale MΥ(1S)CFαs/2, the typical momentum-transfer scale in a

Coulombic bound state. From Eq. (22), we obtain:

αs(MΥ(1S)CF αs/2) = 0.311 ± 0.032 , (24)

which gives

RP1(3S1) =
Ebin

mb

= −(0.043+0.009
−0.008). (25)

Using this value for RP1(3S1) and performing again the above calculation we obtain the new

central value

αs(MΥ(1S)) = 0.183 , (26)
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and the new uncertainties

δCgggαs = 0.0026, (27)

δRO8(1S0)
αs = 0.0040, (28)

δRO8(3S1)
αs = 0.0026, (29)

δRO8(3P0)
αs = 0.0027, (30)

δR
P1(3S1)
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δR
ON (v3)

αs = 0.0044, (32)

δR
OD(v3)

αs = 0.0033, (33)

δR
exp
γ

αs = 0.0085. (34)

Summing up the errors like before, we obtain as our best estimate

αs(MΥ(1S)) = 0.183 ± 0.013 . (35)

This corresponds to a strong coupling constant at the MZ mass of

αs(MZ) = 0.119 ± 0.005 . (36)

B. Extraction C (for continuum)

In a weak coupling analysis, 〈Υ(1S)|O1(3S1)|Υ(1S)〉 can be calculated in perturbation

theory of αs(mbv). A NNLO expression is necessary at O(v2) [21, 22]3. In order to follow

the same procedure as in [9], we multiply the leading order term in the decay widths by the

NNLO expression for 〈Υ(1S)|O1(3S1)|Υ(1S)〉 and the αs correction to the decay widths by

the LO expression for that matrix element. If we factor out the NNLO matrix element, this

produces a shift N → N + δN and D → D + δD in (3) and (4):

δN = Cggγ

αs

π
δ , (37)

δD = Cggg

αs

π
δ , (38)

with

δ =
〈Υ(1S)|O1(3S1)|Υ(1S)〉LO

〈Υ(1S)|O1(3S1)|Υ(1S)〉NNLO
− 1 . (39)

3 We count αs at the soft scale as order v.
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The uncertainty on αs induced by a given parameter is evaluated by varying it in the range
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We sum up linearly the errors δRO8(1S0)
and δRO8(3S1)

, which are correlated, and then all the

errors quadratically, obtaining

αs(MΥ(1S)) = 0.189 ± 0.017 . (22)

The dominant error comes from the uncertainty in RP1(3S1). We can reduce this uncer-

tainty, by noticing that for RP1(3S1) we have an explicit expression, Eq. (10), that we have

only partially exploited. Indeed, in the weak-coupling regime, the exact form of Ebin is

known. At the order we are interested in, it holds that

Ebin

mb

= −
(CFαs)2

4
, CF =

4

3
, (23)

where αs is evaluated at the scale MΥ(1S)CFαs/2, the typical momentum-transfer scale in a

Coulombic bound state. From Eq. (22), we obtain:

αs(MΥ(1S)CF αs/2) = 0.311 ± 0.032 , (24)

which gives

RP1(3S1) =
Ebin

mb

= −(0.043+0.009
−0.008). (25)

Using this value for RP1(3S1) and performing again the above calculation we obtain the new

central value

αs(MΥ(1S)) = 0.183 , (26)
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terms in D: it turns out that even though they are individually small they add up to give

a contribution comparable to one; we will comment on this in Sec. III.

A. Extraction L (for lattice)

Concerning the ratios RO, we will take them in the following ranges:

0 ≤ RO8(1S0) ≤ 4.8 × 10−3, (5)

0 ≤ RO8(3S1) ≤ 1.6 × 10−4, (6)

−2.4 × 10−4 ≤ RO8(3P0) ≤ 2.4 × 10−4, (7)

−0.16 ≤ RP1(3S1) ≤ 0. (8)

Equations (5) and (6) correspond to the maximum values obtained in the lattice calculations

[12] taken with a 100% uncertainty. Equation (7) follows from the naive counting

|RO8(3P0)| =
1

9

∣

∣

∣

∣

〈ηb|O8(1P1)|ηb〉

m2
b 〈Υ(1S)|O1(3S1)|Υ(1S)〉

∣

∣

∣

∣

≈
1

9
×

v4

2Nc

, (9)

taken with a 100% uncertainty. The first equality is due to spin symmetry and is valid at

leading order in the velocity expansion, in the second one we have evidenced the color factor

1/(2Nc) [12] (Nc = 3 is the number of colors).

Equation (8) follows from the Gremm–Kapustin relation [19, 20] in the weak-coupling

regime,

RP1(3S1) =
Ebin

mb

≈ −v2, (10)

taken with a 100% uncertainty. Ebin stands for the binding energy. The operators ON(v3)

and OD(v3) are taken in the range

− 0.04 ≤ ON(v3),OD(v3) ≤ 0.04 , (11)

which encompasses both O(v3) and O(α2
s ) corrections.

The fine structure constant is taken at the Υ(1S) mass

α(MΥ(1S)) =
1

132
. (12)

We evaluate the theoretical side of Eq. (2) as it stands, without further expansions.

Taking the central values for Cggg and in Eqs. (5)-(8), (11) and (1), we obtain

αs(MΥ(1S)) = 0.1885 . (13)
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We evaluate the theoretical side of Eq. (2) as it stands, without further expansions.

Taking the central values for Cggg and in Eqs. (5)-(8), (11) and (1), we obtain

αs(MΥ(1S)) = 0.1885 . (13)
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The uncertainty on αs induced by a given parameter is evaluated by varying it in the range

and keeping all other parameters at their central values. We obtain

δCgggαs = 0.0025, (14)

δRO8(1S0)
αs = 0.0047, (15)

δRO8(3S1)
αs = 0.0019, (16)

δRO8(3P0)
αs = 0.0032, (17)

δR
P1(3S1)

αs = 0.0106, (18)

δR
ON (v3)

αs = 0.0041, (19)

δR
OD(v3)

αs = 0.0031, (20)

δR
exp
γ

αs = 0.0089. (21)

We sum up linearly the errors δRO8(1S0)
and δRO8(3S1)

, which are correlated, and then all the

errors quadratically, obtaining

αs(MΥ(1S)) = 0.189 ± 0.017 . (22)

The dominant error comes from the uncertainty in RP1(3S1). We can reduce this uncer-

tainty, by noticing that for RP1(3S1) we have an explicit expression, Eq. (10), that we have

only partially exploited. Indeed, in the weak-coupling regime, the exact form of Ebin is

known. At the order we are interested in, it holds that

Ebin

mb

= −
(CFαs)2

4
, CF =

4

3
, (23)

where αs is evaluated at the scale MΥ(1S)CFαs/2, the typical momentum-transfer scale in a

Coulombic bound state. From Eq. (22), we obtain:

αs(MΥ(1S)CF αs/2) = 0.311 ± 0.032 , (24)

which gives

RP1(3S1) =
Ebin

mb

= −(0.043+0.009
−0.008). (25)

Using this value for RP1(3S1) and performing again the above calculation we obtain the new

central value

αs(MΥ(1S)) = 0.183 , (26)
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and the new uncertainties
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δ =
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〈Υ(1S)|O1(3S1)|Υ(1S)〉NNLO
− 1 . (39)

3 We count αs at the soft scale as order v.
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αs(MΥ(1S)CF αs/2) = 0.311 ± 0.032 , (24)

which gives
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mb

= −(0.043+0.009
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Using this value for RP1(3S1) and performing again the above calculation we obtain the new

central value

αs(MΥ(1S)) = 0.183 , (26)

5

terms in D: it turns out that even though they are individually small they add up to give

a contribution comparable to one; we will comment on this in Sec. III.

A. Extraction L (for lattice)

Concerning the ratios RO, we will take them in the following ranges:

0 ≤ RO8(1S0) ≤ 4.8 × 10−3, (5)

0 ≤ RO8(3S1) ≤ 1.6 × 10−4, (6)

−2.4 × 10−4 ≤ RO8(3P0) ≤ 2.4 × 10−4, (7)

−0.16 ≤ RP1(3S1) ≤ 0. (8)

Equations (5) and (6) correspond to the maximum values obtained in the lattice calculations

[12] taken with a 100% uncertainty. Equation (7) follows from the naive counting

|RO8(3P0)| =
1

9

∣

∣

∣

∣

〈ηb|O8(1P1)|ηb〉

m2
b 〈Υ(1S)|O1(3S1)|Υ(1S)〉

∣

∣

∣

∣

≈
1

9
×

v4

2Nc

, (9)

taken with a 100% uncertainty. The first equality is due to spin symmetry and is valid at

leading order in the velocity expansion, in the second one we have evidenced the color factor

1/(2Nc) [12] (Nc = 3 is the number of colors).

Equation (8) follows from the Gremm–Kapustin relation [19, 20] in the weak-coupling

regime,

RP1(3S1) =
Ebin

mb

≈ −v2, (10)

taken with a 100% uncertainty. Ebin stands for the binding energy. The operators ON(v3)

and OD(v3) are taken in the range

− 0.04 ≤ ON(v3),OD(v3) ≤ 0.04 , (11)

which encompasses both O(v3) and O(α2
s ) corrections.

The fine structure constant is taken at the Υ(1S) mass

α(MΥ(1S)) =
1

132
. (12)

We evaluate the theoretical side of Eq. (2) as it stands, without further expansions.

Taking the central values for Cggg and in Eqs. (5)-(8), (11) and (1), we obtain

αs(MΥ(1S)) = 0.1885 . (13)

4

estimate higher order corr
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and the new uncertainties
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In a weak coupling analysis, 〈Υ(1S)|O1(3S1)|Υ(1S)〉 can be calculated in perturbation

theory of αs(mbv). A NNLO expression is necessary at O(v2) [21, 22]3. In order to follow

the same procedure as in [9], we multiply the leading order term in the decay widths by the

NNLO expression for 〈Υ(1S)|O1(3S1)|Υ(1S)〉 and the αs correction to the decay widths by

the LO expression for that matrix element. If we factor out the NNLO matrix element, this

produces a shift N → N + δN and D → D + δD in (3) and (4):

δN = Cggγ

αs

π
δ , (37)

δD = Cggg

αs

π
δ , (38)

with

δ =
〈Υ(1S)|O1(3S1)|Υ(1S)〉LO

〈Υ(1S)|O1(3S1)|Υ(1S)〉NNLO
− 1 . (39)

3 We count αs at the soft scale as order v.

6

In weak coupling the matrix elements  can be 
calculated, the same central value used to fit the 

photon spectrum in Garcia-Soto 04 is used 

is needed at NNLO

For the central values of the objects below we take exactly the same ones used in [9], namely

δ = −0.57 , (40)

RP1(3S1) = −0.015 , (41)

RO8(1S0) = 0.0012 , (42)

RO8(3P0) = 0.0011 . (43)

For RO8(3S1), we use the hybrid algorithm output of the lattice calculation [12]4,

RO8(3S1) = 8 × 10−5 . (44)

Using those values, we obtain

αs(MΥ(1S)) = 0.185 . (45)

In order to associate errors to these central values, we move the values of the objects

below in the following ranges:

0.18 ≤ αs(mbv) ≤ 0.38 , (46)

0.32 ≤ αs(mbv2) ≤ 1.3 , (47)

0 ≤ RO8(3S1) ≤ 1.6 × 10−4 . (48)

The wide variation range of αs(mbv) and αs(mbv2) is expected to account for O(ΛQCD)

uncertainties in the weak coupling estimates of O8(1S0) and O8(3P0). The upper limit of

O8(3S1) corresponds to twice the largest value obtained using the lattice algorithms in [12].

The uncertainty on αs induced by a given parameter is evaluated by varying it in the

range and keeping all other parameters at their central values. We obtain

δCgggαs = 0.0009, (49)

δαs(mbv)αs =+0.0006
−0.0064, (50)

δαs(mbv2)αs =+0.0083
−0.0076, (51)

δRO8(3S1)
αs = 0.0016, (52)

δR
ON (v3)

αs =+0.0035
−0.0034 , (53)

δR
OD (v3)

αs =+0.0026
−0.0025 , (54)

δR
exp
γ

αs = 0.01. (55)

4 The hybrid algorithm is selected because compares well with the continuous estimate for RO8(1S0).
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Error estimation
 

RO = 〈O〉

m∆d
D

O1(3S1)
E

!

! C (for continuum)

0.18 ≤ αs(mbv) ≤ 0.38

0.32 ≤ αs(mbv
2) ≤ 1.3

0 ≤ RO8(3S1) ≤ 1.6 × 10−4

! L (for lattice)

0 ≤ RO8(1S0) ≤ 4.8 × 10−3

0 ≤ RO8(3S1) ≤ 1.6 × 10−4

−2.4 × 10−4 ≤ RO8(3P0) ≤ 2.4 × 10−4

−0.052 ≤ RP1(3S1) ≤ −0.035

Plus errors associated to higher order terms (v3) and experimental errors

To get the errors we make the variation
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This corresponds to a strong coupling constant at the MZ mass of

αs(MZ) = 0.119 ± 0.005 . (36)

B. Extraction C (for continuum)

In a weak coupling analysis, 〈Υ(1S)|O1(3S1)|Υ(1S)〉 can be calculated in perturbation

theory of αs(mbv). A NNLO expression is necessary at O(v2) [21, 22]3. In order to follow

the same procedure as in [9], we multiply the leading order term in the decay widths by the

NNLO expression for 〈Υ(1S)|O1(3S1)|Υ(1S)〉 and the αs correction to the decay widths by

the LO expression for that matrix element. If we factor out the NNLO matrix element, this

produces a shift N → N + δN and D → D + δD in (3) and (4):

δN = Cggγ

αs

π
δ , (37)

δD = Cggg

αs

π
δ , (38)

with

δ =
〈Υ(1S)|O1(3S1)|Υ(1S)〉LO

〈Υ(1S)|O1(3S1)|Υ(1S)〉NNLO
− 1 . (39)

3 We count αs at the soft scale as order v.
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For RO8(3S1), we use the hybrid algorithm output of the lattice calculation [12]4,

RO8(3S1) = 8 × 10−5 . (44)

Using those values, we obtain

αs(MΥ(1S)) = 0.185 . (45)

In order to associate errors to these central values, we move the values of the objects

below in the following ranges:

0.18 ≤ αs(mbv) ≤ 0.38 , (46)

0.32 ≤ αs(mbv2) ≤ 1.3 , (47)

0 ≤ RO8(3S1) ≤ 1.6 × 10−4 . (48)

The wide variation range of αs(mbv) and αs(mbv2) is expected to account for O(ΛQCD)

uncertainties in the weak coupling estimates of O8(1S0) and O8(3P0). The upper limit of

O8(3S1) corresponds to twice the largest value obtained using the lattice algorithms in [12].

The uncertainty on αs induced by a given parameter is evaluated by varying it in the

range and keeping all other parameters at their central values. We obtain

δCgggαs = 0.0009, (49)

δαs(mbv)αs =+0.0006
−0.0064, (50)
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4 The hybrid algorithm is selected because compares well with the continuous estimate for RO8(1S0).
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We assume these errors to be independent and sum them up quadratically, obtaining

αs(MΥ(1S)) = 0.185+0.014
−0.015 . (56)

This corresponds to a strong coupling constant at the MZ mass of

αs(MZ) = 0.120+0.005
−0.006 . (57)

III. DISCUSSION

We have presented two extractions of αs at NLO in the NRQCD velocity counting, the

main differences being the values assigned to the NRQCD matrix elements. The two out-

comes are very close so we take the average as our final central value. Since the two extrac-

tions are not completely independent we take as our error the range of the two determina-

tions. Then our final value is

αs(MΥ(1S)) = 0.184+0.015
−0.014 , (58)

which corresponds to

αs(MZ) = 0.119+0.006
−0.005 , (59)

which is very close to the central value of the PDG [23] with competitive errors. The

key ingredients to get these numbers are the precise CLEO data [10], the use of a QCD

calculation (called GS model in [10]) to extrapolate the photon spectrum at low z, and

accurate estimates of the color octet matrix elements, which have been possible thanks to

recent lattice and continuum estimates. Concerning the matrix elements, our results are

rather insensitive to the values of O8(1S0) and O8(3P0) (note that the upper limit given in

Eq. (7) for RO8(3P0), based on the scaling (9), is smaller by a factor five than the continuum

estimate (43)), but would be sensitive to large values of O8(3S1). However, the lattice values

for O8(3S1), which we have used, turn out to be much smaller than what NRQCD velocity

scaling rules suggest, and do not have a major impact in our results.

How reliable is our extraction? Our determination is valid at next-to-leading order in

αs(mb) and in v2. At this order, terms corresponding to new qualitative features appear

(radiative, relativistic, octet corrections), each of them of natural size, but whose sum is

of order one and hence large. This is not unusual. It is crucial, however, that higher-

order corrections, those that we have generically labeled as ON and OD, are small. This
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at this order terms corresponding to new feature 
(relativistic, radiative, octet) already appear 

each of them is of natural size but the sum is of order 1

What about the higher order corrections O_N and O_D?
They are expected to be small (no new qualitative 

feautures), they have been calculated partially (in v) for 
O_D (Bodwin, Petrelli  02) -> if we estimate them we get 

0.02 compatible with

terms in D: it turns out that even though they are individually small they add up to give

a contribution comparable to one; we will comment on this in Sec. III.

A. Extraction L (for lattice)

Concerning the ratios RO, we will take them in the following ranges:

0 ≤ RO8(1S0) ≤ 4.8 × 10−3, (5)

0 ≤ RO8(3S1) ≤ 1.6 × 10−4, (6)

−2.4 × 10−4 ≤ RO8(3P0) ≤ 2.4 × 10−4, (7)

−0.16 ≤ RP1(3S1) ≤ 0. (8)

Equations (5) and (6) correspond to the maximum values obtained in the lattice calculations

[12] taken with a 100% uncertainty. Equation (7) follows from the naive counting

|RO8(3P0)| =
1

9

∣

∣

∣

∣
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The main uncertainty of our determination 
comes from the systematic experimental error
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Comparison with previous results

with respect to PDG06: Hinchcliffe, manohar

•Older less precise data are used  and a model 
extrapolation to low z 

• The color octet matrix elements are ignored in 
Γ(Υ(1S) → γX) while we find that they contribute 

between 30% to 100%;  in Γ(Υ(1S) → X) they are 
underestimated

•The extraction is done from Γ(Υ(1S) → γX)

Γ(Υ(1S) → l+l−)

claiming it is cleaner. But  the uncertainty increases due to 
the an increased sensibility to the octets. Moreover the 
leptonic width suffer from large corrections in alphas.
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We obtain the final result 

αs(MΥ(1S)) = 0.184+0.015
−0.014

αs(MZ) = 0.119+0.006
−0.005

corresponding to 



αsFuture Prospects for  determinations from quarkonia  

•More  precise data for  Rγ Υ(1S)for would allow a more precise 
  

extraction  of αs(MΥ(1S))

•A new measurement of the inclusive photon spectrum at BESIII 

would provide the possibility to extract  αs(MJ/ψ)

• Previous to its discovery the ηb was indicated  as the place where

 a very precise determination of αs  a could be obtained from 

the hyperfine separation 

Garcia, soto 2007

kniehl, penin. pineda, smirnov, steinhauser 2007
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