FOPT [fixed-order perturbation theory] Analysis *)

M. Beneke (RWTH Aachen U.)

Workshop on Precision Measurements of *α_s* Max-Planck-Institut für Physik, München, 9 February 2011

*) FOPT Analysis is trivial. Not so trivial: why this is (most likely) the right thing to do.

References:

MB, Matthias Jamin, JHEP 0809 (2008) 044, arXiv:0806.3156 [hep-ph]; MB, Diogo Boito, Matthias Jamin, work in progress

Notation

Adler function

$$D_V^{(1+0)}(s) = \frac{N_c}{12\pi^2} \sum_{n=0}^{\infty} a_{\mu}^n \sum_{k=1}^{n+1} k c_{n,k} \ln^{k-1} \frac{-s}{\mu^2} = \frac{N_c}{12\pi^2} \sum_{n=0}^{\infty} c_{n,1} a_Q^n$$

 $c_{n,1}$ known to n = 4 [Baikov, Chetyrkin, Kühn; 2008].

FOPT
$$\delta_{\text{FO}}^{(0)} = \sum_{n=1}^{\infty} a(M_{\tau}^{2})^{n} \sum_{k=1}^{n} k c_{n,k} J_{k-1} \qquad J_{l} \equiv \frac{1}{2\pi i} \oint_{|x|=1} \frac{dx}{x} (1-x)^{3} (1+x) \ln^{l}(-x)$$
CIPT
$$\delta_{\text{CI}}^{(0)} = \sum_{n=1}^{\infty} c_{n,1} J_{n}^{a}(M_{\tau}^{2}) \qquad J_{n}^{a}(M_{\tau}^{2}) \equiv \frac{1}{2\pi i} \oint_{|x|=1} \frac{dx}{x} (1-x)^{3} (1+x) a^{n}(-M_{\tau}^{2}x)$$

-2

<ロト <回 > < 三 > < 三 >

The problem

Series expansions for $\alpha_s(M_{\tau}^2) = 0.34$:

$$\alpha_s^1 \qquad \alpha_s^2 \qquad \alpha_s^3 \qquad \alpha_s^4 \qquad \alpha_s^5$$

$$\delta_{\text{FO}}^{(0)} = 0.1082 + 0.0609 + 0.0334 + 0.0174 (+ 0.0088) = 0.2200 (0.2288)$$

$$\delta_{\text{CI}}^{(0)} = 0.1479 + 0.0297 + 0.0122 + 0.0086 (+ 0.0038) = 0.1984 (0.2021)$$

[We will often use the estimate $c_{5,1} = 283$.]

-2

The problem

Series expansions for $\alpha_s(M_{\tau}^2) = 0.34$:

$$\alpha_s^1 \qquad \alpha_s^2 \qquad \alpha_s^3 \qquad \alpha_s^4 \qquad \alpha_s^5$$

$$\delta_{FO}^{(0)} = 0.1082 + 0.0609 + 0.0334 + 0.0174 (+ 0.0088) = 0.2200 (0.2288)$$

$$\delta_{CI}^{(0)} = 0.1479 + 0.0297 + 0.0122 + 0.0086 (+ 0.0038) = 0.1984 (0.2021)$$

[We will often use the estimate $c_{5,1} = 283$.]

FO/CI difference *increases* by adding more orders. Systematic problem.

イロト 不得 トイヨト イヨト

Arguments for CIPT ...

• Better convergence, smaller scale dependence

Scale error on $\alpha_s(M_{\tau}^2)$ from variation of μ in [1,2.5] GeV is $\substack{+0.010 \\ -0.005}$ for FO and $\substack{+0.005 \\ -0.002}$ for CI.

 Expansion of the running coupling on the circle as used in FO has only a finite radius of convergence [Le Diberder, Pich; 1992]

$$\alpha_s(M_\tau^2 e^{i\pi}) = \frac{\alpha_s(M_\tau^2)}{1 + \frac{\beta_0}{4\pi} i\pi \alpha_s(M_\tau^2)}$$

Actual $\alpha_s(M_{\tau}^2)$ is close.

3

< ロ > < 同 > < 回 > < 回 > :

Arguments for CIPT ...

• Better convergence, smaller scale dependence

Scale error on $\alpha_s(M_{\tau}^2)$ from variation of μ in [1,2.5] GeV is $\substack{+0.010 \\ -0.005}$ for FO and $\substack{+0.005 \\ -0.002}$ for CI.

 Expansion of the running coupling on the circle as used in FO has only a finite radius of convergence [Le Diberder, Pich; 1992]

$$\alpha_s(M_\tau^2 e^{i\pi}) = \frac{\alpha_s(M_\tau^2)}{1 + \frac{\beta_0}{4\pi} i \pi \alpha_s(M_\tau^2)}$$

Actual $\alpha_s(M_{\tau}^2)$ is close.

Not very compelling, because ...

3

Standard arguments for CIPT are not compelling (1/2)

Series must exhibit small terms at intermediate orders, because the effective coupling goes through zero. Small scale dependence and good convergence may be a spurious effect.

Standard arguments for CIPT are not compelling (2/2)

• QCD perturbation expansions are only asymptotic anyway. *Zero* radius of convergence.

Why then bother about a subset of terms that has finite radius of convergence?

Standard arguments for CIPT are not compelling (2/2)

• QCD perturbation expansions are only asymptotic anyway. *Zero* radius of convergence.

Why then bother about a subset of terms that has finite radius of convergence?

• We don't use running couplings in CI-type prescriptions in related problems. Cf. semileptonic heavy quark decay, which may also be expressed as

$$\Gamma = \int^{m_Q^2} ds \, w(s) \Pi_{HQ}(s)$$

The FOPT/CIPT discrepancy *is* a problem. What else do we know about the perturbation series?

3

イロト イポト イヨト イヨト

General structure of large-order behaviour is (believed to be) known.

$$B[F](t) = \sum_{n=0} r_n \frac{t^n}{n!}$$
$$F(\alpha) = \int_0^\infty dt \, e^{-t/\alpha} \, B[F](t)$$

)

 ∞

3

• • • • • • • • • • • •

General structure of large-order behaviour is (believed to be) known.

$$B[F_p](u) = \frac{c_p}{(p-u)^{1+\gamma}} \left[1 + \tilde{b}_1(p-u) + \dots \right] \qquad (u \equiv \beta_1 t/(2\pi)) \quad \Leftrightarrow \\ F_p(a) = \frac{\pi c_p}{p^{1+\gamma} \Gamma(1+\gamma)} \sum_{n=0}^{\infty} \Gamma(n+1+\gamma) \left(\frac{\beta_1}{2p}\right)^n a^{n+1} \times \left[1 + \frac{p\gamma \tilde{b}_1}{(n+\gamma)} + \mathcal{O}\left(\frac{1}{n^2}\right) \right]$$

In principle the renormalon singularity structure is calculable, *except for* c_p .

UV renormalons

- Sign-alternating, singularity structure related to higher-dim operators in the cut-off QCD Lagrangian [Parisi, 1977; MB, Kivel, Braun 1997]
- Leading singularity for Adler function and R_{τ} , u = -1
- No sign-alternation seen. [In fact, no factorial behaviour of any form.] c_{-1} must be small in the \overline{MS} scheme true for fermion loops ("large- β_0 ").

★ ∃ > < ∃ >

UV renormalons

- Sign-alternating, singularity structure related to higher-dim operators in the cut-off QCD Lagrangian [Parisi, 1977; MB, Kivel, Braun 1997]
- Leading singularity for Adler function and R_{τ} , u = -1
- No sign-alternation seen. [In fact, no factorial behaviour of any form.] c_{-1} must be small in the $\overline{\text{MS}}$ scheme true for fermion loops ("large- β_0 ").

IR renormalons

- Fixed-sign, singularity structure related to higher-dim operators in the OPE [Mueller, 1985; Zakharov, 1992; MB, 1993]
- No u = 1 singularity, u = 2, 3, ... related to dim-4, 6, ... condensates.
- u = 2 especially simple, only one operator (gluon condensate), presumably numerically leading in intermediate orders; u = 3 complicated.
- $1/n^2$ suppression of the u = 2 singularity in going from Adler function to R_{τ} , none for u = 3. [Related to weight function and anomalous dimension of the gluon condensate.] [MB, 1993]

Incorporate this into an Ansatz for $c_{n,1}$, n > 5**. Then compare FOPT/CIPT.**

Assumption: series is asymptotic, sum to minimal term should be the Borel sum \pm size of power corrections (small).

Note: Borel sum is the same in the FO and CI approach.

イロト 不得 トイヨト イヨト 二日

Ansatz

$$B[D](u) = B[D_1^{\rm UV}](u) + B[D_2^{\rm IR}](u) + B[D_3^{\rm IR}](u) + d_0^{\rm PO} + d_1^{\rm PO}u,$$

- Ansatz for the Adler function that reproduces known $c_{4,1}$ and $c_{5,1} = 283$.
- Fit constants c_p for u = -1, 2, 3 to $c_{3,1}, c_{4,1}$ and $c_{5,1}$, and adjust $d_{0,1}^{PO}$ to reproduce $c_{1,1}$ and $c_{2,1}$.
- Find $d_1^{\text{UV}} = -1.56 \cdot 10^{-2}, d_2^{\text{IR}} = 3.16, d_3^{\text{IR}} = -13.5, d_0^{\text{PO}} = 0.781, d_1^{\text{PO}} = 7.66 \cdot 10^{-3}.$
- Pole ansatz works well already at n = 2 (d_1^{PO} small).

- · FO converges to Borel sum
- CI smoother at low orders (better convergence, smaller scale dependence), but never reaches the Borel sum (vanishing of J_n^a).
- At n = 4, 5 FO is close to the true result, CI too small $\Rightarrow \alpha_s$ from CI too large. (A similar observation has been made in the large- β_0 approximation [Ball, MB, Braun, 1995].)

Explanation? Model dependence?

-2

<ロト <回 > < 三 > < 三 >

Cancellations at large orders and CIPT

$$\delta_{\rm FO}^{(0)} = \sum_{n=1}^{\infty} \left[c_{n,1} + g_n \right] a (M_{\tau}^2)^n \qquad g_n = \sum_{k=2}^n k \, c_{n,k} J_{k-1}$$

- g_n from integration on the circle, $c_{n,1}$ from Adler function
- For the leading IR contribution (u = 2) there are *important cancellations*:

$$\frac{c_{n,1}+g_n}{c_{n,1}} \propto 1/n^2$$

Cancellations at large orders and CIPT

$$\delta_{\rm FO}^{(0)} = \sum_{n=1}^{\infty} \left[c_{n,1} + g_n \right] a(M_{\tau}^2)^n \qquad g_n = \sum_{k=2}^n k \, c_{n,k} J_{k-1}$$

- g_n from integration on the circle, $c_{n,1}$ from Adler function
- For the leading IR contribution (u = 2) there are *important cancellations*:

$$\frac{c_{n,1}+g_n}{c_{n,1}} \propto 1/n^2$$

• $c_{n,k}$ depends on $c_{m,1}$, β_m up to m = n - k + 1, e.g. $c_{4,2} = -\frac{1}{4} (\beta_3 c_{1,1} + 2\beta_2 c_{2,1} + 3\beta_1 c_{3,1})$

α_s^n	$c_{1,1}$	$c_{2,1}$	c _{3,1}	$c_{4,1}$	$c_{5,1}$	$c_{6,1}$	$c_{7,1}$	$c_{8,1}$	g_n	$c_{n,1} + g_n$
2	3.56	1.64							3.56	5.20
4	-20.6	30.5	68.1	49.1					78.0	127.1
6	-2924	-2858	-2280	2214	5041	3275			-807	2468
8	14652	-29552	-145846	-502719	-393887	260511	467787	388442	-329054	59388

CI at order n sums the first *n* columns to all orders. Destroys cancellations, running coupling effects are only dominant at n < 5, then factorial behaviour is more important.

イロト 不得 とくき とくき とうき

Model dependence

[MB, Jamin, 2008; Descotes-Genon, Malaescu, 2010]

- Qualitative features independent of
 - reference scale choice $\mu = \xi M_{\tau}$
 - including estimate of c_{5,1}, or adding *u* = 4 instead of d₁^{PO} in the fit.
 - variation of δc₅ = (c_{5,1} 283)/283 between -1 and 1.
- Significant differences are obtained if d^{PO}₂ ~ 1 is added and the remaining parameters fit as before.

$$\begin{split} & d_2^{R} = 3.16 - 4.66 \, d_2^{\text{PO}} + 0.44 \, \delta c_5 \\ & d_3^{R} = -13.5 + 163.3 \, d_2^{\text{PO}} + 21.7 \, \delta c_5 \\ & d_1^{\text{PO}} = 0.007 + 3.84 \, d_2^{\text{PO}} + 0.75 \, \delta c_5 \end{split}$$

But $d_2^{\text{PO}} \sim 1$ produces a model with large intrinsic cancellations between u = 2 and u = 3 and in low orders.

• Case 1: *u* = 2 singularity is dominant (as expected)

Cancellations are important

FOPT preferred

• Case 2: Models with *u* = 2 singularity artificially set to zero or suppressed No cancellations, factorial behaviour suppressed relative to running coupling-effects [cf. Jamin. 2005]

CIPT preferred

• Case 3: Models with (unnaturally) large cancellations between *u* = 2 and *u* = 3 and/or polynomial coefficients.

Anything can happen.

(Plots for $\alpha_s(M_{\tau}) = 0.3186$, from Jamin, arXiv:1101.0681 [hep-ph].)

$$\delta^{(0)} \propto \oint_{|x|=1} \frac{dx}{x} (1-x)^3 \operatorname{3}(1+x) D^{(1+0)}(M_{\tau}^2 x)$$

 $f(x) = (1 - e^{i\phi})^3 (1 + e^{i\phi})$

Adler function on the circle at 4th, 5th, 7th (decreasing dashes) order for FO (blue, left) and CI (black, right).

$$\delta^{(0)} \propto \oint_{|x|=1} \frac{dx}{x} (1-x)^3 \operatorname{3}(1+x) D^{(1+0)}(M_{\tau}^2 x)$$

Adler function on the circle at 4th, 5th, 7th (decreasing dashes) order for FO (blue, left) and CI (black, right).

The Adler function along the circle in the complex plane (2/3)

Case 1 (left): Ansatz from [MB, Jamin, 2008]

The Adler function along the circle in the complex plane (2/3)

Case 1 (left): Ansatz from [MB, Jamin, 2008]

Case 2 (middle): Model with u = 2 singularity set to zero by hand

Case 1 (left): Ansatz from [MB, Jamin, 2008]

Case 2 (middle): Model with u = 2 singularity set to zero by hand Case 3 (right): Model with large residues and cancellations between u = 2 and u = 3.

 $(d_2^{\text{PO}} = -1 \text{ from [Descotes-Genon, Malaescu, 2010]})$

- Did not find models where the shape of CI is close to the Borel sum on the circle.
- Models with large cancellations yield shapes of the Borel sum that cannot be reproduced by FO or CI in orders where the series is asymptotic.
- Implications for moments! ALEPH moments are strongly oscillating along the circle.

Finally: α_s

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三里.

α_s analysis

- $R_{\tau,V+A}^{ud} = 3.4678 \pm 0.0090$ (HFAG), $|V_{ud}| = 0.97425 \pm 0.00022$, (updated to HFAG compared to [MB, Jamin, 2008]), standard estimates of EW corrections
- $\delta_{PC} = (-6.8 \pm 3.5) \cdot 10^{-3}$ (slightly updated compared to [MB, Jamin, 2008])

$$\delta_{\text{phen}}^{(0)} = 0.2000 \pm 0.0032_{\text{exp}} \pm 0.0037_{\text{PC}} = 0.2000 \pm 0.0049$$

• • = • • = •

α_s analysis

- $R_{\tau,V+A}^{ud} = 3.4678 \pm 0.0090$ (HFAG), $|V_{ud}| = 0.97425 \pm 0.00022$, (updated to HFAG compared to [MB, Jamin, 2008]), standard estimates of EW corrections
- $\delta_{PC} = (-6.8 \pm 3.5) \cdot 10^{-3}$ (slightly updated compared to [MB, Jamin, 2008])

$$\delta_{\text{phen}}^{(0)} = 0.2000 \pm 0.0032_{\text{exp}} \pm 0.0037_{\text{PC}} = 0.2000 \pm 0.0049$$

Recommendation: FOPT

- FOPT/CIPT plausibly resolved in favour of FOPT by including generic information on large orders
- Preference for FOPT due to specific properties of the inclusive width. May be different for moments.
- Strong coupling:

 $\alpha_{\rm s}({\rm M_Z}) = 0.1181 \pm 0.0003_{\rm exp} \stackrel{+0.0012}{_{-0.0007}}$ (th) $\pm 0.0002_{\rm evol}$

Standard FO analysis. th error reduced if one takes large-order information at face value. Probably more conservative not to.

3

< ロ > < 同 > < 回 > < 回 > < 回 > <