FOPT ${ }_{\text {[fiscl. orderer pertubation theovy] }}$ Analysis*)

M. Beneke (RWTH Aachen U.)

Workshop on Precision Measurements of α_{s} Max-Planck-Institut für Physik, München, 9 February 2011
${ }^{*)}$ FOPT Analysis is trivial. Not so trivial: why this is (most likely) the right thing to do.

References:
MB, Matthias Jamin, JHEP 0809 (2008) 044, arXiv:0806.3156 [hep-ph];
MB, Diogo Boito, Matthias Jamin, work in progress

Notation

Adler function

$$
D_{V}^{(1+0)}(s)=\frac{N_{c}}{12 \pi^{2}} \sum_{n=0}^{\infty} a_{\mu}^{n} \sum_{k=1}^{n+1} k c_{n, k} \ln ^{k-1} \frac{-s}{\mu^{2}}=\frac{N_{c}}{12 \pi^{2}} \sum_{n=0}^{\infty} c_{n, 1} a_{Q}^{n}
$$

$c_{n, 1}$ known to $n=4$ [Baikov, Chetyrkin, Kühn; 2008].

FOPT $\quad \delta_{\mathrm{FO}}^{(0)}=\sum_{n=1}^{\infty} a\left(M_{\tau}^{2}\right)^{n} \sum_{k=1}^{n} k c_{n, k} J_{k-1} \quad J_{l} \equiv \frac{1}{2 \pi i} \oint_{|x|=1} \frac{d x}{x}(1-x)^{3}(1+x) \ln ^{l}(-x)$
$\mathrm{CIPT} \quad \delta_{\mathrm{CI}}^{(0)}=\sum_{n=1}^{\infty} c_{n, 1} J_{n}^{a}\left(M_{\tau}^{2}\right) \quad J_{n}^{a}\left(M_{\tau}^{2}\right) \equiv \frac{1}{2 \pi i} \oint_{|x|=1} \frac{d x}{x}(1-x)^{3}(1+x) a^{n}\left(-M_{\tau}^{2} x\right)$

The problem

Series expansions for $\alpha_{s}\left(M_{\tau}^{2}\right)=0.34$:

$$
\begin{gathered}
\alpha_{s}^{1} \alpha_{s}^{2} \alpha_{s}^{3} \quad \alpha_{s}^{4} \quad \alpha_{s}^{5} \\
\delta_{\mathrm{FO}}^{(0)}=0.1082+0.0609+0.0334+0.0174(+0.0088)=0.2200(0.2288) \\
\delta_{\mathrm{CI}}^{(0)}=0.1479+0.0297+0.0122+0.0086(+0.0038)=0.1984(0.2021)
\end{gathered}
$$

[We will often use the estimate $c_{5,1}=283$.]

The problem

Series expansions for $\alpha_{s}\left(M_{\tau}^{2}\right)=0.34$:

$$
\begin{gathered}
\alpha_{s}^{1} \alpha_{s}^{2} \alpha_{s}^{3} \alpha_{s}^{4} \quad \alpha_{s}^{5} \\
\delta_{\mathrm{FO}}^{(0)}=0.1082+0.0609+0.0334+0.0174(+0.0088)=0.2200(0.2288) \\
\delta_{\mathrm{CI}}^{(0)}=0.1479+0.0297+0.0122+0.0086(+0.0038)=0.1984(0.2021)
\end{gathered}
$$

[We will often use the estimate $c_{5,1}=283$.]

FO/CI difference increases by adding more orders. Systematic problem.

Arguments for CIPT ...

- Better convergence, smaller scale dependence

Scale error on $\alpha_{s}\left(M_{\tau}^{2}\right)$ from variation of μ in $[1,2.5] \mathrm{GeV}$ is ${ }_{-0.005}^{+0.010}$ for FO and ${ }_{-0.002}^{+0.005}$ for CI.

- Expansion of the running coupling on the circle as used in FO has only a finite radius of convergence [Le Diberder, Pich; 1992]

$$
\alpha_{s}\left(M_{\tau}^{2} e^{i \pi}\right)=\frac{\alpha_{s}\left(M_{\tau}^{2}\right)}{1+\frac{\beta_{0}}{4 \pi} i \pi \alpha_{s}\left(M_{\tau}^{2}\right)}
$$

Actual $\alpha_{s}\left(M_{\tau}^{2}\right)$ is close.

Arguments for CIPT ...

- Better convergence, smaller scale dependence

Scale error on $\alpha_{s}\left(M_{\tau}^{2}\right)$ from variation of μ in $[1,2.5] \mathrm{GeV}$ is ${ }_{-0.005}^{+0.010}$ for FO and ${ }_{-0.002}^{+0.005}$ for CI.

- Expansion of the running coupling on the circle as used in FO has only a finite radius of convergence [Le Diberder, Pich; 1992]

$$
\alpha_{s}\left(M_{\tau}^{2} e^{i \pi}\right)=\frac{\alpha_{s}\left(M_{\tau}^{2}\right)}{1+\frac{\beta_{0}}{4 \pi} i \pi \alpha_{s}\left(M_{\tau}^{2}\right)}
$$

Actual $\alpha_{s}\left(M_{\tau}^{2}\right)$ is close.

Not very compelling, because ...

Standard arguments for CIPT are not compelling (1/2)

$$
\delta_{\mathrm{CI}}^{(0)}=\sum_{n=1}^{\infty} c_{n, 1} a^{n}\left(M_{\tau}^{2}\right) \times\left[J_{n}^{a}\left(M_{\tau}^{2}\right) / a^{n}\left(M_{\tau}^{2}\right)\right]
$$

Series must exhibit small terms at intermediate orders, because the effective coupling goes through zero. Small scale dependence and good convergence may be a spurious effect.

Standard arguments for CIPT are not compelling (2/2)

- QCD perturbation expansions are only asymptotic anyway. Zero radius of convergence.

Why then bother about a subset of terms that has finite radius of convergence?

Standard arguments for CIPT are not compelling (2/2)

- QCD perturbation expansions are only asymptotic anyway.

Zero radius of convergence.
Why then bother about a subset of terms that has finite radius of convergence?

- We don't use running couplings in CI-type prescriptions in related problems. Cf. semileptonic heavy quark decay, which may also be expressed as

$$
\Gamma=\int^{m_{Q}^{2}} d s w(s) \Pi_{H Q}(s)
$$

The FOPT/CIPT discrepancy is a problem. What else do we know about the perturbation series?

Asymptotic behaviour

General structure of large-order behaviour is (believed to be) known.

$$
\begin{aligned}
& B[F](t)=\sum_{n=0}^{\infty} r_{n} \frac{t^{n}}{n!} \\
& F(\alpha)=\int_{0}^{\infty} d t \mathrm{e}^{-t / \alpha} B[F](t)
\end{aligned}
$$

Asymptotic behaviour

General structure of large-order behaviour is (believed to be) known.

$$
\begin{aligned}
& B[F](t)=\sum_{n=0}^{\infty} r_{n} \frac{t^{n}}{n!} \\
& F(\alpha)=\int_{0}^{\infty} d t \mathrm{e}^{-t / \alpha} B[F](t)
\end{aligned}
$$

UV renormalons at $t=m / \beta_{0}, m=1,2, \ldots$

$$
B\left[F_{p}\right](u)=\frac{c_{p}}{(p-u)^{1+\gamma}}\left[1+\tilde{b}_{1}(p-u)+\ldots\right] \quad\left(u \equiv \beta_{1} t /(2 \pi)\right) \quad \Leftrightarrow
$$

$$
F_{p}(a)=\frac{\pi c_{p}}{p^{1+\gamma} \Gamma(1+\gamma)} \sum_{n=0}^{\infty} \Gamma(n+1+\gamma)\left(\frac{\beta_{1}}{2 p}\right)^{n} a^{n+1} \times\left[1+\frac{p \gamma \tilde{b}_{1}}{(n+\gamma)}+\mathcal{O}\left(\frac{1}{n^{2}}\right)\right]
$$

In principle the renormalon singularity structure is calculable, except for c_{p}.

General properties and the case of R_{τ}

UV renormalons

- Sign-alternating, singularity structure related to higher-dim operators in the cut-off QCD Lagrangian [Parisi, 1977; MB, Kivel, Braun 1997]
- Leading singularity for Adler function and $R_{\tau}, u=-1$
- No sign-alternation seen. [In fact, no factorial behaviour of any form.] c_{-1} must be small in the $\overline{\mathrm{MS}}$ scheme - true for fermion loops ("large- β_{0} ").

General properties and the case of R_{τ}

UV renormalons

- Sign-alternating, singularity structure related to higher-dim operators in the cut-off QCD Lagrangian [Parisi, 1977; MB, Kivel, Braun 1997]
- Leading singularity for Adler function and $R_{\tau}, u=-1$
- No sign-alternation seen. [In fact, no factorial behaviour of any form.] c_{-1} must be small in the $\overline{\mathrm{MS}}$ scheme - true for fermion loops ("large- β_{0} ").

IR renormalons

- Fixed-sign, singularity structure related to higher-dim operators in the OPE [Mueller, 1985; Zakharov, 1992; MB, 1993]
- No $u=1$ singularity, $u=2,3, \ldots$ related to dim-4, $6, \ldots$ condensates.
- $u=2$ especially simple, only one operator (gluon condensate), presumably numerically leading in intermediate orders; $u=3$ complicated.
- $1 / n^{2}$ suppression of the $u=2$ singularity in going from Adler function to R_{τ}, none for $u=3$. [Related to weight function and anomalous dimension of the gluon condensate.] [MB, 1993]

Incorporate this into an Ansatz for $c_{n, 1}, n>5$.
Then compare FOPT/CIPT.
Assumption: series is asymptotic, sum to minimal term should be the Borel sum \pm size of power corrections (small).

Note: Borel sum is the same in the FO and CI approach.

Ansatz

$$
B[D](u)=B\left[D_{1}^{\mathrm{UV}}\right](u)+B\left[D_{2}^{\mathrm{IR}}\right](u)+B\left[D_{3}^{\mathrm{IR}}\right](u)+d_{0}^{\mathrm{PO}}+d_{1}^{\mathrm{PO}} u,
$$

- Ansatz for the Adler function that reproduces known $c_{4,1}$ and $c_{5,1}=283$.
- Fit constants c_{p} for $u=-1,2,3$ to $c_{3,1}, c_{4,1}$ and $c_{5,1}$, and adjust $d_{0,1}^{\mathrm{PO}}$ to reproduce $c_{1,1}$ and $c_{2,1}$.
- Find $d_{1}^{\mathrm{UV}}=-1.56 \cdot 10^{-2}, d_{2}^{\mathrm{IR}}=3.16, d_{3}^{\mathrm{RR}}=-13.5, d_{0}^{\mathrm{PO}}=0.781, d_{1}^{\mathrm{PO}}=7.66 \cdot 10^{-3}$.
- Pole ansatz works well already at $n=2$ (d_{1}^{PO} small).

Convergence of R_{τ}

- FO converges to Borel sum
- CI smoother at low orders (better convergence, smaller scale dependence), but never reaches the Borel sum (vanishing of J_{n}^{a}).
- At $n=4,5 \mathrm{FO}$ is close to the true result, CI too small $\Rightarrow \alpha_{s}$ from CI too large.
(A similar observation has been made in the large- β_{0} approximation [Ball, MB, Braun, 1995].)

Explanation?
 Model dependence?

Cancellations at large orders and CIPT

$$
\delta_{\mathrm{FO}}^{(0)}=\sum_{n=1}^{\infty}\left[c_{n, 1}+g_{n}\right] a\left(M_{\tau}^{2}\right)^{n} \quad g_{n}=\sum_{k=2}^{n} k c_{n, k} J_{k-1}
$$

- g_{n} from integration on the circle, $c_{n, 1}$ from Adler function
- For the leading IR contribution $(u=2)$ there are important cancellations:

$$
\frac{c_{n, 1}+g_{n}}{c_{n, 1}} \propto 1 / n^{2}
$$

Cancellations at large orders and CIPT

$$
\delta_{\mathrm{FO}}^{(0)}=\sum_{n=1}^{\infty}\left[c_{n, 1}+g_{n}\right] a\left(M_{\tau}^{2}\right)^{n} \quad g_{n}=\sum_{k=2}^{n} k c_{n, k} J_{k-1}
$$

- g_{n} from integration on the circle, $c_{n, 1}$ from Adler function
- For the leading IR contribution $(u=2)$ there are important cancellations:

$$
\frac{c_{n, 1}+g_{n}}{c_{n, 1}} \propto 1 / n^{2}
$$

- $c_{n, k}$ depends on $c_{m, 1}, \beta_{m}$ up to $m=n-k+1$, e.g. $c_{4,2}=-\frac{1}{4}\left(\beta_{3} c_{1,1}+2 \beta_{2} c_{2,1}+3 \beta_{1} c_{3,1}\right)$

α_{s}^{n}	$c_{1,1}$	$c_{2,1}$	$c_{3,1}$	$c_{4,1}$	$c_{5,1}$	$c_{6,1}$	$c_{7,1}$	$c_{8,1}$	g_{n}	$c_{n, 1}+g_{n}$
2	3.56	1.64							3.56	5.20
4	-20.6	30.5	68.1	49.1					78.0	127.1
6	-2924	-2858	-2280	2214	5041	3275			-807	2468
8	14652	-29552	-145846	-502719	-393887	260511	467787	388442	-329054	59388

CI at order n sums the first n columns to all orders. Destroys cancellations, running coupling effects are only dominant at $n<5$, then factorial behaviour is more important.

Model dependence

[MB, Jamin, 2008; Descotes-Genon, Malaescu, 2010]

- Qualitative features independent of
- reference scale choice $\mu=\xi M_{\tau}$
- including estimate of $c_{5,1}$, or adding $u=4$ instead of d_{1}^{PO} in the fit.
- variation of $\delta c_{5}=\left(c_{5,1}-283\right) / 283$ between -1 and 1 .

- Significant differences are obtained if $d_{2}^{\mathrm{PO}} \sim 1$ is added and the remaining parameters fit as before.

$$
\begin{aligned}
& d_{2}^{I R}=3.16-4.66 d_{2}^{\mathrm{PO}}+0.44 \delta c_{5} \\
& d_{3}^{I R}=-13.5+163.3 d_{2}^{\mathrm{PO}}+21.7 \delta c_{5} \\
& d_{1}^{\mathrm{PO}}=0.007+3.84 d_{2}^{\mathrm{PO}}+0.75 \delta c_{5}
\end{aligned}
$$

But $d_{2}^{\mathrm{PO}} \sim 1$ produces a model with large intrinsic cancellations between $u=2$ and $u=3$ and in low orders.

General features

- Case $1: u=2$ singularity is dominant (as expected)
Cancellations are important
FOPT preferred
- Case 2: Models with $u=2$ singularity artificially set to zero or suppressed
No cancellations, factorial behaviour suppressed relative to running coupling-effects [cf. Jamin. 2005]
CIPT preferred
- Case 3: Models with (unnaturally) large cancellations between $u=2$ and $u=3$ and/or polynomial coefficients.
Anything can happen.

(Plots for $\alpha_{S}\left(M_{\tau}\right)=0.3186$, from Jamin, arXiv:1101.0681 [hep-ph].)

The Adler function along the circle in the complex plane (1/3)

$\delta^{(0)} \propto \oint_{|x|=1} \frac{d x}{x}(1-x)^{3} 3(1+x) D^{(1+0)}\left(M_{\tau}^{2} x\right)$

Adler function on the circle at 4th, 5th, 7th (decreasing dashes) order for FO (blue, left) and CI (black, right).

$$
f(x)=\left(1-e^{i \phi}\right)^{3}\left(1+e^{i \phi}\right)
$$

The Adler function along the circle in the complex plane (1/3)

$\delta^{(0)} \propto \oint_{|x|=1} \frac{d x}{x}(1-x)^{3} 3(1+x) D^{(1+0)}\left(M_{\tau}^{2} x\right)$

Adler function on the circle at 4th, 5th, 7th (decreasing dashes) order for FO (blue, left) and CI (black, right).

The Adler function along the circle in the complex plane (2/3)

Case 1 (left): Ansatz from [MB, Jamin, 2008]

solid red: Borel sum

The Adler function along the circle in the complex plane (2/3)

Case 1 (left): Ansatz from [MB, Jamin, 2008]
Case 2 (middle): Model with $u=2$ singularity set to zero by hand

solid red: Borel sum

The Adler function along the circle in the complex plane (2/3)

Case 1 (left): Ansatz from [MB, Jamin, 2008]
Case 2 (middle): Model with $u=2$ singularity set to zero by hand
Case 3 (right): Model with large residues and cancellations between $u=2$ and $u=3$. $\left(d_{2}^{\mathrm{PO}}=-1\right.$ from [Descotes-Genon, Malaescu, 2010])

solid red: Borel sum

The Adler function along the circle in the complex plane (3/3)

- Did not find models where the shape of CI is close to the Borel sum on the circle.
- Models with large cancellations yield shapes of the Borel sum that cannot be reproduced by FO or CI in orders where the series is asymptotic.
- Implications for moments!

ALEPH moments are strongly oscillating along the circle.

Finally: $\alpha_{\text {s }}$

α_{s} analysis

- $R_{\tau, V+A}^{u d}=3.4678 \pm 0.0090$ (HFAG), $\left|V_{u d}\right|=0.97425 \pm 0.00022$,
(updated to HFAG compared to [MB, Jamin, 2008]), standard estimates of EW corrections
- $\delta_{\mathrm{PC}}=(-6.8 \pm 3.5) \cdot 10^{-3}$ (slightly updated compared to [MB, Jamin, 2008])

$$
\delta_{\text {phen }}^{(0)}=0.2000 \pm 0.0032_{\mathrm{exp}} \pm 0.0037_{\mathrm{PC}}=0.2000 \pm 0.0049
$$

α_{s} analysis

- $R_{\tau, V+A}^{u d}=3.4678 \pm 0.0090(\mathrm{HFAG}),\left|V_{u d}\right|=0.97425 \pm 0.00022$,
(updated to HFAG compared to [MB, Jamin, 2008]), standard estimates of EW corrections
- $\delta_{\mathrm{PC}}=(-6.8 \pm 3.5) \cdot 10^{-3}$ (slightly updated compared to [MB, Jamin, 2008])

$$
\delta_{\text {phen }}^{(0)}=0.2000 \pm 0.0032_{\exp } \pm 0.0037_{\mathrm{PC}}=0.2000 \pm 0.0049
$$

	$\alpha_{\mathbf{S}}\left(\mathbf{M}_{\tau}\right)$
FOPT	$\mathbf{0 . 3 1 6 7} \pm 0.0027_{\exp } \pm \mathbf{0 . 0 0 3 2}{ }_{\mathrm{PC}} \pm 0.0026_{\mathbf{c}_{5,1}}{ }_{-0.0100}^{+0.0049}$ (scale)
BS	$0.3122 \pm 0.0025_{\exp } \pm 0.0030_{\mathrm{PC}} \pm 0.0024_{c_{5,1}} \pm 0.0011_{\beta_{4}=0}{ }_{-0.0027}^{+0.0032}$ (scale)
CIPT	$0.3373 \pm 0.0039_{\exp } \pm 0.0046_{\mathrm{PC}} \pm 0.0047_{c_{5,1}}{ }_{-0.0049}^{+0.0020}$ (scale)
	$\alpha_{\mathbf{S}}\left(\mathbf{M}_{\mathbf{Z}}\right)$
FOPT	$\mathbf{0 . 1 1 8 1} \pm 0.0003_{\text {exp }}{ }_{-0.0007}^{+0.0012}$ (th) $\pm \mathbf{0 . 0 0 0 2}{ }_{\text {evol }}$
BS	$0.1175 \pm 0.0003_{\exp } \pm 0.0006(\mathrm{th}) \pm 0.0002_{\text {evol }}$
CIPT	$0.1205 \pm 0.0004_{\text {exp }}{ }_{-0.0008}^{+0.0009}$ (th) $\pm 0.0002_{\text {evol }}$

Recommendation: FOPT

Conclusion

- FOPT/CIPT plausibly resolved in favour of FOPT by including generic information on large orders
- Preference for FOPT due to specific properties of the inclusive width. May be different for moments.
- Strong coupling:

$$
\alpha_{\mathbf{s}}\left(\mathbf{M}_{\mathbf{Z}}\right)=\mathbf{0 . 1 1 8 1} \pm \mathbf{0 . 0 0 0 3} 3_{\exp }^{-0.0007}+0.0012(\text { th }) \pm \mathbf{0 . 0 0 0 2} 2_{\mathrm{evol}}
$$

Standard FO analysis. th error reduced if one takes large-order information at face value. Probably more conservative not to.

