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1 Recent progress in hadronic τ decays
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The determination of αs from hadronic τ decays is impeded by the fact that two choices for the renormalisa-
tion group resummation, namely fixed-order (FOPT) and contour-improved perturbation theory (CIPT), yield
systematically differing results. On the basis of a model for higher-order terms in the perturbative series, which
incorporates well-known structure from renormalons, it is found that FOPT smoothly approaches the Borel sum
for the τ hadronic width, while CIPT is unable to account for the resummed series. An example for the behaviour
of QCD spectral function moments, displaying a similar behaviour, is presented as well.

1. INTRODUCTION

Hadronic decays of the τ lepton provide an ex-
cellent playground for the study of QCD at low
energies. Its mass of Mτ ≈ 1.8GeV is in an en-
ergy region where perturbation theory is still ap-
plicable, but also non-perturbative effects come
into play and need to be included. These may
arise from vacuum-condensate terms in the frame-
work of the operator product expansion (OPE)
and from so-called duality-violating contributions
close to the physical, Minkowskian energy axis.
In the seminal article [1], the strategy for a pre-

cise determination of the QCD coupling αs from
the total τ hadronic width

Rτ ≡
Γ[τ− → hadrons ντ (γ)]

Γ[τ− → e−νeντ (γ)]
= 3.640(10) , (1)

was developed, while in the subsequent years mo-
ments of spectral τ -decay distributions were in-
corporated into the analyses as well [2,3,4].
The analytical computation of the perturbative

order α4
s correction [5] has recently revived the

interest in αs analyses from hadronic τ decays
which after evolution to the Z boson mass scale
resulted in the following determinations:

αs(M
2
Z) =





0.1202 (6)exp(18)th [5] ,

0.1212 (5)exp(9)th [6] ,

0.1180 (4)exp(7)th [7] ,

0.1187 (6)exp(15)th [8] .

(2)

The dispersion in these results dominantly origi-
nates from different treatments of the renormali-
sation group (RG) resummation of the perturba-
tive series, namely fixed-order perturbation the-
ory (FOPT), or contour-improved perturbation
theory (CIPT) [9,10], being systematically larger
than the last included term in the expansion,
which often in asymptotic series provides an esti-
mate of the uncertainty due to higher-order terms
not included in the partial sum. This points to
the necessity of investigating the influence of dif-
ferent RG resummations in more detail, which
can for example be performed within exactly re-
summable models for the perturbative series.
Most suitable for the αs determination is the

τ decay rate into light u and d quarks Rτ,V/A

via a vector or axialvector current, since in this
case power corrections are especially suppressed.
Theoretically, Rτ,V/A takes the form [1]

Rτ,V/A =
Nc

2
SEW |Vud|

2
[
1 + δ(0)

+ δ′EW +
∑

D≥2

δ
(D)
ud,V/A

]
, (3)

where SEW = 1.0198(6) [11] and δ′EW =
0.0010(10) [12] are electroweak corrections, δ(0)

comprises the perturbative QCD correction, and

the δ
(D)
ud,V/A denote quark mass and higher D-

dimensional operator corrections which arise in
the framework of the OPE.
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2. PERTURBATIVE CORRECTION δ(0)

Below, only the purely perturbative correction
δ(0) shall be considered, which gives the dominant
contribution to Rτ,V/A. In FOPT it takes the
general form

δ
(0)
FO =

∞∑

n=1

a(M2
τ )

n
n∑

k=1

k cn,k Jk−1 , (4)

where a(µ2) ≡ aµ ≡ αs(µ)/π, and cn,k are the
coefficients which appear in the perturbative ex-
pansion of the vector correlation function,

ΠV (s) = −
Nc

12π2

∞∑

n=0

anµ

n+1∑

k=0

cn,k ln
k

(
−s

µ2

)
. (5)

At each perturbative order, the coefficients cn,1
can be considered independent, while all other
cn,k with k ≥ 2 are calculable from the RG equa-
tion. Further details can for example be found
in ref. [7]. Finally, the Jl are contour integrals in
the complex s-plane, which are defined by

Jl ≡
1

2πi

∮

|x|=1

dx

x
(1− x)3 (1+ x) lnl(−x) . (6)

The first three, being required up to O(α3
s), take

the numerical values

J0 = 1 , J1 = − 19
12 , J2 = 265

72 − 1
3 π

2 . (7)

At order αn
s FOPT contains unsummed loga-

rithms of order lnl(−x) ∼ πl with l < n related
to the contour integrals Jl. CIPT sums these log-
arithms, which yields

δ
(0)
CI =

∞∑

n=1

cn,1 J
a
n(M

2
τ ) (8)

in terms of the contour integrals Ja
n(M

2
τ ) over the

running coupling, defined as:

Ja
n(M

2
τ ) ≡

1

2πi

∮

|x|=1

dx

x
(1−x)3 (1+x) an(−M2

τ x) .

(9)

In contrast to FOPT, for CIPT each order n
just depends on the corresponding coefficient cn,1.

Thus, all contributions proportional to the coeffi-
cient cn,1 which in FOPT appear at all perturba-
tive orders equal or greater than n are resummed
into a single term.
Numerically, the two approaches lead to sig-

nificant differences. Employing the recent aver-
age αs(MZ) = 0.1184 [13], leading to αs(Mτ ) =
0.3186, in eqs. (4) and (8), one finds

δ
(0)
FO = 0.1959 (0.2022) , (10)

δ
(0)
CI = 0.1814 (0.1847) , (11)

where the first number in both cases employs the
known coefficients up to O(α4

s) [5] and the num-
bers in brackets include an estimate of the O(α5

s)
term with c5,1 ≈ 283 [7]. Inspecting the individ-
ual contributions from each order, up to O(α5

s)
the CIPT series appears to be better convergent.
However, around the seventh order, the contour
integrals Ja

n(M
2
τ ) change sign and thus at this or-

der the contributions are bound to become small.
Therefore, the faster approach to the minimal
term does not necessarily imply that CIPT gives
the closer approach to the true result for the re-
summed series.

3. A PHYSICAL MODEL

To investigate whether FOPT or CIPT results
in a better approximation to δ(0), one requires a
physically motivated model for its series. Such a
model was constructed in ref. [7] and is based on
the Borel transform of the Adler function DV (s):

DV (s) ≡ − s
d

ds
ΠV (s) ≡

Nc

12π2

[
1+D̂(s)

]
. (12)

In the following discussion it is slightly more con-
venient to utilise the related function D̂(s). Its

Borel transform B[D̂](t) is defined by the relation

D̂(α) ≡

∞∫

0

dt e−t/α B[D̂](t) . (13)

The integral D̂(α), if it exists, gives the Borel sum
of the original divergent series. It was found that
the Borel-transformed Adler function B[D̂](t) ob-
tains infrared (IR) and ultraviolet (UV) renor-
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malon poles at positive and negative integer val-
ues of the variable u ≡ 9t/(4π), respectively
[14,15,16]. (With the exception of u = 1.)
Apart from very low orders, where a dominance

of renormalon poles close to u = 0 has not yet set
in, intermediate orders should be dominated by
the leading IR renormalon poles, while the lead-
ing UV renormalon, being closest to u = 0, dic-
tates the large-order behaviour of the perturba-
tive expansion. Assuming that only the first two
orders are not yet dominated by the lowest IR
renormalons, one is led to the ansatz

B[D̂](u) = B[D̂UV
1 ](u) +B[D̂IR

2 ](u) +

B[D̂IR
3 ](u) + dPO

0 + dPO
1 u , (14)

which includes one UV renormalon at u = −1, the
two leading IR renormalons at u = 2 and u = 3,
as well as polynomial terms for the two lowest per-
turbative orders. Explicit expressions for the UV
and IR renormalon pole terms B[D̂UV

p ](u) and

B[D̂IR
p ](u) can be found in section 5 of ref. [7].

Apart from the residues dUV
p and dIRp , the full

structure of the renormalon pole terms is dic-
tated by the OPE and the RG. Therefore, the
model (14) depends on five parameters, the three
residua dUV

1 , dIR2 and dIR3 , as well as the two poly-
nomial parameters dPO

0 and dPO
1 . These parame-

ters can be fixed by matching to the perturbative
expansion of D̂(s) up to O(α5

s). Thereby, also the
estimate for c5,1 is used. The parameters of the
model (14) are then found to be:

dUV
1 = − 1.56·10−2 , dIR2 = 3.16 , dIR3 = − 13.5 ,

dPO
0 = 0.781 , dPO

1 = 7.66 · 10−3 . (15)

The fact that the parameter dPO
1 turns out to be

small implies that the coefficient c2,1 is already
reasonably well described by the renormalon pole
contribution, although it was not used to fix the
residua. Therefore, one could set dPO

1 = 0 and
actually work with a model which only has four
parameters. The predicted value c5,1 = 280 then
turns out very close to the estimate, which can be
viewed as one test of the stability of the model.
This is also corroborated in table 1, where

the relative contributions of a certain renormalon

c2,1 c3,1 c4,1 c5,1 c6,1

IR2 −77.8 82.4 100.4 135.9 97.5

IR3 152.0 28.7 −10.0 −20.2 −13.3

UV1 22.5 −11.2 9.7 −15.6 15.8

Table 1
Relative contributions (in %) of the different IR
and UV renormalon poles to the Adler-function
coefficients c2,1 to c6,1 for the Borel model (14).

pole to the coefficients c2,1 to c6,1 is tabulated.
The sum of the contributions to c2,1 is close to
100%, implying again that the polynomial term is
already small. Then, from c3,1 to c6,1 the leading
IR pole at u = 2 is dominating the coefficients,
before the leading UV pole at u = −1 takes over
at even higher orders. (For the central model (14)
this happens around the 10th order [7].)

2 4 6 8 10 12 14 16
Perturbative order n

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

δ(0
)

Borel sum
FO perturbation theory
CI perturbation theory
Smallest term

Figure 1. Results for δ
(0)
FO (full circles) and δ

(0)
CI

(grey circles) at αs(Mτ ) = 0.3186, employing the
model (14), as a function of the order n up to
which the terms in the perturbative series have
been summed. The straight line represents the
result for the Borel sum of the series.

The implications of the model (14) for δ(0) in
FOPT and CIPT is graphically represented in fig-

ure 1. The full circles denote the result for δ
(0)
FO

and the grey circles the one for δ
(0)
CI , as a func-

tion of the order n up to which the perturbative
series has been summed. The straight line cor-
responds to the principal value Borel sum of the

series, δ
(0)
BS = 0.2080, and the shaded band pro-

vides an error estimate based on its imaginary
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part divided by π. The order at which the series
have their smallest terms is indicated by the grey
diamonds. As is obvious from figure 1, FOPT
displays the behaviour expected from an asymp-
totic series: the terms decrease up to a certain
order around which the closest approach to the
resummed result is found, and for even higher or-
ders, the divergent large-order behaviour of the
series sets in. For CIPT, on the other hand, the
asymptotic behaviour sets in earlier, and the se-
ries is never able to come close to the Borel sum.1

c2,1 c3,1 c4,1 c5,1 c6,1

IR3 −743.3 −140.5 49.1 98.9 99.1

IR4 662.8 244.2 47.7 6.3 −7.2

UV1 7.5 −3.7 3.2 −5.2 8.1

Table 2
Relative contributions (in %) of the different IR
and UV renormalon poles to the Adler-function
coefficients c3,1 to c6,1 for the Borel model with
dIR2 = 0.

As the behaviour of CIPT versus FOPT hinges
on the contribution of the leading IR renormalon
at u = 2, in principal also models can be con-
structed for which CIPT provides a better ac-
count of the Borel sum. These would generally
be models where dIR2 is much smaller than the
value quoted in eq. (15). While such models can
at present not be excluded, the pattern of the
individual contributions appears more unnatural
than in the main model (14): the known cn,1 can
only be reproduced when one allows for large can-
cellations between the individual terms. Thus,
the behaviour generally expected from the pres-
ence of renormalon poles, namely dominance of
leading IR poles at intermediate orders, would be
lost.

This is apparent from table 2, which is the ana-
log of table 1, but for a model where dIR2 is forced
to be zero and an additional IR pole at u = 4
is added, in order to be able to reproduce the
known Adler function coefficients. On the one

1The same conclusions had already been drawn in ref. [17]
on the basis of the large-β0 approximation for ΠV (s).

hand for low coefficients there are huge cancella-
tions between the IR renormalon poles and also
c2,1 is not well described at all. This entails that
a large, additional polynomial term is required.
Besides, it appears unnatural that the residue of
the first IR renormalon pole at u = 2 is small, and
still there should be a natural size contribution of
the gluon condensate to the Adler function.
A graphical account of the model with dIR2 = 0

is presented in figure 2. As anticipated, now
CIPT provides a good description of the Borel
sum, while FOPT is able to come reasonably close
to it around its minimal term, but generally is
rather badly behaved.2 Nonetheless, again, the
behaviour observed in table 2 and figure 2 ap-
pears unnatural from the perspective of the struc-
ture of the Borel transform of the Adler function
and should be considered less likely than the be-
haviour of the model (14) with the residues (15).

2 4 6 8 10 12 14 16
Perturbative order n

0.12

0.14

0.16

0.18

0.2

0.22

δ(0
)

Borel sum

FO perturbation theory

CI perturbation theory

Smallest term

Figure 2. Results for δ
(0)
FO (full circles) and δ

(0)
CI

(grey circles) at αs(Mτ ) = 0.3186, employing the
model (14) with dIR2 = 0 and an additional IR
pole at u = 4, as a function of the order n up to
which the terms in the perturbative series have
been summed. The straight line represents the
result for the Borel sum of the series.

In the standard αs determinations from
hadronic τ decays [2,3], besides the total decay
rate also moments of the spectral decay distri-
butions are employed. Historically, the so-called

2A similar behaviour was found in ref. [18] in models where
the higher-order Adler function coefficients were assumed
to be small, in contrast to the expected asymptotic be-
haviour of this series in QCD.
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(k, l)-moments were used, for which a polynomial
(1−x)kxl is multiplied to the kinematical weight
function from phase-space. In the analyses [2,3],
moments with k = 1 and l = 0, 1, 2, 3 were taken
into account, such that also condensate contri-
butions up to dimension-8 could be extracted in
addition to αs. Therefore, it is of interest to anal-
yse the behaviour of these moments in models of
higher orders of perturbation theory as well.

2 4 6 8 10 12 14 16
Perturbative order n

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

δ(0
)

Figure 3. Results for (1, 2) moments δ
(0,12)
FO (full

circles) and δ
(0,12)
CI (grey circles) at αs(Mτ ) =

0.3186, employing the model (14), as a function
of the order n up to which the terms in the per-
turbative series have been summed. The straight
line represents the result for the Borel sum of the
series.

An example of such an analysis is shown in fig-
ure 3 for the moment (1, 2). It is observed that,
like for δ(0), CIPT is unable to provide a rea-
sonable account of the full Borel sum. In con-
trast, FOPT comes close to the resummed result
for perturbative orders around the minimal term,
though it is obvious that this particular moment
displays a very bad behaviour of the asymptotic
series, with only unsatisfactory convergence up
to its minimal term. The example of the (1, 2)-
moment should motivate an exhaustive investi-
gation of the moments employed in previous αs

analyses from hadronic τ decays, which will be
presented in the near future.

4. CONCLUSIONS

Models of higher orders of perturbation the-
ory allow for the study of different resummation

prescriptions in the computation of the total τ
hadronic width, as well as related moments of
τ decay spectral distributions. The most promi-
nent methods are fixed-order perturbation theory
(FOPT) and the so-called contour-improved per-
turbation theory (CIPT), which performs a par-
tial resummation of running effects of the QCD
coupling αs in the integration along the complex
contour in the s-plane.
A physically motivated model for the higher-

order behaviour of the Adler function was pre-
sented in ref. [7], and is given in eq. (14). The
model was based on the general structure of the
Borel transform of the Adler function and the
renormalisation group equation. Furthermore,
knowledge on the first four analytically available
coefficients c1,1 to c4,1, as well as an estimate for
the fifth coefficient c5,1, were incorporated.
Results for δ(0) in the main model (14) were dis-

played in figure 1, and it is observed that while
FOPT provides a good account of the full Borel
summation, CIPT is never able to come close to
the resummed value.3 This general behaviour
hinges on the size of the residue of the first IR
renormalon pole at u = 2. In a model in which
this residue is set to zero by hand, on the con-
trary CIPT well describes the Borel sum, whereas
FOPT, though approaching the resummed value
around its minimal term, generally is rather badly
behaved. Models in which dIR2 ≈ 0, however, are
only able to reproduce the known Adler function
coefficients through large cancellations between
different IR renormalon contributions, which ap-
pears unnatural.
In the standard experimental extractions of αs

from hadronic τ decays, also moments of the de-
cay spectra are employed [2,3]. An example of
the behaviour of such a moment was shown in
figure 3. The repeatedly unacceptable behaviour
of CIPT in this case and the also unsatisfactory
convergence of FOPT, suggest that such moments
should be investigated systematically, before their

3The general behaviour of the Borel model is also sup-
ported by an independent approach where the perturba-
tive series is conformally transformed into a series which
displays better convergence properties than the original
series in powers of αs [19], though in this case a modified
CIPT better converges towards the full result.
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usefulness in αs determinations from hadronic τ
decays is corroborated.

A final topic, not touched upon at all so far,
are violations of quark-hadron duality [20,21,22].
Like the perturbative expansion in αs, also the
OPE in inverse powers of s may be only asymp-
totic, and thus exponentially suppressed terms
could be relevant close to the Minkowskian axis
where the bound states are situated. This was
investigated in a model in [21] and the possible
influence of duality violations in τ decay spectra
was studied in refs. [22]. Also here a more sys-
tematic investigation seems to be in order which
was initiated in [23] and will be continued in the
future.

Hadronic τ decays have proven to be a very
fruitful laboratory for the study of low-energy
QCD and the extractions of fundamental QCD
parameters like the coupling αs. However, there
remain unresolved theoretical issues which taint
the precision of these determinations. Numeri-
cally the two most relevant appear to be the re-
summation of QCD running effects in the compu-
tation of the τ hadronic width and related decay
moments as well as duality violations. As far as
the former topic is concerned, a physically moti-
vated model of the QCD Adler function favours
the use of FOPT, since generally it is better able
to represent the fully resummed series.
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