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Abstract: The determination of αs from hadronic τ decays is revisited, with a special em-

phasis on the question of higher-order perturbative corrections and different possibilities of

resumming the perturbative series with the renormalisation group: fixed-order (FOPT) vs.

contour-improved perturbation theory (CIPT). The difference between these approaches

has evolved into a systematic effect that does not go away as higher orders in the per-

turbative expansion are added. We attempt to clarify under which circumstances one or

the other approach provides a better approximation to the true result. To this end, we

propose to describe the Adler function series by a model that includes the exactly known

coefficients and theoretical constraints on the large-order behaviour originating from the

operator product expansion and the renormalisation group. Within this framework we

find that while CIPT is unable to account for the fully resummed series, FOPT smoothly

approaches the Borel sum, before the expected divergent behaviour sets in at even higher

orders. Employing FOPT up to the fifth order to determine αs in the MS scheme, we

obtain αs(Mτ ) = 0.320+0.012
−0.007, corresponding to αs(MZ) = 0.1185+0.0014

−0.0009 . Improving this

result by including yet higher orders from our model yields αs(Mτ ) = 0.316± 0.006, which

after evolution leads to αs(MZ) = 0.1180 ± 0.0008. Our results are lower than previous

values obtained from τ decays.
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1. Introduction

Precision determinations of fundamental parameters within the Standard Model are of

utmost importance in order to test its internal consistency or point towards physics which

goes beyond it. In this respect the central parameter of the strong interaction sector is the

strong coupling αs, and until now tremendous efforts have been put into an ever better

determination of αs [1, 2].

One of the most precise determinations of αs, competitive with the current world

average, is provided by detailed investigations of the τ hadronic width

Rτ ≡ Γ[τ− → hadrons ντ (γ)]

Γ[τ− → e−νeντ (γ)]
= 3.640 ± 0.010 , (1.1)
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as well as invariant mass distributions [3, 4, 5, 6, 7]. The recent analyses of the ALEPH

spectral function data [7, 8, 9] on the basis of the final full LEP data set yielded αs(Mτ ) =

0.344 ± 0.005exp ± 0.007th which after evolution to the Z-boson mass scale results in

αs(MZ) = 0.1212 ± 0.0011. The dominant quantifiable theory uncertainty resides in the

contribution of as yet uncalculated higher-order perturbative QCD corrections and im-

provements of the perturbative series through renormalisation group methods.

Of particular interest for the αs determination is the τ decay rate into light u and

d quarks, Rτ,V/A, which proceeds either through a vector or an axialvector current, since

in this case power corrections are especially suppressed. Theoretically, Rτ,V/A can be

expressed in the form [3, 10, 11, 12]

Rτ,V/A =
Nc

2
SEW |Vud|2

[
1 + δ(0) + δ′EW +

∑

D≥2

δ
(D)
ud,V/A

]
. (1.2)

Here, SEW = 1.0198 ± 0.0006 [13] and δ′EW = 0.0010 ± 0.0010 [14] are electroweak correc-

tions, δ(0) comprises the perturbative QCD correction which will be our main interest in this

work, and the δ
(D)
ud,V/A denote quark mass and higher D-dimensional operator corrections

which arise in the framework of the operator product expansion (OPE). The higher-order

OPE contributions are small and will only be considered towards the end of our work,

when we present our determination of αs.

A particular problem emerges from the observation that different ways of performing

the renormalisation group resummation, namely fixed-order (FOPT) or contour-improved

perturbation theory (CIPT) [15, 16], apparently lead to differing results. This is especially

noteworthy as historically the values of αs extracted from τ decays employing CIPT have

always been on the high side of the world averages, and with the recent update αs(MZ) =

0.1185 ± 0.0010 [2] of the latter, this disparity is becoming significant.

CIPT is conventionally the method of choice, since the expansion of the running cou-

pling αs(
√

s) in αs(Mτ ) used in FOPT within a certain contour integral (see section 3)

is near its radius of convergence and thus argued to lead to a poorly behaved fixed-order

series. This argument, however, is not entirely compelling, since QCD perturbation series

have zero radius of convergence anyway, and are asymptotic at best, no matter whether

CIPT or FOPT is used. Indeed, in the large-β0 approximation, which may be viewed as

a toy model for the entire perturbation series, FOPT was identified to provide the better

approximation to the full result [17]. With the recent calculation of the O(α4
s) term in

the series expansion of the Adler function [18], the discrepancy between FOPT and CIPT

appears to be the largest systematic theoretical uncertainty of the αs determination, as it

is evident that it does not go away by adding the presently known higher-order terms.

The following study is motivated by the need to resolve this discrepancy and to under-

stand its origin. Previous investigations [17, 19] show that a preference for CIPT or FOPT

may strongly depend on the assumptions made on higher-order terms in the perturbation

expansion. Thus, in section 4, we study several toy models in order to address, for each

model, the following questions:

i) Are FO and CI perturbation theory seen to be compatible, once terms beyond the

currently known coefficients of the perturbative series for δ(0) are included?
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ii) How do FO and CI perturbation theory at a particular order compare to the true

result for δ(0), and is the closest approach to the true result related to the minimal

terms in the respective series?

iii) And finally, which of the two methods, FOPT or CIPT provides the closer approach

to the true value at order O(α4
s), and in general?

Here our working assumption is that the true result is approximated with reasonable ac-

curacy by the Borel sum of the model series, since the power corrections to Rτ are known

to be small.

The lessons learnt from the toy models lead us to proposing an ansatz for the Adler

function series, more precisely its Borel transform, which incorporates the presently avail-

able terms in the perturbative expansion, as well as known features of renormalon singu-

larities [20] determined solely by the operator product expansion and the renormalisation

group. This ansatz is described and analysed in detail in section 6. While in the toy models

discussed in section 4, one may obtain compatible descriptions of the perturbative series by

FOPT or CIPT, or a preference for one of the two prescriptions, we find that the features

favouring FOPT prevail in our ansatz for the physical case. For the physical model, CIPT

never comes close to the result for the Borel sum. On the other hand, FOPT approaches

this sum in a smooth fashion until its minimal term, after which the expected asymptotic

(divergent) behaviour sets in.

We believe that these features are characteristic to Rτ and therefore argue that FOPT

provides the better approximation to the perturbative series for δ(0), both at O(α4
s) and

in general. Based on this observation we proceed to determine the strong coupling αs in

section 7 in two ways: first, employing FOPT and an estimate of the O(α5
s) term suggested

by several independent arguments; second, employing our ansatz for the entire series as

discussed in section 6. Both approaches lead to values of αs(MZ) systematically lower than

previous determinations from hadronic τ decays employing CIPT.

2. Theoretical framework

We briefly review the main theoretical expressions required in the analysis of the inclusive

hadronic τ decay width. Further details and complete expressions can be found in the

original works [3, 21, 22]. The central quantities in such an analysis are the two-point

correlation functions

Π
V/A
µν,ij(p) ≡ i

∫
dx eipx 〈Ω|T{JV/A

µ,ij (x)J
V/A
ν,ij (0)†}|Ω〉 , (2.1)

where |Ω〉 denotes the physical vacuum and the hadronic vector/axialvector currents are

given by J
V/A
µ,ij (x) = [q̄jγµ(γ5)qi](x). The indices i, j stand for the light quark flavours up,

down and strange. The correlators Π
V/A
µν,ij(p) have the Lorentz decomposition

Π
V/A
µν,ij(p) = (pµpν − gµνp2)Π

V/A,(1)
ij (p2) + pµpν Π

V/A,(0)
ij (p2) , (2.2)
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where the superscripts denote the components corresponding to angular momentum J = 1

(transversal) and J = 0 (longitudinal) in the hadronic rest frame.

Experimentally, the hadronic decay rate of the τ lepton can be separated into the

contributions of vector Rτ,V and axialvector Rτ,A components for the (ūd)-quark current

as well as the contribution with net-strangeness Rτ,S, resulting from the (ūs)-quark current,

Rτ = Rτ,V + Rτ,A + Rτ,S . (2.3)

In the Cabibbo-suppressed (ūs) sector, a separation of vector from axialvector contribu-

tions is problematic, since G-parity is not a good quantum number in modes with strange

particles.1 On the theory side, Rτ can be expressed as an integral of the spectral functions

Im Π(1)(s) and Im Π(0)(s) over the invariant mass s = p2 of the final state hadrons [23]:

Rτ = 12π

M2
τ∫

0

ds

M2
τ

(
1 − s

M2
τ

)2[(
1 + 2

s

M2
τ

)
Im Π(1)(s) + Im Π(0)(s)

]
. (2.4)

For simplicity, in the following, we shall omit the EW correction factor SEW, but it will

of course be included in our final numerical analysis for αs. The appropriate combinations

of the two-point correlation functions resulting from the weak decay through the W -boson

are given by

Π(J)(s) ≡ |Vud|2
[
Π

V,(J)
ud (s) + Π

A,(J)
ud (s)

]
+ |Vus|2

[
ΠV,(J)

us (s) + ΠA,(J)
us (s)

]
, (2.5)

with Vij being the corresponding elements of the Cabibbo-Kobayashi-Maskawa quark-

mixing matrix.

The exact (non-perturbative) correlation functions are analytic in the complex s-plane

cut along the positive axis. Exploiting this property, eq. (2.4) can be expressed as a contour

integral in the complex s-plane running counter-clockwise around the circle |s| = M2
τ [3]

Rτ = 6πi

∮

|s|=M2
τ

ds

M2
τ

(
1 − s

M2
τ

)2[(
1 + 2

s

M2
τ

)
Π(1)(s) + Π(0)(s)

]
. (2.6)

The same analytic property holds to any finite order in perturbation theory in αs (although

the discontinuity is arbitrarily wrong at small s). Eqs. (2.4) and (2.6) are equivalent if the

correlation functions are substituted either by the exact values or finite order perturbative

expansions. The equivalence of eqs. (2.4) and (2.6) does not hold in renormalisation group

improved perturbation theory due to the Landau pole singularity [17].

Whereas the correlators Π(1)(s) and Π(0)(s) themselves are not physical quantities in

the sense that they contain renormalisation scale and scheme dependent subtraction con-

stants and thus do not satisfy homogeneous renormalisation group equations, by means of

partial integration, eq. (2.6) can be rewritten in terms of the physical correlation functions

D(1+0)(s) and D(0)(s),

D(1+0)(s) ≡ − s
d

ds

[
Π(1+0)(s)

]
, D(0)(s) ≡ s

M2
τ

d

ds

[
s Π(0)(s)

]
, (2.7)

1A small component with strange quarks but without net-strangeness also resides in Rτ,V and Rτ,A,

with the dominant decay channel being τ− → π−K0K̄0ντ .
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the first of which being the well-known Adler function [24]. The renormalisation dependent

contributions to Π(1)(s) and Π(0)(s) drop out after contour integration, and in FOPT the

perturbative expansions for Rτ based on Π(s) or D(s) are identical. However, after RG

improvement in CIPT, for the first few terms the series displays a faster rate of convergence

when employing the correlators D(1+0)(s) and D(0)(s). Thus in the present work we shall

only consider an analysis of Rτ based on this choice. Utilising the dimensionless integration

variable x ≡ s/M2
τ , eq. (2.6) then becomes

Rτ = − iπ

∮

|x|=1

dx

x
(1 − x)3

[
3 (1 + x)D(1+0)(M2

τ x) + 4D(0)(M2
τ x)

]
. (2.8)

For large enough negative s, the contributions to D(J)(s) can be organised in the

framework of the operator product expansion in a series of local gauge-invariant operators

of increasing dimension times appropriate inverse powers of s. This expansion is expected

to be well behaved along the complex contour |s| = M2
τ , except close to the crossing point

with the positive real axis [25]. As can be seen from eq. (2.8), however, the contribution

near the physical cut at s = M2
τ is strongly suppressed by a zero of order three. Therefore,

uncertainties associated with the use of the OPE near the time-like axis are expected to

be very small. Inserting the OPE series for D(J)(s) into (2.8), performing the contour

integration, and extracting the terms proportional to |Vud|2, Rτ,V/A in the form of eq. (1.2)

emerges.

The purely perturbative correction δ(0) only receives contributions from the vector

and axialvector correlation function in the chiral limit. Since in this limit vector and axial-

vector contributions coincide, and D(0)(s) = 0, to investigate δ(0) we can restrict ourselves

to the study of the perturbative expansion of the vector correlator Π
(1+0)
V (s) in the massless

case. It exhibits the general structure

Π
(1+0)
V (s) = − Nc

12π2

∞∑

n=0

an
µ

n+1∑

k=0

cn,k Lk , L ≡ ln
−s

µ2
, (2.9)

with aµ ≡ a(µ2) ≡ αs(µ)/π and µ the renormalisation scale. As was already remarked

above, Π
(1+0)
V (s) itself is not a physical quantity. However, the spectral function is as well

as the Adler function D
(1+0)
V (s), whose general expansion then takes the form:

D
(1+0)
V (s) =

Nc

12π2

∞∑

n=0

an
µ

n+1∑

k=1

k cn,k Lk−1 . (2.10)

In this expression, only the coefficients cn,1 have to be considered as independent. The

coefficients cn,k with k = 2, . . . , n + 1 can be related to the cn,1 and β-function coefficients

by means of the renormalisation group equation (RGE), while the coefficients cn,0 do not

appear in measurable quantities and cn,n+1 = 0 for n ≥ 1. Up to order α4
s, the RG
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constraints lead to:

c2,2 = − β1

4
c1,1 , c3,3 =

β2
1

12
c1,1 , c3,2 = − 1

4
(β2 c1,1 + 2β1 c2,1) ,

c4,4 = − β3
1

32
c1,1 , c4,3 =

β1

24
(5β2 c1,1 + 6β1 c2,1) ,

c4,2 = − 1

4
(β3 c1,1 + 2β2 c2,1 + 3β1 c3,1) . (2.11)

In our convention, the QCD β-function is defined as β(aµ) ≡ −µ daµ/dµ =
∑

k=1 βka
k+1
µ ,

with the first coefficient being β1 = 11Nc/6 − Nf/3. Since the Adler function D
(1+0)
V (s)

satisfies a homogeneous RGE, the logarithms in eq. (2.10) can be summed with the choice

µ2 = −s ≡ Q2, leading to the simple expression:

D
(1+0)
V (Q2) =

Nc

12π2

∞∑

n=0

cn,1 an
Q , (2.12)

where aQ ≡ αs(Q)/π.

Until recently, the independent coefficients cn,1 were known analytically up to order

α3
s [26, 27]. At Nc = 3 in the MS-scheme [28] they read:

c0,1 = c1,1 = 1 , c2,1 = 365
24 − 11ζ3 −

(
11
12 − 2

3ζ3

)
Nf = 1.640 , (2.13)

c3,1 = 87029
288 − 1103

4 ζ3 + 275
6 ζ5 −

(
7847
216 − 262

9 ζ3 + 25
9 ζ5

)
Nf +

(
151
162 − 19

27ζ3

)
N2

f = 6.371 ,

where numerical values are given at Nf = 3. For the next five- and six-loop coefficients

c4,1 and c5,1, estimates employing principles of “minimal sensitivity” (PMS) or “fastest

apparent convergence” (FAC) [29, 30], together with known terms of order α4
s N2

f , exist,

which for Nf = 3 yield [31, 32]:

c4,1 = 27 ± 16 , c5,1 = 145 ± 100 . (2.14)

However, as of this year, the complete result for the O(α4
s) coefficient c4,1 is available [18],

which greatly helps in our analysis. At Nf = 3 it reads:

c4,1 = 78631453
20736 − 1704247

432 ζ3 + 4185
8 ζ2

3 + 34165
96 ζ5 − 1995

16 ζ7 = 49.076 . (2.15)

Since this result turns out to be larger than the estimate presented in eq. (2.14), we shall

not use the PMS/FAC prediction for c5,1 of (2.14). Instead, we attempt to estimate this

coefficient based either on a uniform convergence rate of the series, or on our model.

3. Renormalisation group summation

We now discuss the renormalisation group improvement of the purely perturbative cor-

rection δ(0) to Rτ by means of resummation of the logarithms appearing in eq. (2.10).
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Returning to eq. (2.8) and inserting the general expansion (2.10) for D
(1+0)
V (s), δ(0) is

found to take the form

δ(0) =
∞∑

n=1

an
µ

n∑

k=1

k cn,k
1

2πi

∮

|x|=1

dx

x
(1 − x)3 (1 + x) lnk−1

(−M2
τ x

µ2

)
, (3.1)

where the identical contribution from the axialvector correlator has already been taken

into account.

As discussed above, the Adler function D
(1+0)
V (s) and therefore also δ(0) satisfy a

homogeneous RGE. In fixed-order perturbation theory (FOPT) the logarithms in eq. (3.1)

are summed by setting µ2 = M2
τ , leading to

δ
(0)
FO =

∞∑

n=1

a(M2
τ )n

n∑

k=1

k cn,k Jk−1 . (3.2)

The contour integrals Jl in eq. (3.2) are defined by

Jl ≡ 1

2πi

∮

|x|=1

dx

x
(1 − x)3 (1 + x) lnl(−x) =

1

2π

[
Il,0 + 2 Il,1 − 2 Il,3 − Il,4

]
. (3.3)

The integrals Il,m are given by

Il,m ≡ i

∮

|x|=1

dx (−x)m−1 lnl(−x) = il
+π∫

−π

dα αl eimα = i

(−1

m

)l+1

Γ(l + 1,−iαm)

∣∣∣∣
+π

−π

= (−1)l+m 2 l!

ml+2

[(l+1)/2]∑

k=1

(−1)k
m2kπ2k−1

(2k − 1)!
, (3.4)

where Γ(l +1, z) is the incomplete Γ-function, [n] denotes the integer part of n and m ≥ 1.

For m = 0, one obtains Il,0 = il[1 + (−1)l]πl+1/(l + 1). The first few of the integrals Jl,

which are needed up to order α4
s, read:

J0 = 1 , J1 = − 19
12 , J2 = 265

72 − 1
3 π2 , J3 = − 3355

288 + 19
12 π2 , (3.5)

in agreement with ref. [16].

At order αn
s FOPT contains unsummed logarithms of order lnl(−x) ∼ πl with l < n

related to the contour integrals Jl. Contour-improved perturbation theory (CIPT) sums

these logarithms with the choice µ2 = −M2
τ x in eq. (3.1), which yields

δ
(0)
CI =

∞∑

n=1

cn,1 Ja
n(M2

τ ) (3.6)

in terms of the contour integrals Ja
n(M2

τ ) over the running coupling, defined as:

Ja
n(M2

τ ) ≡ 1

2πi

∮

|x|=1

dx

x
(1 − x)3 (1 + x) an(−M2

τ x) . (3.7)
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τ2 )/

a(
M

τ2 )n

Figure 1: Contour integrals Ja

n
(M2

τ
) of eq. (3.7) required for CIPT as a function of the perturbative

order n, computed with an initial value αs(Mτ ) = 0.34 and 4-loop running.

In contrast to FOPT, for CIPT each order n just depends on the corresponding coefficient

cn,1. Thus, all contributions proportional to the coefficient cn,1 which in FOPT appear at

all perturbative orders equal or greater than n are resummed into a single term. This is

related to the fact that CIPT resums the running of the QCD coupling along the integration

contour in the complex s-plane as can be derived directly from eq. (2.12).

In view of our numerical analysis below, a few additional remarks are in order. Al-

though from the form of eq. (3.6), the contour integrals Ja
n(M2

τ ) could be considered as

effective couplings, they have a rather non-trivial dependence on the perturbative order n.

This can be seen from figure 1, in which we display Ja
n(M2

τ )/a(M2
τ )n for an initial value

αs(Mτ ) = 0.34 [7] as a function of n up to n = 30. Up to the 7th order, Ja
n(M2

τ ) is positive

and then above the 7th order turns negative. This implies that Ja
7 (M2

τ ) is rather small

which is later reflected in the fact that with four-loop running of αs always the 7th term

in the CIPT series is found smallest. This observation already casts some doubts on the

approach of treating the CIPT series in the sense of an asymptotic series for which quite

often the optimal truncation is provided by breaking the series at the smallest term [33].

We now recall (as is well-known, see for instance [18]) that the two approaches lead to

significant numerical differences. Using the analytically known coefficients of eqs. (2.13) as

well as (2.15) and αs(Mτ ) = 0.34 in eqs. (3.2) and (3.6), we obtain:

α1
s α2

s α3
s α4

s α5
s

δ
(0)
FO = 0.1082 + 0.0609 + 0.0334 + 0.0174 (+ 0.0088 ) = 0.2200 (0.2288) , (3.8)

δ
(0)
CI = 0.1479 + 0.0297 + 0.0122 + 0.0086 (+ 0.0038 ) = 0.1984 (0.2021) . (3.9)

The CI series displays a faster convergence, but the two series do not appear to approach

a common value as successive terms are added. Summing both series up to order α4
s, the
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difference between FO and CI perturbation theory amounts to 0.0216. The size of this

difference is of the order of the last included term in the FO series and about a factor

of 2.5 times the corresponding CIPT term. This apparent disparity in the perturbative

prediction at the moment represents the dominant theoretical uncertainty in the extraction

of the strong coupling αs from the hadronic τ decay rate. Thus, it is legitimate to ask

how the series for δ
(0)
CI and δ

(0)
FO behave if even higher-order perturbative coefficients are

included. On the one hand both results would be expected to be compatible, if an all-order

result were available. On the other hand, re-expansion of the contour-improved integrals

Ja
n(M2

τ ) into the fixed-order series in a(M2
τ ) results in a series that is barely convergent for

realistic values of a(M2
τ ) [16], so one might question the validity of FOPT altogether. In the

following sections we examine these issues assuming different behaviours of the higher-order

terms in the series.

An immediate question which arises is, if, on the basis of the series up to the fourth

order, we are in a position to say something about the next coefficient c5,1? As a somewhat

naive guess, we might assume that the size of the fifth order should be at most of the size

of the previous term and larger than zero, which is to say that the asymptotic (divergent,

sign-alternating) behaviour has not yet set in at the fifth order. Applying this criterion to

the CI series, one arrives at the estimate 0 < c5,1 < 642. A slightly more elaborate estimate

can be based on the striking feature that the convergence rate of the FOPT series is found

to be very uniform. Each new term is rather closely half of the preceeding one, and the

slight dependence on the order can even be nicely fit to a linear behaviour. Assuming that

this property persists also at the fifth order, we arrive at the estimate2

c5,1 ≈ 283 . (3.10)

This value lies close to the centre of the range given above, and in section 6 it will be seen

that eq. (3.10) is corroborated by our model of higher order coefficients. Interestingly, it is

also close to the update of the FAC estimate to account for the newly available exact c4,1,

which yields c5,1 = 275 [18]. Including the estimate (3.10) in the series for δ
(0)
FO and δ

(0)
CI ,

the numbers in brackets given in eqs. (3.8) and (3.9) are obtained. Now, the difference

δ
(0)
FO − δ

(0)
CI = 0.0267 is increased even further, and found much larger than the last included

summands.

4. Higher orders: toy models

To acquire some feeling of what can happen to δ(0) in FO and CI perturbation theory when

higher terms in the perturbative series are included, in this section we exhibit a few toy

models. Let us emphasise that we do not believe that these models have much in common

with the true QCD case (with the exception, perhaps, of the large-β0 approximation).

Rather our concern is to find out which features of the higher-order series determine whether

CIPT of FOPT represents a better approximation to the true result. Inspired by what we

2Postdicting c4,1 in this way, we find c4,1 = 52 ! The first few terms of the FO series for δ(0) are very

nearly geometric.
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Figure 2: Results for δ
(0)
FO (full circles) and δ

(0)
CI (grey circles) at αs(Mτ ) = 0.34, setting the higher-

order coefficients cn,1 = 0 for n ≥ 6. The results up to the fifth order coincide with eqs. (3.8) and

(3.9) respectively.

learn from the models, we are led to the construction of a realistic ansatz which will be

discussed in detail in the following sections.

4.1 Truncated Adler function

Let us begin by considering the case in which all perturbative coefficients cn,1 are set to

zero for n ≥ 6. This model has already been investigated in ref. [19], in order to see

how FOPT and CIPT might be compatible even though at the fifth order their difference

appears rather dramatic. A graphical display of the model is shown in figure 2. The result

for δ
(0)
FO is given as the full circles and δ

(0)
CI as the grey circles, as a function of the order

up to which the perturbative series has been summed. To guide the eye, we have also

connected the points by straight line segments. Since at each order δ
(0)
CI only depends on

the explicit coefficient cn,1, starting from the order where the coefficients are taken to be

zero, CIPT becomes exact (and thus δ
(0)
CI constant). On the contrary, in FOPT, besides the

contribution from the cn,1, at each order we also have contributions involving all lower ck,1

with k < n, which are due to the running of αs along the complex contour. In FOPT these

latter terms are present even if the higher cn,1 are set to zero, and entail that for higher

orders δ
(0)
FO oscillates around the constant δ

(0)
CI . It is evident that for the present example

FOPT represents a rather poor approximation to the exact result up to very high n.

Quite generally, we can write δ
(0)
FO in the form

δ
(0)
FO =

∞∑

n=1

[cn,1 + gn] a(M2
τ )n , (4.1)

where the cn,1 series is simply the Adler function series, while the gn series represents

the additional contribution from the contour-integral of the Adler function series. By
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comparison with eq. (3.2), gn =
∑n

k=2 k cn,kJk−1, hence depending only on ck,1 with k < n

and β-function coefficients as remarked above. With only a few values of cn,1 given, the

gn series has a finite radius of convergence [16]. For αs(Mτ ) slightly larger than 0.34 the

series becomes divergent due to large running coupling effects along the circular contour –

the amplitude of oscillations of FOPT around the exact result grows and FOPT is never a

good approximation. This is the reason why CIPT is usually argued to provide the more

reliable approximation to Rτ .

The general picture observed in this special case also translates to other models in

which the coefficients cn,1 are small compared to the running effects along the complex

contour. However, the real series expansion of Rτ is not of this general form. Rather, both

the cn and gn series are divergent with zero radius of convergence, and can at best assumed

to be asymptotic. Moreover, systematic cancellations are predicted between the cn and gn

terms, when n is sufficiently large.

4.2 The “large-β0” approximation

We take a first look at the issues that arise when the series have zero radius of convergence

in another toy-model, the so-called “large-β0” approximation.3 An analytic result for the

Borel transform of the Adler function and the corresponding Rτ is available [17, 20, 34,

35, 36] in this approximation, and thus the perturbative coefficients cn,1 are known to all

orders.

Let us briefly review the results for δ(0) in the large-β0 approximation. To make contact

to the notation employed in the original works on renormalons in connection to the Adler

function and Rτ [17, 36] (for a review see [20]), it is convenient to define the new function

D̂(s) by

12π2

Nc
D

(1+0)
V (s) ≡ 1 + D̂(s) ≡ 1 +

∞∑

n=0

rn αs(
√

s)n+1 . (4.2)

Then the expansion coefficients of D
(1+0)
V (s) and D̂(s) are related by cn,1 = πnrn−1. Next,

the Borel-transform of D̂(s) is defined by

B[D̂](t) ≡
∞∑

n=0

rn
tn

n!
. (4.3)

If B[D̂](t) has no singularities for real positive t (which is not the case for the Adler

function) and does not increase too rapidly at positive infinity, one can define the Borel

integral (α positive) as

D̂(α) ≡
∞∫

0

dt e−t/α B[D̂](t) , (4.4)

3For historical reasons, we shall speak about the “large-β0” approximation, although in the notation

employed in this work, the leading coefficient of the β-function is termed β1. The “large-β0” approximation

uses only the term with the highest power in the number of light flavours, Nf , in cn,1, and replaces Nf by

−3β1. Correspondingly, in the evolution of αs, only one-loop running is taken into account.
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which has the same series expansion in α as D̂(s) does in αs(
√

s). The integral D̂(α), if

it exists, gives the Borel sum of the original divergent series. Calculating so-called bubble-

chain diagrams, it was found that the Borel-transformed Adler function B[D̂](t) obtains

infrared (IR) and ultraviolet (UV) renormalon poles at positive and negative integer values

of the variable u ≡ β1t/(2π), respectively [34, 35]. (With the exception of u = 1.) While

the IR renormalons are related to power corrections in the operator product expansion,

the leading UV renormalon, being closest to u = 0, dictates the large-order behaviour of

the perturbative expansion.

The central result of refs. [34, 35] is that the Borel transform of the Adler function in

the large-β0 approximation (see also eq. (5.10) of ref. [20]) can be expressed as [35]

B[D̂](u) =
32

3π

e−Cu

(2 − u)

∞∑

k=2

(−1)kk

[k2 − (1 − u)2]2
, (4.5)

where C is a scheme-dependent constant which cancels the scheme dependence of α in

eq. (4.4), such that D̂(s) is independent of this choice. In the MS-scheme it takes the

value C = −5/3. Taylor expanding the Borel transform in the variable u and performing

the Borel integral (4.4) term by term, the perturbative coefficients cn,1 for the large-β0

approximation can be deduced.4 Numerical values for the first 12 coefficients in the MS-

scheme are presented in table 1. One observes that the dominance of the leading UV

renormalon at u = −1, and the corresponding sign alternating behaviour of the series, in

the large-β0 approximation sets in at the 6th order.

The perturbative coefficients of table 1 can now be employed to calculate δ(0) in the

large-β0 approximation. For consistency the running of αs was also implemented at the

one-loop order. (We shall soon see that this plays an important role.) A graphical account

of our results at the physical coupling αs(Mτ ) = 0.34 is displayed in figure 3. Again, the

full circles correspond to δ
(0)
FO in FOPT while the grey circles provide δ

(0)
CI in the large-

β0 approximation. In both cases, the grey diamonds represent the order at which the

FO and CI series have their smallest terms, before the asymptotic behaviour sets in. The

qualitative picture is rather different from the previous case of the truncated Adler function

displayed in figure 2. Both series appear to reach a plateau before the divergence sets in,

though the plateau is reached at higher order for FOPT in agreement with the earlier

analysis [17]. However, the difference in the plateau values of δ(0) is far larger than the

minimal terms of both series, hence FOPT and CIPT seem to give incompatible results

within the conventional uncertainty estimates.

4A particularly effective way of analytically generating the large-β0 coefficients cn,1 can be derived from

eq. (26) of ref. [37].

c1,1 c2,1 c3,1 c4,1 c5,1 c6,1

1 1.5565 15.711 24.832 787.83 − 1991.4

c7,1 c8,1 c9,1 c10,1 c11,1 c12,1

9.857 · 104 − 1.078 · 106 2.775 · 107 − 5.388 · 108 1.396 · 1010 − 3.598 · 1011

Table 1: Perturbative coefficients cn,1 in the large-β0 approximation up to 12th order.
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Figure 3: Results for δ
(0)
FO (full circles) and δ

(0)
CI (grey circles) at αs(Mτ ) = 0.34, employing the

higher-order coefficients cn,1 of table 1 obtained in the large-β0 approximation, as a function of

the order n up to which the terms in the perturbative series have been summed. The straight line

represents the result for the Borel sum of the series, and the shaded band provides an error estimate

inferred from the complex ambiguity.

Which is the better approximation to the “true” result? Since we now have a closed

expression for the Borel transform of the Adler function, we can compute the Borel integral

and compare the perturbative series to this result. We do not expect the Borel integral

to correspond exactly to the “true” result. First, the “true” result receives condensate

corrections from higher-dimensional operators in the OPE expansion. Second, when the

Borel transform has poles on the positive t-axis, the Borel integral must be defined by an

arbitrary deformation of the contour into the complex plane, which introduces an ambi-

guity, whose dependence on α matches the condensate corrections. The two are closely

related (see the review [20]), and it has been observed [17] that the size of the ambiguity

divided by π is indeed of the order of non-perturbative corrections in the OPE. We thus

conclude that we expect the “true” result to coincide with the principal value of the Borel

integral within an accuracy set by about the ambiguity of Borel integral (divided by π),

and certainly not parametrically larger.

In figure 3 the horizontal line represents the value of the Borel integral when the series

is summed via the principal-value prescription, and the shaded region marks the size of

the complex ambiguity in the Borel integral.5 Details on the analytical calculation of the

Borel transform have been relegated to appendix A. A good approximation of the “true”

result should approach the shaded region smoothly and diverge eventually. Figure 3 shows

the remarkable result, already observed in [17], that in the large-β0 approximation FOPT

approaches the Borel sum in a rather monotonous fashion until the 10th order after which

the sign-alternating divergent behaviour of the series sets in, while CIPT never comes close

5To obtain the maximal complex ambiguity the IR renormalon poles are circled in such a way that they

all contribute with the same sign. The modulus of the imaginary part thus obtained is then divided by π.
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to the “true” result due to an earlier onset of the divergence. Clearly FOPT represents the

better approximation here, even at n = 4, in stark contrast to the previous example of the

truncated Adler function series.

Let us try to gain a better insight as to why the behaviour in the large-β0 approximation

is so different from our first model. An immediate observation that can be made is that the

cn,1 have to be of a similar size as the running effects gn from the contour, such that strong

cancellations between these two effects take place. To make this more precise, consider

the simple relation between B[D̂] and the correspondingly defined Borel transform of δ(0)

expanded in αs(Mτ ) given by [38]

B[δ(0)](u) = B[D̂](u) sin(πu)

[
1

πu
+

2

π(1 − u)
− 2

π(3 − u)
+

1

π(4 − u)

]
, (4.6)

which is valid in the large-β0 limit.6 We are then in a position to derive the large-order

behaviour. Applying the decomposition (4.1), we obtain

cn+1,1 =

(
β1

2

)n

n!

[
4

9
e−5/3 (−1)n

(
n +

7

2

)
+

e10/3

2n
+ . . .

]
,

gn+1 =

(
β1

2

)n

n!

[
− 4

9
e−5/3 (−1)n

(
n +

16

5

)
− e10/3

2n
+ . . .

]
, (4.7)

where the dots denote the less important poles beyond the leading ultraviolet renormalon

pole (u = −1) and the leading infrared one (u = 2). This shows explicitly the strong can-

cellations that take place between the Adler function series and the extra terms generated

by the integration along the circle. The suppression of the large-n divergence allows FOPT

to approach the Borel sum smoothly. We also see why CIPT fails in this case: when such

strong cancellations between the cn,1 and gn series are present, it is mandatory to combine

the two series at the same order. However, CIPT uses the cn,1 up to some finite order,

while summing the gn to all orders, thus missing the cancellation [17, 20]. The result is

that CIPT runs earlier into the leading UV renormalon divergence, as seen in figure 3,

though the divergence is damped by the suppression of the effective couplings Ja
n(M2

τ ) as

discussed in section 3.

There are some lessons that can be drawn from our observations which are valid beyond

the large-β0 toy model. First, since the known exact coefficients of the Adler function series

show no interference of a sign-alternating component, we expect the leading IR renormalon

at u = 2 to be the most relevant contribution, before the eventual sign-alternation takes

over, just as above. Second, the leading IR renormalon contribution will no longer cancel

completely as it does in eq. (4.7). However, it is true in general that it is suppressed by

a factor 1/n2 in the sum cn,1 + gn relative to cn,1 alone [38], since this follows from the

OPE and the anomalous dimension of the gluon condensate. Thus, we expect some of the

features of the large-β0 toy model to survive in the realistic QCD case.

6To derive this result, insert eq. (4.4) into eq. (2.8) and perform the contour integral employing the

one-loop expression for αs(
√

s).
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Next, we corroborate these findings with two further simplistic models, which will also

uncover another crucial ingredient for the building of a more realistic model for higher

order coefficients.

4.3 Single pole models

In order to separate the effects of a specific renormalon pole, and to give support to our

previous findings, we investigate a single IR renormalon pole at position p, for which we

shall consider the particular cases p = 2 and p = 3. Explicitly, our single pole model for

the Borel transform of the Adler function series takes the form:

B[D̂p](u) ≡
dIR

p

(p − u)
+

3∑

i=0

dPO
i ui . (4.8)

We fix the residue dIR
p such that the perturbative coefficient c5,1 = 283, and the polynomial

terms dPO
i are adjusted such as to reproduce the lower order coefficients according to

eqs. (2.13) and (2.15). The reason behind employing c5,1 to fix the residue is that we like

to work with a perturbative order at which a dominance of the leading IR renormalon to

the coefficient is expected, but this assumption is not crucial for our argument.

The numerical results for the model (4.8) with p = 2 are shown in figure 4. The upper

plot corresponds to δ
(0)
FO, the lower one to δ

(0)
CI . Let us first concentrate on the triangles

which are connected by dashed line segments, and for which the running of αs at 1-loop

has been employed. This case is rather similar to the large-β0 approximation. FOPT

approaches the Borel sum (the horizontal dashed line) well, although here in a slightly

oscillatory manner, and up to the order shown in the plot the divergent behaviour has not

yet set in. Conversely, like for the large-β0 approximation above, for CIPT the divergent

behaviour sets in much earlier and the series never comes close to the Borel sum.

The picture drastically changes when the running of the coupling in the contour in-

tegration is implemented at four loops. This case is shown as the full and grey diamonds

in figure 4, which are connected by dash-dotted lines. The corresponding Borel sum is the

straight dash-dotted line. δ
(0)
FO first overshoots the “true” result by a large amount, then dis-

plays a large oscillation similar to figure 2, before it starts to diverge, while CIPT appears

more like the 1-loop case. Still, with 4-loop running, neither FOPT nor CIPT approach the

Borel sum in a sensible fashion. The reason for this unexpected behaviour can be traced

back to the fact that our model (4.8) only contains a simple pole. Such a simple pole is the

correct structure of a renormalon pole in the large-β0 limit, but when higher terms in the

β-function are to be included, the renormalon pole structure gets more complicated, also

involving cuts, whose gross features are determined by the OPE [20]. Hence, to construct

a consistent model which aims to use a 4-loop running coupling, also the renormalon cut

structure has to be incorporated at the same order. The results required at four loops

will be derived in the next section. Once four-loop running is consistently included in the

Adler function Borel transform eq. (4.8) and the contour integration, we obtain the circles

connected by solid lines in figure 4. Now we find again that FOPT for an IR pole at u = 2

smoothly approaches the Borel sum, while CIPT fails.
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Figure 4: Results for δ
(0)
FO (full circles, diamonds, triangles) and δ

(0)
CI (grey circles, diamonds,

triangles) at αs(Mτ ) = 0.34, for the model of eq. (4.8) at p = 2. The triangles correspond to a

running of αs at 1-loop, while for the diamonds a 4-loop running coupling has been employed. For

the circles the pole in eq. (4.8) is modified to account for the 4-loop renormalon cut structure. The

straight dashed, dash-dotted and solid lines represent the respective Borel sums.

To conclude the discussion of simple toy models, we finally investigate the ansatz (4.8)

with p = 3. Graphically, this case is displayed in figure 5, with the same notation as used in

figure 4. We see that this case very much resembles the model of figure 2, where the higher

cn,1 had been set to zero. The p = 3 model differs from the p = 2 one in two respects.

First, it follows from eq. (4.6) that there is no suppression of cn,1 + gn relative to cn,1 in

large orders. More importantly, with p = 3 the divergence of the series is milder. Hence,

the Adler function coefficients cn,1 are much smaller than the running effects gn along the

complex contour, an expectation that can be verified by explicitly investigating the cn,1 in

this model. Thus, like for the first model, the truncated Adler function, CIPT provides a
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Figure 5: Results for δ
(0)
FO (full circles, diamonds, triangles) and δ

(0)
CI (grey circles, diamonds,

triangles) at αs(Mτ ) = 0.34, for the model of eq. (4.8) at p = 3. The triangles correspond to a

running of αs at 1-loop, while for the diamonds a 4-loop running coupling has been employed. For

the circles the pole in eq. (4.8) is modified to account for the 4-loop renormalon cut structure. The

straight dashed, dash-dotted and solid lines represent the respective Borel sums.

good account of the Borel sum, and FOPT is only able to approach this value with large

oscillations.

4.4 Resumé

The main conclusions from the toy examples are as follows. We find that CIPT provides

the better approximation whenever running coupling effects to the series expansion of Rτ

dominate over the intrinsic Adler function coefficients as should have been expected. This

is the case in truncated perturbation theory and in models with weak factorial divergence,

such as the p = 3 single-pole model. We find that FOPT provides the better approxima-
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tion, whenever there are systematic cancellations between the Adler function and running

coupling contributions. Such cancellations occur in the p = 2 single-pole model, the large-

β0 approximation, and in general for the leading IR renormalon contribution to Rτ . We

also find that to correctly account for these cancellations, the running coupling effects

have to be implemented at the same loop-order in the contour integral and the renormalon

structure of the Adler function Borel transform. The interesting question is now which of

these features is relevant to the “real world”.

The discussion of this section already allows to disfavour a large class of models for the

realistic Borel-transformed Adler function that were initially considered by us. In this class

fall models with renormalon poles that only have integer power, because they fail to account

consistently for running coupling effects beyond 1-loop evolution. For the same reason –

besides not using the available information on the known positions of the renormalon poles

– also models based on Padé approximation are of limited use.

In order to be able to build a more realistic model for B[D̂](u), as a prerequisite,

employing the RGE and the structure of the OPE, in the next section we shall derive the

general form of the renormalon cut including β-function effects up to 4-loop level.

5. Renormalon poles at four loops

Our next aim is a physically motivated ansatz for the Borel transform of the Adler function

B[D̂](t), which incorporates all known exact results, and on the basis of which we will be

in a position to investigate the influence of higher-order perturbative contributions, and to

perform a comparison of the perturbative series in FOPT and CIPT with its Borel sum.

As has been seen in the last section, if higher-order running effects are to be included in

the contour integration, the renormalon pole structure should match the corresponding

loop order. The derivation of the renormalon cut is based just on the structure of the

OPE and the RGE, detached from any limitations of the large-β0 approximation, up to

an unknown overall constant. The expressions obtained in this section extend the analysis

already presented in sections 3.2.3 and 3.3.1 of ref. [20] to one more loop order.

Let us begin with the IR renormalon poles. The central idea is that the IR renormalon

ambiguity of the Borel integral arises from long-distance regions in Feynman integrals, and

therefore must be consistent with the power-suppressed terms appearing in the operator

product expansion [39, 40]. Comparing the energy dependence of a certain term in the

OPE to the one of the complex ambiguity of the Borel integral, the renormalon singularity

that gives rise to this ambiguity can be determined. A generic term in the OPE of D̂(s)

from an operator Od of dimension d can be written as

ĈOd
(aQ)

〈Ôd〉
Qd

= [aQ]

γ
(1)
Od
β1

[
Ĉ

(0)
Od

+ Ĉ
(1)
Od

aQ + Ĉ
(2)
Od

a2
Q + . . .

] 〈Ôd〉
Qd

, (5.1)

where the anomalous dimension γOd
of the operator Od is defined by

−µ
d

dµ
Od(µ) ≡ γOd

(aµ)Od(µ) =
[
γ

(1)
Od

aµ + γ
(2)
Od

a2
µ + γ

(3)
Od

a3
µ + . . .

]
Od(µ) . (5.2)
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For convenience, we have expressed eq. (5.1) in terms of the scale invariant operator Ôd,

defined by

Ôd ≡ Od(µ) exp

{
−
∫

γOd
(aµ)

β(aµ)
daµ

}
, (5.3)

such that higher order coefficients of γOd
are contained in the Wilson coefficients Ĉ

(k)
Od

.

Since eq. (5.1) will only be needed up to a multiplicative factor, we do not have to specify

the constant of integration in (5.3), and without loss of generality, it can be assumed to be

zero. Employing the RGE for aQ, the Q-dependent part of (5.1) can be written as:

ĈOd
(aQ)

Qd
= const. × ĈOd

(aQ) e
− d

β1aQ [aQ]
−d

β2
β2
1 exp

{

d

aQ∫

0

[
1

β(a)
− 1

β1a2
+

β2

β2
1a

]

da

}

,

= const. × ĈOd
(aQ) e

− d
β1aQ [aQ]

−d
β2
β2
1

[
1 + b1 aQ + b2 a2

Q + . . .
]
, (5.4)

where the coefficients b1 and b2 are found to be:

b1 =
d

β3
1

(
β2

2 − β1β3

)
, b2 =

b2
1

2
− d

2β4
1

(
β3

2 − 2β1β2β3 + β2
1β4

)
. (5.5)

To find the Borel transform that matches the Q-dependence of (5.4), we take the

ansatz:

B[D̂IR
p ](u) ≡

dIR
p

(p − u)1+γ̃

[
1 + b̃1(p − u) + b̃2(p − u)2 + . . .

]
. (5.6)

Employing eq. (A.8), the imaginary ambiguity corresponding to the Borel integral of

B[D̂IR
p ](u) is found to be:

Im
[
D̂IR

p (aQ)
]

= const. × e
− 2p

β1aQ [aQ]−γ̃

[
1 + b̃1

β1

2
γ̃ aQ + b̃2

β2
1

4
γ̃(γ̃ − 1) a2

Q + . . .

]
. (5.7)

Comparing eqs. (5.4) and (5.7), one deduces:

p =
d

2
, γ̃ = 2p

β2

β2
1

−
γ

(1)
Od

β1
, b̃1 =

2(b1 + c1)

β1γ̃
, b̃2 =

4(b2 + b1c1 + c2)

β2
1 γ̃(γ̃ − 1)

, (5.8)

where c1 ≡ Ĉ
(1)
Od

/Ĉ
(0)
Od

and c2 ≡ Ĉ
(2)
Od

/Ĉ
(0)
Od

. Taylor expanding the ansatz (5.6) in u and

performing the Borel integral term by term yields the perturbative series:

D̂IR
p (aQ) =

πdIR
p

p1+γ̃ Γ(1 + γ̃)

∞∑

n=0

Γ(n + 1 + γ̃)

(
β1

2p

)n

an+1
Q

×
[

1 +
2p

β1

(b1 + c1)

(n + γ̃)
+

(
2p

β1

)2 (b2 + b1c1 + c2)

(n + γ̃)(n + γ̃ − 1)
+ O

(
1

n3

)]
. (5.9)

Eq. (5.9) extends the corresponding eq. (3.51) of ref. [20] to include terms of order 1/n2 in

the large-order behaviour of the perturbative series.7

7Note a missing sign in the global factor containing β0 in eq. (3.51) of [20], which should read (−2β0/d)n.
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The corresponding expression for a general UV renormalon pole when higher orders

in the running are included can be deduced by formally considering negative coupling aQ

and a Borel integral that ranges from zero to minus infinity [41]. Then one finds poles

leading to ambiguities on the negative real axis, and the complex ambiguities can again

be identified with the RGE properties of some higher-dimensional operators. The result is

that the constants in the parametrisation of the general UV singularity,

B[D̂UV
p ](u) ≡

dUV
p

(p + u)1+γ̄

[
1 + b̄1(p + u) + b̄2(p + u)2

]
, (5.10)

can be obtained from the corresponding parameters of the IR renormalon pole (5.6) with

the replacement p → −p, leading to:

γ̄ = − 2p
β2

β2
1

+
γ

(1)
Od

β1
, b̄1 = − b̃1[p → −p] , b̄2 = b̃2[p → −p] . (5.11)

The perturbative expansion corresponding to eq. (5.10) takes the form:8

D̂UV
p (aQ) =

πdUV
p

p1+γ̄ Γ(1 + γ̄)

∞∑

n=0

Γ(n + 1 + γ̄)

(
−β1

2p

)n

an+1
Q

×
[

1 + b̄1
p γ̄

(n + γ̄)
+ b̄2

p2 γ̄(γ̄ − 1)

(n + γ̄)(n + γ̄ − 1)
+ O

(
1

n3

)]
. (5.12)

In the next section, the general forms of the IR and UV renormalon singularities

(5.6) and (5.10) will be employed to construct a physically motivated model for the Borel

transform of the Adler function B[D̂](u). In order to describe the leading IR renormalon

at u = 2 as well as possible, in this case we include the known Wilson coefficient function

and anomalous dimension of the gluon condensate 〈aG2〉 [42], which results in [43]

c1[〈aG2〉] =
CA

2
− CF

4
− β2

β1
, (5.13)

while all other c’s appearing in the equations above will be set to zero.

6. A physical model for the Adler function series

To clarify whether FOPT or CIPT results in a better approximation to the τ hadronic

width, we need to construct a physically motivated model for the Adler function series

beyond the order n = 4, up to which it is known exactly. Since the four lowest coefficients

are available, it is reasonable to attempt to merge the low-order series with the expected

large-order behaviour. Furthermore, it is convenient to generate the series from its Borel

transform.9 A physical model should account for the following features:

8There is a sign mistake in the term proportional to 1/n in the corresponding eq. (3.48) of [20].
9A previous attempt to resum the perturbative series for Rτ , based on Borel transforms of the Adler

function, has been made in ref. [44].
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• It should reproduce the exactly known cn,1, n ≤ 4.

• The very large order behaviour is governed by a sign-alternating UV renormalon

divergence. Since the low-order series shows no sign of a sizeable alternating com-

ponent, it should be sufficient to include the leading singularity at u = −1. On the

other hand, since the intermediate orders are governed by IR renormalons, at least

two IR renormalon singularities, at u = 2 and u = 3, should be included to merge

the large-order behaviour with the low-order exact coefficients.

• Since four-loop running is employed in the contour integral that relates the Adler

function to Rτ , the renormalon singularities in the Borel transform cannot be simple

poles, but should be extended consistently to cuts. This is particularly important

for u = 2. We use the equations from section 5, incorporating c1[〈aG2〉] into the

description of the u = 2 cut. For the UV renormalon singularity at u = −1, we use

γ̄ = 1 − 2β2/β
2
1 in eq. (5.11), since it is known to be a double pole in the large-β0

approximation.10

We are thus led to the ansatz:

B[D̂](u) = B[D̂UV
1 ](u) + B[D̂IR

2 ](u) + B[D̂IR
3 ](u) + dPO

0 + dPO
1 u , (6.1)

where the first three terms use (5.6) and (5.10) as building blocks for the three leading

renormalon singularities.11 The model (6.1) depends on five parameters, the three residua

of the renormalon poles, dUV
1 , dIR

2 and dIR
3 , as well as the two polynomial parameters dPO

0

and dPO
1 . To fix these parameters, we match the perturbative expansion of our model to

the known coefficients cn,1 of eqs. (2.13), (2.15) and (3.10). First, the residua are fixed

using the coefficients c3,1, c4,1 and c5,1, and then the polynomial coefficients are adjusted

to also reproduce the first two orders c1,1 and c2,1. The motivation for also making use

of the fifth datum, namely the estimate for the coefficient c5,1 = 283, as well as including

the polynomial terms, is that we wish to avoid fixing the residue of a renormalon term

by using orders as low as n = 2. However, as we discuss below, our result is surprisingly

independent of this extra assumption.

Following the outlined procedure, the parameters of the model (6.1) are found to be:

dUV
1 = − 1.56 · 10−2 , dIR

2 = 3.16 , dIR
3 = − 13.5 , (6.2)

10The additional “1” arises from the anomalous dimension term γ
(1)
Od

/β1 in eq. (5.11) related to a four-

quark operator [38].
11A similar approach to the heavy quark mass has been put forward in refs. [45, 46].

c6,1 c7,1 c8,1 c9,1 c10,1 c11,1 c12,1

3275 1.88 · 104 3.88 · 105 9.19 · 105 8.37 · 107 −5.19 · 108 3.38 · 1010

Table 2: Predictions for the Adler-function coefficients c6,1 to c12,1 from our model (6.1) for

B[R](u), employing the estimate for the coefficient c5,1 = 283 of eq. (3.10).

– 21 –



0 2 4 6 8 10 12 14
Perturbative order n

0.05

0.1

0.15

0.2

0.25

0.3

D̂
(α

s)
Borel sum

Perturbative series

Smallest term

Figure 6: Results for D̂(M2
τ
) (full circles) at αs(Mτ ) = 0.34, employing the higher-order coefficients

cn,1 of table 2 obtained from our model (6.1), as a function of the order n up to which the terms in

the perturbative series have been summed. The straight line represents the result for the Borel sum

of the series, and the shaded band provides an error estimate inferred from the complex ambiguity.

dPO
0 = 0.781 , dPO

1 = 7.66 · 10−3 .

The fact that the parameter dPO
1 turns out to be so small implies that the coefficient

c2,1 is already reasonably well described by the renormalon pole contribution, although it

was not used to fix the residua. Another implication of this observation will be discussed

below. With the Borel transform thus determined, we are now in the position to investigate

the higher-order coefficients. The perturbative series of the Adler function up to c12,1 is

presented in table 2. We observe that the first negative coefficient is found at the 11th order,

after which the series retains its sign-alternating behaviour. The successive approximations

to the (reduced) Adler function D̂(M2
τ ) defined in (4.4) are displayed in figure 6, which

shows that the model is well-behaved: the series goes through a number of small terms at

order n = 4 to 7, the minimal term being reached at n = 5, such that the truncated series

agrees nicely with its Borel sum. The sign-alternating UV renormalon divergence takes

over around n = 10.

To gain further insight into the contribution of a certain renormalon singularity to the

coefficients cn,1, in table 3 the relative contributions (in %) for the two IR and the UV

c3,1 c4,1 c5,1 c6,1 c7,1 c8,1 c9,1 c10,1 c11,1 c12,1

IR2 82.4 100.4 135.9 97.5 155.9 76.3 359.9 48.3 −103.6 22.9

IR3 28.7 −10.0 −20.2 −13.3 −17.3 −6.5 −23.2 −2.3 3.6 −0.6

UV1 −11.2 9.7 −15.6 15.8 −38.6 30.3 −236.7 54.0 200.0 77.7

Table 3: Relative contributions (in %) of the different IR and UV renormalon poles to the Adler-

function coefficients c3,1 to c12,1.
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Figure 7: Results for δ
(0)
FO (full circles) and δ

(0)
CI (grey circles) at αs(Mτ ) = 0.34, employing the

higher-order coefficients cn,1 of table 2 obtained from our model (6.1), as a function of the order n

up to which the terms in the perturbative series have been summed. The straight line represents

the result for the Borel sum of the series, and the shaded band provides an error estimate inferred

from the complex ambiguity.

pole are displayed. As can be seen from table 3, already for the third order there is a

reasonable dominance of the leading IR renormalon at u = 2, and a sizeable but not too

large contribution of the second one at u = 3. For the next few orders the leading IR pole

becomes even more dominant as it should. Then, after a region of cancellations between

the leading IR and UV poles, the leading UV renormalon, which dictates the large order

behaviour, takes over. Nevertheless, already at the fifth order, the last we have included in

fixing our parameters, with 16% there is a noticeable contribution from the UV renormalon,

so that we have sensitivity to this term in the construction of the model.

Let us now move to the implications of our model (6.1) for the τ hadronic width, that is

for δ(0) in FOPT and CIPT. A graphical representation of the series behaviours is displayed

in figure 7. Like in section 4, the full circles denote our result for δ
(0)
FO and the grey circles

the one for δ
(0)
CI , as a function of the order n up to which the perturbative series has been

summed. The straight line corresponds to the principal value Borel sum of the series, and,

like in figure 3 for the large-β0 approximation, the shaded band provides an error estimate

based on the imaginary part divided by π. The order at which the FO and CI series have

their smallest terms is indicated by the grey diamonds. For CIPT this happens at the 7th

and for FOPT at the 8th order. The essential conclusion is that the qualitative behaviour

of the realistic series is determined by the features that were discussed in section 4 in the

context of the p = 2 single-pole model. The cancellations between the Adler function

coefficients cn,1 and the contributions from the contour integral, gn, soften the divergence

of the Rτ series relative to the Adler function series shown in figure 6, allowing the FO

series to approach the “true” result around its minimal term, after which the large-order

asymptotic behaviour takes over. On the contrary, CIPT misses this cancellation and
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always stays much below the “true” result. If CIPT were used to determine αs from the

measured value of Rτ , i.e. δ(0), a too large value of αs would be extracted to compensate

for the deficit. We emphasise that the clear preference for FOPT holds even if we discard

all higher-order terms and use only the series up to n = 4, as can be seen from figure 7,

provided the gross features of our ansatz are correct.12

Numerically, our central result for the Borel sum is found to be

δ
(0)
BS = 0.2371 ± 0.0060 i . (6.3)

Due to the suppression of the leading IR renormalon divergence by the contour integration,

only one third of the imaginary part arises from the first IR pole, and two thirds from the

second. This is consistent with the power-suppressed terms in the OPE, where for Rτ the

1/M6
τ terms dominate over the 1/M4

τ terms for the same reasons. The ambiguity that our

procedure assigns to the “true” value is also of order of the power corrections as discussed

in section 7. At the order of its minimal term, the FOPT result reads δ
(0)
FO = 0.2353 with

a minimal term of 0.0011. Thus, the difference of the Borel sum and the supposedly best

result for δ
(0)
FO is about 1.6 times the minimal term, and the imaginary ambiguity divided by

π precisely is able to account for this difference. Thus, our ansatz passes the requirements

for a sensible asymptotic series and OPE expansion. In the remainder of this section, we

shall make further checks as to the robustness of the prediction for δ(0) from our model for

B[D̂](u), and we estimate the uncertainty of our value for δ
(0)
BS given in (6.3).

Our first test consists in dropping c5,1 as an input, and instead using c2,1 to determine

the residua of the renormalon poles. In this case we set dPO
1 = 0, since we have only

four data to fix the parameters. The visual appearance of the corresponding plot for

δ(0) is indistinguishable from figure 7, so we do not show it again. Also numerically,

with δ
(0)
BS = 0.2370 ± 0.0061 i, we have practically the same result as in our main model.

However, now we are in a position to predict the coefficient c5,1, with the surprising result

c5,1 = 280, almost the same as our naive estimate (3.10) that was used as an input before.

This outcome was already anticipated by the fact that for our main model (6.1), dPO
1 (which

we now set to 0) turned out to be very small. However, when one breaks down c2,1 into

the contributions from the different renormalon terms, one finds that the IR pole at u = 3

is twice as important as the leading IR pole, so the agreement with the previous ansatz

might be fortuitous. For this reason, we prefer to base our discussion on an estimate of

c5,1, despite the obvious drawback of having to rely on an additional assumption.

Another modification to corroborate our assumptions and the findings for the main

model is to add a third IR renormalon pole at u = 4, again only adding one constant dPO
0 ,

and fitting the parameters to the first five perturbative coefficients. Hence, like in the last

model, the coefficient c2,1 influences the residua of the renormalon poles. The numerical

outcome is δ
(0)
BS = 0.2377 ± 0.0065 i, once more only a slight shift compared to (6.3). The

small change in the complex ambiguity only originates from the first two IR poles with

almost no contribution from the third. Also graphically, no difference would be visible in

comparison to figure 7. When inspecting the separate pole contributions, the third IR pole

12Further insights into the origin of the difference between δ
(0)
CI and δ

(0)
BS can be found in appendix B.
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mainly contributes to the first and second coefficient. For c3,1, we are left with a small 5%

contribution, and beyond the third order, the IR pole at u = 4 is completely negligible.

Thus, our assumptions on the relevant singularities appear to be justified.

Two further sources of uncertainty in our result (6.3) arise from the dependence on

the estimate of the coefficient c5,1, which is not exactly known, and from neglecting higher

order running effects beyond β4, where the β-function coefficients are not known. In view

of the fact that c5,1 turned out extremely stable when it was predicted above from our

model, to estimate the corresponding uncertainty, we think it is a save choice to vary c5,1

by ± 50%. This results in variations of (± 0.0042, ± 0.0030) in the real and imaginary part

of δ
(0)
BS , respectively, with no qualitative change in the behaviours of the FOPT and CIPT

series relative to figure 7.13 To get an idea about the importance of higher order running

effects, we can set β4, b̄2 and b̃2 to zero, and check how much our result changes. This

results in a (− 0.0021, − 0.0011) variation of δ
(0)
BS . Adding both variations in quadrature,

we arrive at our final result for δ
(0)
BS including uncertainties,

δ
(0)
BS = (0.2371 ± 0.0047) ± (0.0060 ± 0.0032) i , (6.4)

which will be used in the next section for our determination of αs from the hadronic τ

decay width. This should be compared to the perturbative corrections from eqs. (3.8) and

(3.9), which give 0.2200 (0.2288) in FOPT and 0.1984 (0.2021) in CIPT when the series is

truncated at n = 4 (n = 5).

Note that there is no uncertainty due to scale- or scheme-dependence in the usual

sense, since we are considering a series to all orders that is formally scale- and scheme-

independent. A question that can be asked, however, is whether our ansatz for the Borel

transform would still be meaningful and lead to the same results regarding the validity

of FOPT and CIPT, if the input data cn,1, n ≤ 5, were given in another scheme for

αs than the MS scheme or at another scale. This is not obvious, but it is not clear

what conclusions should be drawn from this. An arbitrary scheme change can produce

arbitrary irregularities in the input data, making any attempt to merge low with high orders

meaningless. Similarly, a scheme change defined by the relation 1/αs = 1/αMS
s +β1C/(2π)

would produce an additional factor exp(−Cu) in the new Borel transform, which changes

the renormalon residues and therefore the balance between contributions from the different

leading singularities. With no guidance at hand, we adopt the point of view that the MS

scheme has proven useful and stable in so many applications of perturbative QCD that

there is little motivation to consider significant departures. Nevertheless, to acquire an

estimate of the model dependence of our approach, in the next section we also fit our

model parameters to the Adler function coefficients which correspond to the expansion

in the strong coupling evaluated at a scale αs(ξMτ ), and determine the impact of this

variation on the αs determination. With such variations, the strength of the leading UV

renormalon is modified as compared to the lowest IR renormalon pole. For ξ < 1 the

13This remains true for larger variations of c5,1. However, for c5,1 = 0 or negative, large cancellations be-

tween the two IR renormalon poles are required in our model to produce such small c5,1 and the assumption

to fit the low orders with only a few renormalon singularities becomes questionable.
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leading UV renormalon becomes stronger, leading to an earlier onset of the asymptotic

regime, while for ξ > 1 it is suppressed, which imposes limitations on sensible values of ξ.

7. Determination of αs

The starting point for a determination of αs from hadronic τ decays is eq. (1.2) for the decay

rate of the τ lepton into light u and d quarks. The general strategy for our extraction of αs

below will be as follows. We concentrate on the sum of the vector and axialvector channels,

Rτ,V +A, as in this case some of the higher-dimensional operator contributions cancel. A

more elaborate analysis of the separate channels along the lines of refs. [7, 8, 9] employing

moments of the τ decay spectral function is left for the future. We expect significantly

larger perturbative corrections and ambiguities for the moments, along with the enhanced

condensate contributions, which makes the αs analysis more complicated. We base our

analysis on FOPT, and FOPT together with the ansatz for higher-order terms of section 6,

but do not use CIPT, despite the fact that the CI perturbation series appears to be better

behaved in low orders. The reason is that the analysis in the previous sections shows that

the better stability and smaller scale dependence of CIPT reflects the plateau of the CIPT

curve in figure 7, but the plateau value of the perturbative correction is far from the true

value. In such a situation, theoretical error estimates based on scale dependence provide a

very large underestimate of the true uncertainty.

The first step of the αs analysis consists in estimating the values of the power correc-

tions δ
(D)
ud,V +A in eq. (1.2), which arise from higher-dimensional operators in the framework

of the OPE. The power corrections will be calculated in FOPT.14 Given these estimates and

experimental data, we calculate a phenomenological value of δ(0) using eq. (1.2). We then

determine the value of αs(Mτ ) by requiring that the theoretical value δ
(0)
theo in FOPT, and

in our model of section 6 matches the phenomenological value δ
(0)
phen. Errors are estimated

by varying all parameters within their uncertainties.

7.1 Estimate of power corrections

Before going through the estimation of the power corrections, let us remark that these will

only be considered for the transversal part of the correlator Π
V +A,(1+0)
ud (s). The longitudi-

nal contribution δud,S+P to Rτ,V +A, arising from Π
V +A,(0)
ud (s) which is related to scalar and

pseudoscalar correlation functions, will be included later according to a phenomenologi-

cal approach which was already employed in the determination of |Vus| from Rτ [47, 48].

This approach has much smaller uncertainties than making use of the corresponding QCD

expressions for the scalar/pseudoscalar light-quark correlators since their perturbative ex-

pansions converge substantially slower than those for the vector/axialvector correlation

functions. With foresight, we shall use αs(Mτ ) = 0.3156± 0.006 in the numerical estimate

of the power correction below.

14In principle, for quantities other than the purely perturbative corrections to the Adler function, the

preference of FOPT over CIPT has to be investigated anew. However, the power corrections are already a

small correction, and for our application the difference in treating the perturbative expansion of the Wilson

coefficients is irrelevant.

– 26 –



The lowest-dimensional power corrections to Rτ,V +A are of dimension-2 and only arise

from terms proportional to quark masses squared. Detailed expressions for these contri-

butions were given in ref. [22, 49] up to order α2
s, and the next corrections at O(α3

s) were

first presented in ref. [50]. From these expressions we calculate the corresponding δ
(2)
m2,V +A

in FOPT. Contributions to this quantity arise from two sources: one is proportional to

(m2
u + m2

d) and the other to m2
s. The second is due to internal strange-quark loops and

only starts at O(α2
s). While the perturbative series for the (m2

u + m2
d) term displays a rea-

sonable convergence, the m2
s one is very badly behaved, such that in total the O(α3

s) term

is about a factor of three times the O(α2
s) term. To estimate the uncertainty in δ

(2)
m2,V +A

,

we average the results either including or omitting the O(α3
s) term, and take the spread as

the error. For the quark masses we use mu(Mτ ) = 2.8±0.5MeV, md(Mτ ) = 5.0±0.6MeV

and ms(Mτ ) = 97 ± 9MeV, which derive from ref. [51]. Also quadratically including the

parametric uncertainties, which albeit play a minor role, yields

δ
(2)
m2,V +A

= (3.1 ± 8.6) · 10−5 . (7.1)

Although this contribution has a very large uncertainty, it will turn out to be immaterial

for the αs determination.

Dimension-4 contributions arise from three possible sources: the gluon condensate

〈aG2〉, the quark condensate 〈q̄q〉, and m4
q corrections. (See e.g. ref. [22] and references

therein for explicit expressions.) The quartic mass corrections are tiny, and thus we shall

drop them. Furthermore, being suppressed by 1/s2 because of the weight function in Rτ ,

the contour integral is only non-vanishing if there are additional logarithms ln(−s), which

first appear at order α2
s.

15 The explicit expressions for the two contributions including the

known terms are then found to be

δ
(4)
〈G2〉,V +A

=
11π2

4
a(M2

τ )2
〈aG2〉
M4

τ

, (7.2)

δ
(4)
〈q̄q〉,V +A = 54π2 (mu + md)〈q̄q〉

M4
τ

[
a(M2

τ )2 +
(

517
36 − 8

3ζ3 +
(

5
6 − 4

3ζ3

)
κRs

)
a3

]
, (7.3)

where κ ≡ 〈s̄s〉/〈q̄q〉, Rs ≡ 2ms/(mu + md), and we have assumed isospin symmetry

for the up and down quark condensates. Historically, the standard value for the gluon

condensate is 〈aG2〉 = 0.012GeV4 [52], and not much progress has been made since then.

Therefore, it will be employed as our central value. As we only know the leading term for

δ
(4)
〈G2〉,V +A

, to be conservative, we assign a 100% uncertainty. For δ
(4)
〈q̄q〉,V +A, the required

quark condensate can be calculated from the GMOR relation [53, 54], with the result

〈q̄q〉(Mτ ) = − (272±15MeV)3. With 40%, the next-to-leading order α3
s correction is large,

but still has perturbative character. Thus, we include this term and take its size as an

estimate for the missing higher orders. Further employing κ = 0.8± 0.3 [54], and the light

quark masses from above, we obtain

δ
(4)
〈G2〉,V +A

= (3.3 ± 3.3) · 10−4 , δ
(4)
〈q̄q〉,V +A = (− 4.9 ± 6.2) · 10−5 . (7.4)

15This is yet another manifestation of the suppression of the leading IR renormalon at u = 2.
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It may be remarked that the upper range of δ
(4)
〈G2〉,V +A

just corresponds to the complex

ambiguity of the u = 2 renormalon pole divided by π in our all-order ansatz. It is gratifying

to observe that they are of the same order of magnitude, giving support to the size of

this term. Nevertheless, also the dimension-4 contributions only play a minor role in the

determination of αs.

At dimension six, δ
(D)
ud,V +A receives contributions from the three-gluon condensate

〈g3G3〉, 4-quark operators, and lower-dimensional operators times appropriate powers of

quark masses. The coefficient function of 〈g3G3〉 vanishes at the leading order and is there-

fore suppressed. Also the operators which get multiplied by quark masses only give very

small contributions. Thus we neglect these two types of contributions and concentrate on

the 4-quark condensates. At leading order, one is confronted with three four-quark opera-

tors, while at higher orders many more are generated [3, 55, 56]. As it appears impossible to

determine all required condensates from phenomenology, the so-called vacuum-saturation

approximation (VSA) had been proposed [52]. This reduces all 4-quark condensates to

squares of the quark condensate. With this simplifying assumption, the leading dimension-

6 contribution takes the form

δ
(6)
〈q̄qq̄q〉,V +A = − 512

27
π3αs

ρ〈q̄q〉2
M6

τ

= (− 4.8 ± 2.9) · 10−3 , (7.5)

where we assume ρ = 2± 1 for the numerical estimate. Our reasoning for this is as follows:

VSA is incompatible with the scale and scheme dependence of the 4-quark operators [56,

57]. Therefore, it does not make sense to include the next-to-leading order corrections.

Conventionally, one introduces the parameter ρ, which comprises the violation of the VSA.

A rough idea about the size of the parameter ρ can be gleaned from phenomenological fits

of the dimension-6 contributions to ΠV
ud, ΠA

ud, ΠV +A
ud , as well as ΠV −A

ud [7, 8, 9, 58] (and

references therein). Comparing the phenomenological fits with the VSA, values for ρ from

one to about three are found, which motivates the chosen range. At any rate, δ
(6)
〈q̄qq̄q〉,V +A

constitutes the dominant power correction.

We also include a crude estimate for the still higher-dimensional operator corrections.

Not much is known about these contributions, apart from the fact that they should be

suppressed as compared to δ
(6)
〈q̄qq̄q〉,V +A, since they carry at least two more powers of 1/Mτ .

Inspecting the fits of refs. [7, 8, 9] where also a dimension-8 contribution was included, one

infers that roughly it could be of order 10−3. Therefore, we have added

δ
(8)
ud,V +A = (0 ± 1) · 10−3 (7.6)

in our total estimate of the uncertainty for power corrections. There are potentially also

(short-distance) instanton contributions to the τ hadronic width. The leading contribution

of this type is a rapidly increasing and uncertain function of αs(Mτ ). For αs(Mτ ) = 0.32 it

has been estimated to contribute 2 · 10−3 to δ
(D)
ud,V +A [59]. Nonetheless, we do not include

a further power correction uncertainty for this term.

To complete our summary of power corrections to Rτ , we still have to compute the

longitudinal contributions which arise from scalar and pseudoscalar correlators. Because

the perturbative series for these correlators do not converge very well, here we shall follow
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the approach of refs. [47, 48]. The contribution from the scalar correlator is suppressed by

a factor (mu − md)
2, and it can be altogether neglected. The main idea then is to replace

the QCD expressions for the pseudoscalar correlator by a phenomenological representation.

The dominant contribution to the pseudoscalar spectral function stems from the well known

pion pole, giving

δπ
ud,S+P = − 16π2 f2

πM2
π

M4
τ

(
1 − M2

π

M2
τ

)2

, (7.7)

plus small corrections from higher-excited pionic resonances. Repeating the analysis of

section 3 of ref. [47] and updating the input parameters, we find

δud,S+P = (− 2.64 ± 0.05) · 10−3 . (7.8)

The uncertainty in (7.8) has been estimated by setting the higher-resonance contribution

to zero, which clearly demonstrates that the pion pole is dominant. Collecting all contri-

butions, and adding the errors in quadrature, we arrive at our total estimate of all power

corrections:

δPC = (− 7.1 ± 3.1) · 10−3 . (7.9)

Our value (7.9) is consistent with the most recent fit to the τ spectral functions performed

in ref. [9].

As a matter of principle, the OPE of the correlation functions in the complex s plane,

even when integrated over a suitable energy interval [25], could be inflicted with so-called

“duality violations” [60]. In our case, these would come from the contour integral close

to the physical region, and even though suppressed by a double zero, could lead to addi-

tional contributions or uncertainties. Within a model, these contributions were recently

investigated for hadronic τ decays [61], and in ref. [9] the model was fitted to the τ spec-

tral functions, with the finding that possible additional contributions are below the 10−3

level. In view of these results, we shall omit possible duality violating terms, but in future

analyses which perform a simultaneous fit of higher order OPE contributions, in analogy

to [9], it might be worthwhile to include them.

7.2 αs analysis

Employing the value Rτ,V +A = 3.479 ± 0.011, which results from eq. (1.1) in conjunction

with Rτ,S = 0.1615 ± 0.0040 [9], as well as |Vud| = 0.97418 ± 0.00026 [62], from eq. (1.2)

the phenomenological value for δ(0) can be derived after accounting for the electroweak

corrections and subtracting the power correction given in eq. (7.9):

δ
(0)
phen = 0.2042 ± 0.0038exp ± 0.0033PC = 0.2042 ± 0.0050 . (7.10)

By far the dominant experimental uncertainty is due to Rτ,V +A. In the second error, we

have also included the ones from SEW and δ′EW which should be considered theoretical

(though they are not power corrections). The final step in the extraction of αs(Mτ ) now

consists in finding the values of αs for which the phenomenological value δ
(0)
phen matches the

theoretical prediction, either from the finite order series, or from our model to all orders.
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Let us begin by analysing the impact of using FOPT when the perturbative expansion

is employed up to and including the fifth order. Besides the exactly known coefficients, we

make use of our value (3.10), c5,1 = 283, and to estimate the corresponding uncertainty, we

have either removed or doubled the fifth order term. A further theoretical error is added

to account for the residual renormalisation scale dependence of the fixed order series. We

estimate this by expressing the FO series in terms of a(µ2) rather than a(M2
τ ) and by

varying µ between 1GeV and 2.5GeV. Going through this procedure, and keeping the

errors separate to clearly see the importance of the various contributing uncertainties, we

obtain:

αs(Mτ ) = 0.3203 ± 0.0032exp ± 0.0028PC ± 0.0027c5,1
+ 0.0105
− 0.0052 (scale)

= 0.320 ± 0.003exp
+0.011
− 0.006 (th) = 0.320+ 0.012

− 0.007 . (7.11)

Comparing our result (7.11) with other determinations of αs(Mτ ) from hadronic τ decays

[9, 18] that include the exact fourth order term, we observe that our value is smaller by

0.012 [18] and 0.024 [9], up to twice the estimated error. This should not come as a surprise

since the analysis of ref. [9] relied on the use of CIPT, which increases αs(Mτ ), see figure 7,

while in ref. [18] an average of FOPT and CIPT is performed. The error in eq. (7.11)

is dominated by the scale error, which is significantly larger than in CIPT.16 However,

as argued above, we find that the small scale-dependence in CIPT is misleading when

interpreted as a measure of the theoretical uncertainty.

We evolve αs(Mτ ) to the Z-boson mass scale, using the β-function known to four

loops [63, 64], and the matching coefficients at flavour thresholds up to order α3
s [65].17

The central values of the flavour thresholds µ∗
c = 3.729GeV and µ∗

b = 10.558GeV are

taken to correspond to the physical thresholds of open D and B meson production. In

the matching coefficients also the charm and bottom quark masses are required, which

we assume to be mc(mc) = 1.28 ± 0.05GeV and mb(mb) = 4.20 ± 0.05GeV [67] in the

MS-scheme. The uncertainties resulting from the evolution are estimated as follows: like

in section 6, we compare to consistent 3-loop running, i.e. setting β4 = 0 and removing

the O(α3
s) coefficient in the matching relation, and we vary the quark masses as well as

the flavour thresholds in the ranges µ∗
c/2 < µc < 2µ∗

c and µ∗
b/2 < µb < 2µ∗

b . Adding all

uncertainties in quadrature, we arrive at:

αs(MZ) = 0.1185 ± 0.0004exp
+0.0013
− 0.0008 (th) ± 0.0002evol

= 0.1185+ 0.0014
− 0.0009 . (7.12)

Again, this value is lower than previous results from hadronic τ decays, but it is in perfect

agreement with the global averages of αs(MZ) [1, 2].

16The scale variation has a minimum at the scale µ ≈ 1.22 GeV, which might therefore be considered as

an “optimal” scale. It is amusing to note that evaluating αs at this scale, we obtain αs(Mτ ) = 0.3151, very

close to the improved result (7.13).
17The evolution has been performed independently with the Mathematica package RunDec [66] and a

private routine coded by one of us (MJ), finding complete agreement.

– 30 –



To further improve our determination of αs, we now include the higher order pertur-

bative terms according to our model of section 6. To this end, we need to find the value

of αs such the value of the Borel sum δ
(0)
BS matches the phenomenological value (7.10).18

Again keeping the contributing uncertainties separate, we find:

αs(Mτ ) = 0.3156 ± 0.0030exp ± 0.0026PC ± 0.0025c5,1 ± 0.0011β4=0
+0.0034
− 0.0029 (scale)

= 0.3156 ± 0.0030exp ± 0.0051th = 0.3156 ± 0.0059 . (7.13)

Besides the uncertainties already discussed previously, in eq. (7.13) we have also included

a scale/model uncertainty according to the reasoning put forward at the end of section 6.

As the scale variation, we chose 0.5 < ξ2 < 1.5, where µ ≡ ξMτ . (The corresponding

scale interval is 1.26GeV < µ < 2.18GeV.) The employed range in ξ is dictated by the

observation that for lower scales the contribution of the leading UV renormalon is enhanced

as compared to the leading IR renormalon pole, while for larger scales it is suppressed. At

the lower end for ξ, the contribution of the leading UV renormalon to the coefficient c3,1 is of

a similar size than the leading IR renormalon, while at the upper end, we are only left with

a mere 3% contribution of the first UV renormalon to the coefficient c5,1, practically losing

the sensitivity to this contribution. Therefore, beyond the used range for ξ, our model

ceases to make sense. For given ξ, we determine αs(ξMτ ) such that the value (7.10) is

obtained and then evolve back to the scale Mτ . In quoting the final uncertainty of αs(Mτ ),

in (7.13) we have used the larger scale variation in order to have a symmetric final error.

The dependence of the successive perturbative approximations to Rτ on the choice of ξ is

shown in figure 8, upper panel. The lower panel shows the corresponding approximations

in CIPT, which are again seen to lie below the “true” result for any reasonable value of ξ.

Evolving the result (7.13) to the Z-boson mass scale, we arrive at our final value for

αs(MZ):

αs(MZ) = 0.11795 ± 0.00038exp ± 0.00063th ± 0.00020evol

= 0.11795 ± 0.00076 . (7.14)

This result is slightly smaller than eq. (7.12) based on the FOPT up to the fifth order as

could be anticipated from figure 7, where one observes that δ(0) at O(α5
s) is smaller than

the full Borel sum. We consider eq. (7.14) as our best estimate of the strong coupling in

the MS scheme from hadronic τ decays.

8. Conclusions

Hadronic τ decays provide an especially clean environment for the study of QCD effects

and in particular the determination of QCD parameters. Of prime interest in this respect

is the QCD coupling αs. Still, due to the relatively low scale Mτ , an adequate control

over the perturbative series should be achieved for such applications. Besides explicitly

18We do not include a separate error from the ambiguity of δ
(0)
BS (at αs(Mτ ) = 0.3156: δ

(0)
BS = 0.2042 ±

0.0029 i), since it is subsumed in the error of δPC, which is several times larger.
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Figure 8: Results for δ
(0)
FO (full circles, diamonds, triangles) and δ

(0)
CI (grey circles, diamonds, trian-

gles) for the model of eq. (6.1) as a function of the order n up to which the terms in the perturbative

series have been summed. The parameters of the model are fit to the first five coefficients of the

Adler function expanded in αs(ξ
√

s) as described in section 6. The value of αs(ξMτ ) is determined

by requiring that the Borel sum equals δ
(0)
phen = 0.2042 in each case.

computing terms in the perturbative expansion, progress in this direction can be attained

by inspecting the renormalon divergence structure that the perturbative series should have

on general grounds.

A long-standing question in the interpretation of the QCD correction to Rτ is a numer-

ical discrepancy between two ways of performing the renormalisation group improvement,

namely CIPT and FOPT. While CIPT resums running effects of αs along the complex

integration contour which are known to be large, FOPT performs a consistent expansion

in αs at each loop order. The CIPT sum is significantly below the FOPT sum requiring

a larger strong coupling to reproduce the experimental Rτ . Resolving this discrepancy
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has become a major issue for improving the accuracy of the αs determination from Rτ ,

in particular since recently the fourth order coefficient of the series expansion has been

computed [18], and further terms cannot be expected to be available any time soon.

CIPT has long been considered as the method of choice due to its apparent better con-

vergence and smaller renormalisation scale dependence of the truncated series as compared

to FOPT. However, the argument that FOPT should be discarded, since the expansion of

the running coupling along the contour produces a series of finite radius of convergence that

is avoided in CIPT, does not take into account that both the CIPT and FOPT series have

zero radius of convergence anyway due to factorial divergence in higher orders. This leads

to interesting cancellations between the Adler function coefficients and running coupling

effects [17]. Having a sufficiently large number of exact Adler function coefficients at our

disposal, and without prospects of further improvements by exact computations, makes it

timely and possible to attempt to merge the exactly known terms with what is known on

general grounds about large-order behaviour, and to reinvestigate the conceptual issues of

the FOPT/CIPT comparison.

We investigated several toy models to find out under which circumstances FOPT or

CIPT provide a better approximation to the “true” result, which we may define as the

Borel sum of the series, since power corrections to Rτ are small. Two extreme cases can

be singled out. If the Adler function coefficients are set to zero beyond a certain order,

CIPT becomes exact, while FOPT performs large oscillations around the exact result [19].

On the other hand, if the Adler function series is dominated by an infrared renormalon

at u = 2, large cancellations occur in the Rτ series, which are only manifest in FOPT. In

this case, FOPT accounts well for the Borel sum, while CIPT stays systematically below,

despite an apparent better convergence and smaller scale dependence!

Taking these lessons we constructed a realistic ansatz for the entire Borel transform

of the Adler function such that the exactly known coefficients plus an estimate of the fifth

order coefficient are exactly reproduced, while including knowledge about the leading three

renormalon singularities. Given the regularity of the exactly known low-order terms, the

weight of the three contributions was fit to the four- to six-loop terms. With our central

model of eq. (6.1) we were able to achieve a very coherent picture of the known and higher

order coefficients. Our main conclusion from a study of the realistic model is that, given the

particular features of the Rτ series, FOPT provides the better approximation, in general

and at fourth order, than CIPT and is to be preferred on these grounds. In this respect

the full QCD case resembles the large-β0 approximation discussed in ref. [17].

We believe this conclusion to be valid in QCD beyond particular models, since it is

based on generic properties of the Rτ perturbation series – although it must be admitted

that statements about the accuracy of FOPT and CIPT, and the validity of perturbation

theory in higher orders in general, are always open to some amount of speculation. The

main point is that conventional wisdom that favours CIPT is based on the first three orders

in perturbation theory when the running coupling effects in gn dominate over the Adler

function coefficients cn,1. This dominance weakens as n grows, as can be seen from the

known exact coefficients, and the situation is expected to reverse beyond n = 5. The

fact that the cn,1 ultimately diverge, cannot be ignored. This as well as the crucial 1/n2
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cancellation in the sum cn,1 + gn for the leading non-sign-alternating component of the Rτ

perturbation series are model-independent consequences of QCD.

Making use of these results, two determinations of the strong coupling αs from Rτ,V +A

were presented in section 7. First, we performed a conventional FOPT analysis based

on the fourth-order result plus an estimate of the fifth order, whose size is taken as an

uncertainty. The resulting value for αs(Mτ ) can be found in eq. (7.11). Evolving to MZ ,

we obtain

αs(MZ) = 0.1185+ 0.0014
− 0.0009 (FOPT) , (8.1)

where the error is dominated by residual renormalisation scale dependence; see eq. (7.12).

This value is lower than those presented in refs. [9, 18] mainly because we propose to not use

CIPT as the result of our study. Our preferred and best result is obtained by incorporating

available structural information on the large-order behaviour as embodied in the model of

eq. (6.1). The resulting value for αs(Mτ ) can be found in eq. (7.13). Evolving it to MZ ,

the main result of our paper reads:

αs(MZ) = 0.11795 ± 0.00038exp ± 0.00063th ± 0.00020evol

= 0.11795 ± 0.00076 . (8.2)

Our approach towards the investigation of the higher-order behaviour of perturbative

series employed in this work can certainly also be applied to other quantities of interest,

like the scalar correlation function, mass squared corrections to Rτ , or moments of the

spectral functions. It should be interesting to see what can be said about the issue of

renormalisation group resummation when contour integrations are involved in these cases.

We shall return to this question in the near future. Finally, our results can be useful in

other places where the QCD Adler function plays a role.
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Appendix A: Borel integral for renormalon poles

In this appendix, we provide a few useful expressions for the Borel integral of generic

renormalon poles, and the corresponding complex ambiguity in the case of IR renormalons.
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Let us begin with a general UV-renormalon pole which we assume to have the form:

B[RUV
p ](u) ≡

dUV
p

(p + u)γ
, (A.1)

where u = β0t with β0 ≡ β1/(2π), p ∈ N and γ ∈ R
+. Then, the corresponding Borel

integral is given by

RUV
p (α) = dUV

p

∞∫

0

e−t/α

(p + β0t)γ
dt , (A.2)

which after the substitution t = αz − p/β0 can be expressed in terms of the incomplete

Γ-function:

RUV
p (α) = dUV

p

α

(β0α)γ
ep/(β0α)

∞∫

p/(β0α)

z−γe−z dz = dUV
p

α

(β0α)γ
ep/(β0α) Γ

(
1−γ, p

β0α

)
. (A.3)

Expanding the UV-renormalon pole ansatz (A.1), and performing the Borel integration

term by term, yields the corresponding perturbative expansion:

RUV
p (α) =

dUV
p

pγΓ(γ)

∞∑

n=0

Γ(n + γ)

(
− β0

p

)n

αn+1 . (A.4)

For the general IR-renormalon pole, let us assume the generic form:

B[RIR
p ](u) ≡

dIR
p

(p − u)γ
, (A.5)

where again u = β0t, p ∈ N and γ ∈ R
+. The corresponding Borel integral is given by

RIR
p (α) = dIR

p

∞∫

0

e−t/α

(p − β0t)γ
dt , (A.6)

and can be expressed in terms of the exponential integral function Eγ(z). However, because

of the singularity at t = p/β0 and the branch cut for t > p/β0, we still have to specify the

defining integration path. We shall integrate on the real axis up to t = p/β0 − ε, then on

a semicircle of radius ε in a clockwise, or anti-clockwise direction, and finally again along

the real axis from t = p/β0 + ε up to infinity, either above or below the cut, taking the

limit ε → 0 in the end. Performing all integrals, this leads to the expression:

RIR
p (α) = dIR

p
α

(β0α)γ
e−p/(β0α)

{
−
( p

β0α

)1−γ
Eγ

(
− p

β0α

)

+
[
(−1)±γ − (−1)sig(Im[α])γ

]
Γ(1 − γ)

}
. (A.7)

In the above equation, (−1)z should be interpreted as exp(iπz), and the function sig(z)

represents the sign of z, with the additional definition sig(0) ≡ 1. The imaginary ambiguity

of RIR
p (α) can be readily computed from eq. (A.7), and for α > 0 turns out to be:

Im
[
RIR

p (α)
]

= ±
dIR

p

β γ
0

sin(πγ) Γ(1 − γ)α1−γ e−p/(β0α) . (A.8)
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We can also straightforwardly obtain the perturbative expansion of RIR
p (α), which reads:

RIR
p (α) =

dIR
p

pγΓ(γ)

∞∑

n=0

Γ(n + γ)

(
β0

p

)n

αn+1 . (A.9)

These results can be used to construct analytic expressions for our models, which can

all be decomposed into polynomials and a sum of poles of the above form.

Appendix B: Adler function in the complex s-plane

Further understanding of the origin for the difference of δ(0) as calculated within FOPT or

CIPT can be gained by inspecting the reduced Adler function D̂(s) on the circle s = M2
τ eiϕ

in the complex s-plane. From the general perturbative expansion (2.10) it is clear that the

ambiguity in the choice of the RG resummation already exists in this case. Analogous to

the discussion of section 3 for Rτ , FOPT is defined by employing the constant scale choice

µ2 = M2
τ , while CIPT corresponds to a resummation of the series on each point of the circle

separately through the variable choice µ2 = −s = −M2
τ eiϕ. The perturbative expansions

for D̂ as a function of the angle ϕ in the two cases take the form:

D̂FO(ϕ) =
∞∑

n=1

a(M2
τ )n

n∑

k=1

k cn,k [ i(ϕ − π)]k−1 , (B.1)

D̂CI(ϕ) =

∞∑

n=1

cn,1 a(−M2
τ eiϕ)n . (B.2)

In figure 9, we display a graphical account of our numerical results for the real parts

Re[D̂FO(ϕ)] and Re[D̂CI(ϕ)] in the range 0 < ϕ < 2π and for αs(Mτ ) = 0.3156. We have

drawn four different lines corresponding to a truncation of the perturbative series at the 4th

(dotted line), 5th (dashed-double-dotted line), 6th (dashed-dotted line) and 7th (dashed

line) order. In addition, the solid line corresponds to a resummation of the perturbative

series according to the Borel sum of the physical model for the Adler function introduced

in section 6. The required perturbative coefficients c6,1 and c7,1 for this model are given in

table 2. The reason for showing the summation of the series up to n = 7 lies in the fact

that the smallest summand of both series is found in this range.

Various observations can be made on the basis of figure 9. First of all, as can also be

seen from eqs. (B.1) and (B.2), at the euclidian point ϕ = π on the negative real s-axis,

D̂FO and D̂CI are identical. The closest approach of the partial sums to the Borel sum for

ϕ = π is reached at the 6th order (compare figure 6). Close to the minkowskian region (the

positive real s-axis), that is ϕ near zero or 2π, FOPT converges rather slowly, and only

at the 7th order, the series approaches the shape displayed by the Borel sum. The slow

convergence of FOPT close to the minkowskian region has already been noted in ref. [9],

and was taken as an argument that CIPT should be preferable. Indeed, as is obvious from

the lower plot of figure 9, CIPT converges very nicely for all angles and mostly even better

for ϕ not near π than at the euclidian point. However, the resulting sums do not at all
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Figure 9: The real parts Re[D̂FO(ϕ)] and Re[D̂CI(ϕ)] of eqs. (B.1) and (B.2) for a summation of

the perturbative series up to four different orders, namely the 4th (dotted line), 5th (dashed-double-

dotted line), 6th (dashed-dotted line) and 7th (dashed line) order. The input for the QCD coupling

was chosen to be αs(Mτ ) = 0.3156. Also displayed as the solid line is the Borel sum Re[D̂BS(ϕ)]

according to our physical model presented in section 6.

approach the shape of the Borel sum. Thus, except at a few isolated points, CIPT for

the Adler function in the complex plane exhibits a similar problem as for Rτ , shown in

figure 7, that the series exhibits apparent convergence and stability, but the resultant value

is much further from the “true result” than any theoretical error estimate would suggest.

For the Adler function CIPT lies below the Borel sum in the central region and above

elsewhere, while for Rτ the weight function (1− x)3(1 + x) with x = eiϕ in the integration

over the angle ϕ implies that δ
(0)
CI is below the Borel sum δ

(0)
BS as found in section 6. On the

other hand, FOPT turns out to be much closer to the Borel sum, since the problematic
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region close to the minkowskian axis is strongly suppressed in Rτ by the triple zero of the

kinematical weight function at s = M2
τ . The problems with CIPT for the Adler function

in the complex plane arise essentially for the same reason as for Rτ . In FOPT at each

order we observe sizeable cancellations between the independent coefficients cn,1 and the

running effects which are missed by CIPT, although here, due to the angular dependence,

the situation is less transparent.
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[8] M. Davier, A. Höcker, and Z. Zhang, The physics of hadronic τ decays, Rev. Mod. Phys. 78

(2006) 1043–1109, [hep-ph/0507078].
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