

- The International Linear Collider
- Why do we need it?
 - \bullet Measurement of $\alpha_{\rm S}$ from JADE- and OPAL distributions using NNLO calculations EPJC 64:351, S. Bethke, S. Kluth, C. Pahl, J. Schieck and the JADE Collaboration Submitted to EPJC, the OPAL Collaboration
 - Outlook for the ILC: α_s -error budget

– The **Si**licon **D**etector at ILC: Measuring thrust

The International Linear Collider

- Q=500 GeV, upgrade: 1 TeV
- L=2•10³⁴/cm²s

QCD up to 200... GeV

 10^{5} LEP **σ** [pb] 10^{4} $e^+e^- \rightarrow hadrons$ CESR DORIS 10^{3} PEP PETRA $\sqrt{s'/s} > 0.10$ TRISTAN 10^{2} $e^+e^- \rightarrow \gamma \gamma$ $e^+e^- \rightarrow \mu^+\mu^-$ √<u>s'/s</u> > 0.85 . 920 10 160 180 80 140 2060 100 120 0 40 $Q = \sqrt{s} [GeV]$

Hadronic cross section

Running strong coupling (Eur. Phys. J. C 64, 689)

Event shape variables y

Two-hemisphere variables:

- Thrust 1-T
- C parameter
- Total Jet
 Broadening
 B_T

One-hemisphere variables:

- Wide Jet Broadening B_w
- Durham twojet flip parameter y^D₂₃
- Heavy Jet Mass M_H

Event shape variables y

α_{s} to NNLO by JADE and OPAL

$\alpha_{S}(m_{Z^{\circ}})$ results, OPAL

Errors: stat. / exp.+had.+scale

- More complete than NLO+NLLA analyses:
 - renormalisation scale uncertainty reduced
 - scatter from different variables reduced

$\alpha_s(m_z \circ)$ results:

	JADE	OPAL
NNLO	$0.1210 {\pm} 0.0061$	0.1201 ± 0.0030
NNLO+NLLA	0.1172 ± 0.0051	$0.1189 {\pm} 0.0041$

 2.6-5.0% precision, among the best measurements

α_s to NNLO by JADE and OPAL

- Analyses of data taken at the JADE and OPAL experiment are still ongoing
- Measurements not limited by statistical and experimental precision: New models and calculations allow improved determination of α_{S}
- Running of $\alpha_{S}(Q)$ confirmed strongly in the JADE energy range
- $\alpha_s(m_Z^{\circ})$ measured precisely by OPAL

Statistical

- L=2•10³⁴/cm²s ~ 10³•LEP1
- $\sigma_{had} \sim 10^{-3} \cdot \text{LEP1}$
- Selection efficiency slightly worse than LEP2 hep-ex/9912051
- Precision of 0.0001 in few years

Detector uncertainties

- OPAL
 - acceptance cut
 - tracks+cluster
 - MC model

 data version 10 $\delta Exp(\alpha_c)$ $\Delta det/\alpha_s$ • OPAL • JADE From NNLO $1-T, M_{H}, B_{T}, B_{W}, C, y_{23}^{D}$ +NLLA 0 0 0 0 10

JADE, additionally:

 $\frac{5 \cdot 10^{1} \quad 10^{2}}{\sqrt{s} [GeV]}$ ILC detector very hermetic, good tracking & calorimetry: Detector uncertainty $\alpha_{s}(m_{Z}^{\circ}) \sim 0.001$ expected

http://tesla.desy.de/new_pages/TDR_CD/PartIII/partIII.pdf

Residual Background

- Selection cuts varied
- JADE, additionally:
 - bb cross section $\pm 5\%$
- OPAL, additionally:
 - 4f cross section $\pm 5\%$
 - ISR algorithm varied

$\Delta bkg/\alpha_s$ from NNLO+NLLA

500 GeV: uncertainty of $\alpha_s(m_Z^\circ) \sim 0.001$ expected http://tesla.desy.de/new_pages/TDR_CD/PartIII/partIII.pdf

Uncertainty due to uncalculated higher orders

- Estimated conventionally by varying the renormalisation scale $\mu_R{=}0.5~\sqrt{s}$... 2.0 \sqrt{s}

Uncertainty due to uncalculated higher orders

- Estimated conventionally by varying the renormalisation scale $\mu_R{=}0.5~\sqrt{s}$... 2.0 \sqrt{s}

The SiD detector at the ILC

cc event at 500 GeV (tracks and calorimeter hits).

2011 Workshop on precision measurements of alphas - C. Pahl

Radiation effects at 500 GeV

Particle Flow Algorithm

HCAL ECAL

Showing PFA output

- White: reconstructed tracks.
- Calorimeter hits colour grouped by reconstructed particle
- Green lines: reconstructed neutrals

The SiD: Thrust Reconstruction

February 9-11, 2011

The SiD: Thrust Reconstruction

sum_thrust MC > 495 GeV, RP > 475 GeV |cos theta| < .95

Summary, ILC

- Uncertainties of $\alpha_s(m_Z^\circ)$ measurement at 500 GeV:
 - Statistical ~ 0.0001
 - Detector ~ 0.001
 - Background ~ 0.001
 - Hadronisation ~ 0.0001 ... *partons* are almost seen!
 - Scale ~ 0.001 ... NNLO very important
- ILC+NNLO = precision
- Test of the running of $\alpha_s(\sqrt{s})$: Extended lever arm
- High resolving detectors with elaborate reconstruction algorithms promise good event shape measurement