a_s for New Physics

Yasunori Nomura

UC Berkeley; LBNL

Why α_s ?

- . . .

- Every parameter better known as precisely as possible (Impacts on collider physics, ...)
- Developments of technologies / understandings (Issues with SCET determination, ...)

Scenarios in which the α_{s} value plays a crucial role?

- Grand unification
 - Grand unification in higher dimensions
- "Multiverse"
 - Precision Higgs mass prediction

(Note: different scenarios ... mutually incompatible)

Grand Unification in Higher Dimensions

For a review, Hall, Y.N., hep-ph/0212134

Grand unification

Beautiful understanding of quark / lepton quantum numbers

$$\begin{array}{cccc} SU(3)_{C} \times SU(2)_{L} \times U(1)_{Y} & SU(5) & SO(10) \\ & q(\mathbf{3}, \mathbf{2})_{1/6} \\ & u^{c}(\mathbf{3}^{*}, \mathbf{1})_{-2/3} \\ & e^{c}(\mathbf{1}, \mathbf{1})_{1} \\ & d^{c}(\mathbf{3}^{*}, \mathbf{1})_{1/3} \\ & l(\mathbf{1}, \mathbf{2})_{-1/2} \\ & n^{c}(\mathbf{1}, \mathbf{1})_{0} & \longrightarrow N(\mathbf{1}) \end{array} \right\} V(\mathbf{16})$$

Predictions:

- → 3 forces of the Standard Model unified at a high energy scale M_{GUT} → can be tested through α_s measurements
 - Proton decay caused by exchange of unified gauge bosons

Gauge coupling unification

... works particularly well with weak scale supersymmetry (introduced to solve the gauge hierarchy problem: why $v_{\text{EW}} \ll M_{\text{GUT/PI}}$)

What is the *precise* prediction of α_s ?

Hard to even quantify the errors

... threshold corrections from the weak and unified scales

e.g. Minimal SUSY SU(5)

$$\alpha_{3}^{-1}(m_{Z}) = \frac{12}{7}\alpha_{2}^{-1}(m_{Z}) - \frac{5}{7}\alpha_{1}^{-1}(m_{Z}) - \frac{1}{4\pi} \left\{ \frac{18}{7} \ln \frac{M_{H_{C}}}{(M_{V}^{2}M_{\Sigma})^{1/3}} - \frac{19}{7} \ln \frac{m_{SUSY}}{m_{Z}} \right\}$$

Unknown masses of GUT-scale particles

 $cf.$ Hisano, Murayama, Yanagida ('92)

GUT-scale threshold corrections become even larger in extended models ...

For "exact unification"

$$\alpha_s(m_Z) = \underbrace{0.130}_{\checkmark} + 0.009 \left(\frac{m_{t,\text{pole}}^2 - (173.1 \text{ GeV})^2}{(173.1 \text{ GeV})^2} \right) - \frac{19\alpha_s^2}{28\pi} \ln \frac{m_{\text{SUSY}}}{m_Z}$$
cf. Langacker, Polonsky ('95) Somewhat large

 m_{SUSY} : "effective" superpartner scale

SUSY GUT has problems

Gauge breaking & Doublet-triplet splitting

Why
$$M_{H_C} \gg M_{H_{u,d}}$$
?
 $W = H (M_H + \lambda \Sigma) \overline{H}$
 $\langle \Sigma \rangle = \begin{pmatrix} 2 & & \\ & 2 & \\ & & -3 & \\ & & & -3 \end{pmatrix} V_{\Sigma}$

. .

... extreme fine-tuning

Dimension five proton decay

$$W \approx \frac{1}{M_{H_C}} QQQL$$

... excluded by Super-Kamiokande

Fermion mass relations

$$W = y T F \bar{H} \checkmark \begin{array}{c} y Q D H_d \\ y L E H_d \end{array} \longrightarrow$$

 m_b/m_{τ} : good $m_{\rm s}/m_{\rm u}$: bad

... something seems wrong

Grand unification in higher dimensions

Hall, Y.N.; Kawamura ('00 - '02)

The basic framework

Consistent quantum theory

From 4 dimensional point of view,

Gauge breaking & doublet-triplet splitting

... automatic!

Suppressed d=5 proton decay

• $U(1)_R$ symmetry

 $T(1), F(1), H(0), \overline{H}(0), H'(2), \overline{H}'(2), \dots$

... *d*=5 proton decay does not arise

Matter fields

• Matter fields can be either on a brane or in the bulk

Gauge coupling unification preserved

... but with (slightly) modified prediction for α_{s}

e.g. Minimal model

No arbitrary parameters (masses)

→ threshold corrections are calculable!

Precision unification prediction

Precise predictions for $\alpha_s(m_Z)$

 $\begin{aligned} \alpha_{\rm s}(m_Z) &= 0.118 \pm 0.005 \\ M_c &\equiv 1/R \approx 10^{15} \, {\rm GeV} \\ M_s &\approx 10^{17} \, {\rm GeV} \qquad \text{(in the minimal model)} \\ & \dots \text{ improved prediction!} \end{aligned}$

The α_s value depends on gauge group, # of extra dim, ...

--> Important window into high energy physics

Precision Higgs Mass Prediction

Hall, Y.N., arXiv:0910.2235

String compactification

Structure of low energy theory / vacua may be "complex"

Multiverse

Cosmological constant problem

Unnatural (Note: $\rho_A = 0$ is NOT special from theoretical point of view)

String landscape

Compact (six) dimensions \rightarrow huge number of vacua

ex. O(100) fields with O(10) minima each $\rightarrow O(10^{100})$ vacua

Eternal inflation

Inflation is (generically) future eternal \rightarrow populate all the vacua

String compactification

Structure of low energy theory / vacua may be "complex"

Multiverse

Cosmological constant problem

No observer 0 No observer

Natural to see $\rho_{\Lambda,\text{obs}}\text{,}$ if different values of ρ_{Λ} are "sampled"

String landscape

Compact (six) dimensions \rightarrow huge number of vacua

ex. O(100) fields with O(10) minima each $\rightarrow O(10^{100})$ vacua

 ρ_{Λ}

• Eternal inflation

Inflation is (generically) future eternal \rightarrow populate all the vacua

Significant implications

What is natural? ... anthropic considerations mandatory What is generic? ... minimality not (automatically) justified

Weak scale supersymmetry really "needed"?

The origin of the weak scale may be environmental

→ the scale of SUSY masses determined by statistics

$$d\mathscr{N} \sim f(\widetilde{m}) \frac{v^2}{\widetilde{m}^2} d\widetilde{m} \qquad f(\widetilde{m}) \sim \widetilde{m}^{p-1}$$

For p < 2, weak scale SUSY results, but for p > 2, \tilde{m} prefers to be large...

What if \tilde{m} shoots up?

"Minimal" scenario (for large \tilde{m})

Standard Model:

High scale SUSY — nothing left?

SUSY boundary condition on the Higgs quartic λ

"*M_H* Prediction" — crazy?

Do we know \tilde{m} ?

What about threshold corrections?

$$\lambda(\tilde{m}) = \frac{g^2(\tilde{m}) + g'^2(\tilde{m})}{8} \left\{1 + \delta(\tilde{m})\right\}$$

 \widetilde{m} : matching scale

includes all threshold corrections

(No possibility to measure these directly)

Miracles!

Uncertainties dominated by $\delta m_t|_{exp}$, $\delta \alpha_s(M_Z)|_{exp}$, and small

... sensitivities to the high energy physics extremely mild

Infrared convergence property

The fractional uncertainty reduced by \sim a factor of 6

$$\delta M_H = 0.10 \text{ GeV}\left(\frac{\delta}{0.01}\right)$$

The attraction not so strong as erasing the sensitivity to SUSY b.c.

Extreme insensitivity to \tilde{m}

We do not know the precise value of \tilde{m}

Explicit dependence on \tilde{m} extremely mild !

$$\delta M_H = 0.14 \text{ GeV} \left(\log_{10} \frac{\tilde{m}}{10^{14} \text{ GeV}} \right)$$

Suppressed threshold corrections

SUSY corrections

$$\delta_s = \frac{3y_t^4}{32\pi^2\lambda} \left(\frac{2A_t^2}{m_{\tilde{t}}^2} - \frac{A_t^4}{6m_{\tilde{t}}^4}\right) \simeq 0.007 \left(\frac{2A_t^2}{m_{\tilde{t}}^2} - \frac{A_t^4}{6m_{\tilde{t}}^4}\right)$$

Very small ! For $A_t = m_{\tilde{t}} (3m_{\tilde{t}}), \delta_s \approx 0.013 (0.031) \rightarrow \delta M_H \approx 0.1 (0.3) \text{ GeV}$

→ Largest uncertainties

 $\delta m_t|_{exp} = \pm 1.3 \,\text{GeV} \longrightarrow \delta M_H = \pm 1.8 \,\text{GeV}$ $\delta \alpha_s(M_Z)|_{exp} = \pm 0.002 \longrightarrow \delta M_H = \mp 1.0 \,\text{GeV}$

[Residual uncertainties small: $\delta M_H = \pm 0.5 \text{ GeV}$ (estimate)]

Precision Higgs mass prediction

$$\begin{split} M_H &= 141.0 \; \text{GeV} + 1.8 \; \text{GeV} \left(\frac{m_t - 173.1 \; \text{GeV}}{1.3 \; \text{GeV}} \right) - 1.0 \; \text{GeV} \left(\frac{\alpha_s(M_Z) - 0.1176}{0.002} \right) \\ &+ 0.14 \; \text{GeV} \left(\log_{10} \frac{\tilde{m}}{10^{14} \; \text{GeV}} \right) + 0.10 \; \text{GeV} \left(\frac{\sqrt{\delta}}{0.01} \right) \pm 0.5 \; \text{GeV} \\ &\delta = \delta_\beta + \delta_s + \delta_\nu + \dots \qquad \left[\delta_\beta = -\frac{4}{\tan^2\beta} + O\left(\frac{1}{\tan^4\beta}\right) \right] \end{split}$$

$$M_{H} = (141 \pm 2) \text{ GeV}$$

Uncertainties from high energy theories extremely small, $\sim \pm 0.4$ GeV !

If found,

- "Discovery" of SUSY, but near M_{unif}
- Apparent success of SUSY unification accident
- Fine-tuning of > $O(10^{20})$ in $m_h^2 \rightarrow$ environmental origin of v

Strong evidence for the multiverse

(Improving precision on m_t and α_s crucial)

Summary

We will soon probe the TeV scale physics — what will we see?

- Weak scale supersymmetry
 - "TeV cloud" could be gone
 - ... Weak scale physics (threshold) may be determined
- More generally
 - Determination of the last SM parameter, M_H

In any case, it is possible that α_{s} plays an important role in exploring higher energy / more fundamental physics

... Convergence on $\alpha_s(m_Z)$ very much wanted!