$\alpha_{\mathbf{s}}$ in Electroweak Physics

Johann H. Kühn

I. α_{s} from Z Decays II. Impact of α_{s} on $\delta \rho$

I. $\alpha_{\rm S}$ from Z Decays (Chetyrkin, JK, Kwiatkowski, Phys.Rep.277,189;

Baikov, Chetyrkin, JK; ...)

- 1. Qualitative considerations
- 2. The massless case
 - non-singlet
 - singlet
- 3. Mass effects $(m_{\rm b})$
- 4. Mixed, non-factorizable terms

•
$$Z \to q\overline{q}$$
, $Z \to b\overline{b}$

1. Qualitative considerations

Remember :

 $\Gamma_{had} \approx 69.91(6)\% \text{ of } 2495.2(2.1) \text{ MeV} \implies 1744.2(2.0) \text{ MeV}$ $\delta \alpha_s = 3 \cdot 10^{-3} \text{ corresponds to } \delta \Gamma_{had} = 1.7 \text{ MeV}$

Two distinctly different observables :

- $R_Z = \Gamma_{had}/\Gamma_{\mu} \approx 20.8$, counting of events δR_Z dominated by statistics
- $\sigma_{\text{Peak}}(\text{had}) \sim \frac{\Gamma_e \Gamma_{\text{had}}}{(\Gamma_{\text{lept}} + \Gamma_{\text{had}})^2}$ [or $\sigma_{\text{Peak}}(\text{lept})$] $\delta \sigma$ dominated by luminosity (Bhabba-scattering) Reduction of sensitivity : $\frac{\delta \sigma(\text{had})}{\sigma(\text{had})} \sim -0.4 \frac{\delta \Gamma_{\text{had}}}{\Gamma_{\text{had}}}$

Perspectives : GIGA-Z

 α_S from R_Z : $\delta \alpha_s = 5 - 7 \times 10^{-4}$

(Drawback : slight implicit dependence of $\Gamma_{had}/\Gamma_{lept}$ on electroweak physics : M_H ; SUSY)

2. The massless case

• non-singlet terms : dominant

previously :

$$\begin{split} &\Gamma \propto \sum (v_q^2 + a_q^2) \left(1 + \frac{\alpha_s}{\pi} + 1.409 \left(\frac{\alpha_s}{\pi} \right)^2 - 12.767 \left(\frac{\alpha_s}{\pi} \right)^3 \right) \\ &\text{scale variation (} \mu = (0.5 - 2) M_Z \text{)} \\ &\Rightarrow \delta \alpha_s \approx 0.6 \cdot 10^{-3} \end{split}$$

electroweak working group $\alpha_s = 0.1185 \pm 0.0026$ (exp)

recent result :
$$-79.98\left(\frac{\alpha_s}{\pi}\right)^4$$

 $\Rightarrow \text{ shift of } \alpha_s \text{ by } + 0.5 \cdot 10^{-3}$ (Baikov, Chetyrkin, JK)

 $\alpha_s = 0.1190 \pm 0.0026$

evaluated by considering shift in non-singlet term only

confirmed by Z-fitter etc.

singlet terms : vector current

starting $\mathcal{O}(\alpha_s^3)$, small QCD-coefficients,

large cancellations: $\sim \left(\sum v_q\right)^2 \left[-1.240 \left(\frac{\alpha_s}{\pi}\right)^3\right]$ $\left(\sum v_q\right)^2 = \sum_q \left(I_3^q - 2Q_q \sin^2 \theta_W\right)^2 \approx 0.43$

 α_s^4 -term not yet available (and irrelevant)

singlet terms : axial current

no naive decoupling of top;

dominant term $\mathcal{O}(\alpha_s^2) \cdot \mathcal{O}(\ln m_t/m_Z)$ (Kniehl, JK)

result available to $\mathcal{O}(\alpha_s^3)$ (Chetyrkin, Tarasov) $\Gamma_{\text{singlet}} = -1.82 \text{ MeV}$ (remember : $\delta \Gamma_{\text{had}} = 2 \text{ MeV}$) $(\mathcal{O}(\alpha_s^3) \text{ term} \sim 0.24 \text{ MeV}$, $\mathcal{O}(\alpha_s^4) \text{ term}$: work in progress)

3. Mass Effects : m_b !

axial rate

Born :
$$\sqrt{1 - 4m_b^2/M_Z^2}^3 \approx 1 - 6m_b^2/M_Z^2$$

which m_b ?

large logarithmic terms resummed : $\overline{m}_b(M_Z^2) = 2.83(2) \,\mathrm{GeV}$

correction available up to order

 $lpha_s^4 m_b^2/M_Z^2$ and $lpha_s^3 m_b^4/M_Z^4$ $\Rightarrow \Delta \Gamma_{m_b} = -1.5 \,\mathrm{MeV}$

Born approximation with $m_b = m_{\rm Pole} = 4.7 \,{\rm GeV}$ would lead to $\Delta \Gamma_{m_b} = -4 \,{\rm MeV}$

in total :

most α_s^4 corrections are available

remaining (small) singlet terms : soon

4. Mixed corrections

valid for subclass ("oblique" one loop corrections)

instructive example : $QCD \otimes QED$

(Kataev)

$$1 + \frac{\alpha_s}{\pi} + Q_q^2 \frac{3}{4} \frac{\alpha}{\pi} - \frac{\alpha_s}{\pi} Q_q^2 \frac{1}{4} \frac{\alpha}{\pi}$$
$$\neq \left(1 + \frac{\alpha_s}{\pi}\right) \left(1 + Q_q^2 \frac{3}{4} \frac{\alpha}{\pi}\right)$$

correct result

factorization

$QCD \otimes QED$ strategy :

evaluate difference between result and factorized corrections

 \Rightarrow vertex corrections only!

light (u, d, c, s) quarks : (Czarnecki, K.)

expansion in M_W^2/M_Z^2 and $M_W^2/(4M_Z^2)$

 $\delta\Gamma(\text{QCD}\otimes\text{EW}) - \frac{\alpha}{\pi}$

$$- \underbrace{\frac{\alpha_s}{\pi} \delta \Gamma(1 \text{ Loop EW})}_{\text{factorization}} = -0.55 \text{ MeV}$$

$$\stackrel{=}{=} \delta \alpha_s \approx 1 \cdot 10^{-3}$$

 $\begin{array}{ll} \alpha_s G_F m_t^2 & \mbox{(Fleischer et al.)} \\ \alpha_s \alpha_{\rm weak} \ln m_t^2 & \mbox{(Kwiatkowoski, Steinhauser)} \\ \alpha_s \alpha_{\rm weak} \left({\rm const} + 1/m_t^2 \right) & \mbox{(Harlander, Seidensticker, Steinhauser)} \\ \end{array}$

expansion in M_Z^2/m_t^2 and $(M_Z^2/(2M_W^2))^2$ diagrams (see next slide) result :

$$\begin{split} \delta \Gamma \left(Z \to b \overline{b} \right) &- \delta \Gamma \left(Z \to d \overline{d} \right) &= \\ \left(\begin{array}{ccc} -5.6 & -0.79 \\ \underline{m_t^2} & \text{subleading} \\ \overline{\mathcal{O}}(\alpha_{\text{weak}}) \end{array} \right) & +0.50 \\ +0.06 \end{array} \right) \text{MeV} \end{split}$$

Two-Loop Three-Loop (306 diagrams) (ecce) www ~~~())~~~~~() And the second ~~~; man and the second seco ---(X)----(X)-------· ···· ····(~~ 0000 \sim ~~~

Expansion

large cancellations among subleading terms (const, $\log 1/m_t^2$) for one- and two-loop contributions! arbitrary units:

 $\frac{\alpha_s}{\pi}$ [1.16 m_{\star}^2 +(1.21 - 0.49) $m_t^0(\ln + \text{const})$ +(0.30 - 0.65) $m_t^{-2}(\ln + \text{const})$ +(0.02 - 0.21 + 0.01) $m_t^{-4}(\ln^2 + \ln + \text{const})$ +small $= \frac{\alpha_s}{\pi} [1.16 + 0.13]$ $\hat{=} 0.68 \, \text{MeV}$ from non-factorizable terms

 $m_t^2 + \ln m_t^2$ misleading !

Outlook on α_s

 α_s^4 : dominant terms available (non-singlet, and mass terms) singlet vector and axial vector : soon (tiny!) $\alpha_s^2 \alpha_{\text{weak}}$ small (could be done for GIGA-Z) GIGA-Z: $\delta \alpha_s = 5 - 7 \cdot 10^{-4}$ from experiment theoretically robust result **near future :** R below B-threshold or below $\Upsilon(1S)$ Lumi: $8 \cdot 10^{35} \text{ cm}^{-2} \text{s}^{-1} \Rightarrow 2 \cdot 10^8 \text{ evts/day}$ \Rightarrow statistical precision : $\delta\sigma/\sigma \sim 10^{-4}$ assume $\delta\sigma/\sigma\sim 10^{-3}$ at $10\,{\rm GeV}$ $\Rightarrow \delta \alpha_s (10 \,\text{GeV}) = 3.5 \cdot 10^{-3} \Rightarrow \delta \alpha_s (M_Z) = 1.6 \cdot 10^{-3} !$ dedicated analysis

II. Impact of $\alpha_{\mathbf{s}}$ on $\delta \rho$

large difference between $\overline{\rm MS}$ and OS mass : $m_t({\rm OS}) - m_t(\overline{\rm MS}) \approx 10\,{\rm GeV}$

leading term : $\Delta \rho = 3 \frac{\sqrt{2}G_F m_t^2}{16\pi^2}$

 $\begin{array}{l} \alpha_s(\widehat{=}\mathsf{two loop}) & (\mathsf{Djouadi; Kniehl, JK, Stuart; Fleischer + ...)} \\ \alpha_s^2(\widehat{=}\mathsf{three loop}) & \mathsf{required and relevant already (Chetyrkin + ...)} \\ \alpha_s^3(\widehat{=}\mathsf{four loop}) & \mathsf{kept in reserve (Chetyrkin + ...; Czakon + ...)} \end{array}$

(Veltman)

 Δr , $\Delta \kappa$ are complicated functions of m_t , M_Z and M_W

two loop : analytic result

three loop ; four loop

- expansion in $(M_{W,Z}/m_t)^2$ to arbitrary order
- analytic fct of expansion parameter!
- tadpole integrals

Three–Loop Diagrams

Purely gluonic contribution to $\mathcal{O}(\alpha_s^2)$

Result : δM_W in MeV

	$lpha_s^0$	$lpha_s^1$	α_s^2	$lpha_s^3$	$\alpha_s \alpha_{\mathrm{weak}}$
m_t^2	611.9	-61.3	-10.9	-2.1	2.5
log+const	136.6	-6.0	-2.6	-	-
$1/m_{t}^{2}$	-9.0	-1.0	-0.2	-	-
\sum	739.5	-68.3	-13.7	-2.1	2.5

$$\alpha_s^2$$
-term : 13.7 MeV $\widehat{=} \delta m_t = 2 \,\text{GeV}$ (TEVATRON)

$$\alpha_s^3$$
-term: 2.1 MeV $\hat{=} \delta m_t = 0.3 \,\text{GeV}$ (ILC)

Conversely : M_{Pole} fixed

$$\delta \alpha_s = 2 \cdot 10^{-3} \quad \Rightarrow \quad \delta M_W = 1.7 \,\mathrm{MeV}$$

 \Rightarrow irrelevant in near future

Conclusions

- α_s from Z decays is theoretically robust
- α_s^4 -term moves Z- and τ -result closer together
- GIGA-Z would be nice to have
- *R* from *B*-factory : statistically powerfull! systematics?
- QCD corrections to ρ-parameter are important and well under control
- present knowledge of α_s sufficient
- ILC?