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Abstract — The global fit of the Standard Model to electroweak precision data, routinely performed by the
LEP electroweak working group and others, demonstrated impressively the predictive power of electroweak
unification and quantum loop corrections. We have revisited this fit in view of (i) the development of the
new generic fitting package, Gfitter, allowing flexible and efficient model testing in high-energy physics, (ii)
the insertion of constraints from direct Higgs searches at LEP and the Tevatron, and (iii) a more thorough
statistical interpretation of the results. Gfitter is a modular fitting toolkit, which features predictive the-
oretical models as independent plugins, and a statistical analysis of the fit results using toy Monte Carlo
techniques. The state-of-the-art electroweak Standard Model is fully implemented, as well as generic ex-
tensions to it. Theoretical uncertainties are explicitly included in the fit through scale parameters varying
within given error ranges.

This paper introduces the Gfitter project, and presents state-of-the-art results for the global electroweak fit
in the Standard Model, and for a model with an extended Higgs sector (2HDM). Numerical and graphical
results for fits with and without including the constraints from the direct Higgs searches at LEP and Tevatron
are given. Perspectives for future colliders are analysed and discussed.

Including the direct Higgs searches, we find MH = 116.4+18.3
−1.3 GeV, and the 2σ and 3σ allowed regions

[114, 145] GeV and [[113, 168] and [180, 225]] GeV, respectively. For the strong coupling strength at fourth
perturbative order we obtain αS(M2

Z) = 0.1193+0.0028
−0.0027(exp) ± 0.0001(theo). Finally, for the mass of the

top quark, excluding the direct measurements, we find mt = 178.2+9.8
−4.2 GeV. In the 2HDM we exclude a

charged-Higgs mass below 240 GeV at 95% confidence level. This limit increases towards larger tanβ, e.g.,
MH± < 780 GeV is excluded for tanβ = 70.
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1 Introduction 1

1 Introduction

Precision measurements allow us to probe physics at much higher energy scales than the masses
of the particles directly involved in experimental reactions by exploiting contributions from quan-
tum loops. These tests do not only require accurate and well understood experimental data but
also theoretical predictions with controlled uncertainties that match the experimental precision.
Prominent examples are the LEP precision measurements, which were used in conjunction with the
Standard Model (SM) to predict via multidimensional parameter fits the mass of the top quark [1],
prior to its discovery at the Tevatron [2, 3]. Later, when combined with the measured top mass,
the same approach led to the prediction of a light Higgs boson [4]. Other examples are fits to
constrain parameters of Supersymmetric or extended Higgs models, using as inputs the anomalous
magnetic moment of the muon, results on neutral-meson mixing, CP violation, rare loop-induced
decays of B and K mesons, and the relic matter density of the universe determined from fits of
cosmological models to data.

Several theoretical libraries within and beyond the SM have been developed in the past, which,
tied to a multi-parameter minimisation program, allowed to constrain the unbound parameters of
the SM [5–8]. However, most of these programs are relatively old, were implemented in outdated
programming languages, and are difficult to maintain in line with the theoretical and experimental
progress. It is unsatisfactory to rely on them during the forthcoming era of the Large Hadron
Collider (LHC) and the preparations for future linear collider projects. Improved measurements
of important input observables are expected and new observables from discoveries may augment
the available constraints. None of the previous programs were modular enough to easily allow the
theoretical predictions to be extended to models beyond the SM, and they are usually tied to a
particular minimisation package.

These considerations led to the development of the generic fitting package Gfitter [9], designed
to provide a framework for model testing in high-energy physics. Gfitter is implemented in C++
and relies on ROOT [10] functionality. Theoretical models are inserted as plugin packages, which
may be hierarchically organised. Tools for the handling of the data, the fitting, and statistical
analyses such as toy Monte Carlo sampling are provided by a core package, where theoretical
errors, correlations, and inter-parameter dependencies are consistently dealt with. The use of
dynamic parameter caching avoids the recalculation of unchanged results between fit steps, and
thus significantly reduces the amount of computing time required for a fit.

The first theoretical framework implemented in Gfitter has been the SM predictions for the elec-
troweak precision observables measured by the LEP, SLC and the Tevatron experiments. State-of-
the-art calculations have been used, and – wherever possible – the results have been cross-checked
against the ZFITTER package [5]. For the W mass and the effective weak mixing angle, which
exhibit the strongest constraints on the Higgs mass through radiative corrections, the full second
order corrections are available [11–13]. Furthermore, the corrections of order O(αα2

S) and the
leading three-loop corrections in an expansion of the top-mass-squared (m2

t ) are included. The full
trhee-loop corrections are known in the large MH limit, however they turn out to be negligibly
small [14, 15]. The partial and total widths of the Z are known to leading order, while for the
second order only the leading m2

t corrections are available [16]. Among the new developments in-
cluded in the SM library is the fourth-order (3NLO) perturbative calculation of the massless QCD
Adler function [17], contributing to the vector and axial-vector radiator functions in the prediction
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of the Z hadronic width (and other observables). It allows to fit the strong coupling constant with
unique theoretical accuracy [17, 18].

Among the experimental precision data used are the Z mass, measured with relative precisions of
2 · 10−5, the hadronic pole cross section at the Z mass and the leptonic decay width ratio of the
Z with 10−3 relative precision. The effective weak mixing angle sin2θℓ

eff is known from the LEP
experiments and SLD to a relative precision of 7 · 10−4. The W mass has been measured at LEP
and the Tevatron to an overall relative precision of 3 · 10−4. The mass of the top quark occurs
quadratically in loop corrections of many observables. A precision measurement (currently 7·10−3)
is mandatory. Also required is the precise knowledge of the electromagnetic and weak coupling
strengths at the appropriate scales. Energy-dependent photon vacuum polarisation contributions
modify the QED fine structure constant, which at the Z-mass scale has been evaluated to a relative
precision of 8 · 10−3. The Fermi constant, parametrising the weak coupling strength, is known to
10−5 relative precision.

We perform global fits in two versions: the standard (“blue-band”) fit makes use of all the available
information except for the direct Higgs searches performed at LEP and the Tevatron; the complete
fit uses also the constraints from the direct Higgs searches. Results in this paper are commonly
derived for both types of fits.

Several improvements are expected from the LHC [19, 20]. The uncertainty on the W -boson and
the top-quark masses should shrink to 1.8 · 10−4 and 5.8 · 10−3 respectively. In addition, the
Higgs boson should be discovered leaving the SM without an unmeasured parameter (excluding
here the massive neutrino sector, requiring at least nine additional parameters, which are however
irrelevant for the results discussed in this paper). The primary focus of the global SM fit would
then move from parameter estimation to the analysis of the goodness-of-fit with the goal to uncover
inconsistencies between the model and the data, indicating the presence of new physics. Because
the Higgs-boson mass enters only logarithmically in the loop corrections, a precision measurement
is not required for this purpose. Dramatic improvements on SM observables are expected from the
ILC [21]. The top and Higgs masses may be measured to a relative precision of about 1 · 10−3,
corresponding to absolute uncertainties of 0.2 GeV and 50 MeV, respectively. Running at lower
energy with polarised beams, the W mass could be determined to better than 7 · 10−5 relative
accuracy, and the weak mixing angle to a relative precision of 5 · 10−5. Moreover, new precision
measurements would enter the fit, namely the two-fermion cross section at higher energies and the
triple gauge couplings of the electroweak gauge bosons, which are sensitive to models beyond the
SM. Most importantly, however, both machines are directly sensitive to new phenomena and thus
either provide additional constraints on fits of new physics models or – if the searches are successful
– may completely alter our view of the physics at the terascale. The SM will then require extensions,
the new parameters of which must be determined by a global fit, whose goodness must also be
probed. To study the impact of the expected experimental improvements on the SM parameter
determination, we perform fits under the assumption of various prospective setups (LHC, ILC,
and ILC with GigaZ option).

As an example for a study beyond the SM we investigate models with an extended Higgs sector of
two doublets (2HDM). We constrain the mass of the charged Higgs and the ratio of the vacuum
expectation values of the two Higgs doublets using current measurements of observables from the
B and K physics sectors and the most recent theoretical 2HDM predictions.
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The paper is organised as follows. A disquisition of statistical considerations required for the
interpretation of the fit results is given in Section 2. It is followed in Section 3 by an introduction
to the Gfitter project and toolkit. The calculation of electroweak precision observables, the results
of the global fit, and its perspectives are described in Section 4. Section 5 discusses results obtained
for the Two Higgs Doublet Model. Finally, a collection of formulae used in the theoretical libraries
of Gfitter is given in the appendix. We have chosen to give rather exhaustive information here for
the purpose of clarity and reproducibility of the results presented.

2 The Statistical Analysis

The fitting tasks are performed with the Gfitter toolkit described in Section 3. It features the
minimisation of a test statistics and its interpretation using frequentist statistics. Confidence
intervals and p-values are obtained with the use of toy Monte Carlo (MC) simulation or probabilistic
approximations where mandatory due to resource limitations. This section introduces the three
statistical analyses performed in the paper: (i) determination of SM parameters, (ii) probing the
overall goodness of the SM, and (iii) probing SM extensions and determining its parameters. The
SM part is represented by the global fit at the electroweak scale (Section 4), while as example for
beyond SM physics we analyse an extension of the Higgs sector to two scalar doublets (Section 5).
The statistical treatment of all three analyses relies on a likelihood function formed to measure
the agreement between data and theory. The statistical discussion below follows in many aspects
Refs. [22, 23] with additional input from [24, 25] and other statistical literature.

2.1 Model Parameters

We consider an analysis involving a set of Nexp measurements (xexp)i=1..Nexp , described by a cor-
responding set of theoretical expressions (xtheo)i=1..Nexp . The theoretical expressions are functions
of a set of Nmod model parameters (ymod)j=1..Nmod

. Their precise definition is irrelevant for the
present discussion besides the fact that:

• a subset of (ymod) may be unconstrained parameters of the theory (e.g., the Higgs mass in
the SM, if the results from the direct searches are not used);

• another subset of (ymod) are theoretical parameters for which prior knowledge from measure-
ments or calculations is available and used (e.g., the Z-boson mass and the hadronic vacuum
polarisation contribution to the running electromagnetic coupling strength);

• the remaining (ymod) parametrise theoretical uncertainties, which are based on hard-to-
quantify educated guesswork (e.g., higher order QCD corrections to a truncated perturbative
series).

It may occur that xexp or ymod parameters have statistical and theoretical errors, requiring a proper
treatment for both of these. In the following we use the shorthand notations ymod (xexp, xtheo) to
label both, sets of and individual parameters (measurements, theoretical expressions).
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2.2 Likelihood Function

We adopt a least-squares like notation and define the test statistics

χ2(ymod) ≡ −2 lnL(ymod) , (1)

where the likelihood function, L, is the product of two contributions

L(ymod) = Lexp(xtheo(ymod) − xexp) · Ltheo(ymod) . (2)

The experimental likelihood, Lexp, measures the agreement between xtheo and xexp, while the the-
oretical likelihood, Ltheo, expresses prior knowledge of some of the ymod parameters. In most cases
Lexp incorporates well-behaved statistical errors as well as (mostly) non-statistical experimental
systematic uncertainties. In some instances it may also include theoretical uncertainties and/or
specific treatments that may account for inconsistent measurements. On the contrary, Ltheo relies
on educated guesswork, akin to experimental systematic errors, but in most cases less well defined.
The impact of (mostly strong interactions related) theoretical uncertainties and their treatment
on the analysis may be strong, as it is the case for the global CKM fit [22, 23]. The statistical
treatment Rfit [22, 23] (described below) is designed to deal with the problem of theoretical errors
in a clear-cut and conservative manner. Evidently though, an ill-defined problem cannot be treated
rigorously, and results that strongly depend on theory uncertainties must be interpreted with care.
For the present analysis, by virtue of the large electroweak mass scale, purely theoretical errors
are subdominant and controlled, so that the fit results are well behaved. Increasing experimental
precision may alter this picture in the future.

The Experimental Likelihood

The experimental component of the likelihood is given by the product

Lexp(xtheo(ymod) − xexp) =

Nexp
∏

i,j=1

Lexp(i, j) , (3)

where the Nexp individual likelihood components Lexp(i, j) account for observables that may be
independent or not. The model predictions of the observables depend on a subset of the ymod

parameters, and are used to constrain those. Ideally, all likelihood components are independent
(i.e. Lexp(i, j) = 0 for i 6= j) Gaussian functions, each with a standard deviation estimating
the experimental statistical uncertainty.1 In practise however, one has to deal with correlated
measurements and with additional experimental and theoretical systematic uncertainties. In ac-
cordance with the approach adopted by most published analyses, experimental systematic errors

1 The fitting procedure described in Section 2.3 uses χ2 minimisation to obtain the best match between a test
hypothesis, represented by a certain parameter set, and the data. This requires the use of expected experimental
errors corresponding to the test hypothesis in the experimental likelihood, rather than the measured experimental
errors. However, the expected experimental errors are usually not available for all possible test hypotheses, and the
measured experimental errors are used instead. This may be a reasonable approximation for test values in close
vicinity of the measured experimental results. Nonetheless, one should expect that for regions that are strongly
disfavoured by the likelihood estimator the statistical analysis is less precise, so that large deviations in terms of
“sigmas” must be interpreted with care. We shall revisit this point in Section 4.2.2 when including results from the
direct searches for the Higgs boson in the fit.
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are assumed to express Gaussian standard deviations, so that different systematic errors can be
added in quadrature.2 Theoretical errors are treated according to the Rfit scheme described below.

The Theoretical Likelihood

The theoretical component of the likelihood is given by the product

Ltheo(ymod) =

Nmod
∏

i=1

Ltheo(i) . (4)

The individual components Ltheo(i) can be constant everywhere in case of no a-priori information,
be bound, or may express a probabilistic function when such information is reliably available.
Ideally, one should incorporate in Lexp measurements (or equivalent determinations such as Lattice
gauge theory, provided well-controlled theoretical assumptions are made) from which constraints
on the ymod parameters can be derived. If such constraints are not available, or if a component has
been explicitly introduced to parametrise theoretical uncertainty, the Ltheo(i) components must
be incorporated by hand in Eq. (4). They are statistically ill-defined and can hardly be treated as
probability density functions.

In the range fit approach, Rfit, it is proposed that the theoretical likelihoods Ltheo(i) do not
contribute to the χ2 of the fit when the corresponding ymod parameters take values within allowed
ranges denoted [ymod]. Usually these ranges are identified with the intervals [ymod − σtheo , ymod +
σtheo], where ymod is a best-guess value, and σtheo is the theoretical systematic error assigned to
ymod. Hence all allowed ymod values are treated on equal footing, irrespective of how close they are
to the edges of the allowed range. Instances where even only one of the ymod parameters lies outside
its nominal range are not considered. This is the unique assumption made in the Rfit scheme: ymod

parameters for which a-priori information exists are bound to remain within predefined allowed
ranges. The Rfit scheme departs from a perfect frequentist analysis only because the allowed
ranges [ymod] do not always extend to the whole physical space.3 This minimal assumption, is
nevertheless a strong constraint: all the results obtained should be understood as valid only if all
the assumed allowed ranges contain the true values of their ymod parameters. Because there is in
general no guarantee for it being the case, a certain arbitrariness of the results remains and must
be kept in mind.4 Although in general range errors do not need to be of theoretical origin, but
could as well parametrise hard-to-assess experimental systematics, or set physical boundaries, we
will collectively employ the term “theoretical (or theory) errors” to specify range errors throughout
this paper.

2This introduces a Bayesian flavour to the statistical analysis.
3Some ymod parameters do not have any a-priori information and are hence fully unbound in the fit.
4If a theoretical parameter is bound to an allowed range, and if this range is narrower than what the fit would

yield as constraint for the parameter if let free to float, the best fit value of this (bound) parameter usually occurs
on the edge of the allowed range. A modification of this range will thus have immediate consequences for the central
values of the fit.
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2.3 Parameter Estimation

When estimating model parameters one is not interested in the quality of the agreement between
data and the theory as a whole. Rather, taking for granted that the theory is correct, one is only
interested in the quality of the agreement between data and various realisations (models) of the
theory, specified by distinct sets of ymod values. In the following we denote χ2

min;ŷmod
the absolute

minimum value of the χ2 function of Eq. (1), obtained when letting all the ymod parameters free
to vary within their respective bounds, with a fit converging at the solution ŷmod.

5 One now
attempts to estimate confidence intervals for the complete ymod set. This implies the use of the
offset-corrected test statistics

∆χ2(ymod) = χ2(ymod) − χ2
min;ŷmod

, (5)

where χ2(ymod) is the χ2 for a given set of model parameters ymod. Equation (5) represents the
logarithm of a profile likelihood. The minimum value ∆χ2(ŷmod) is zero, by construction. This
ensures that, consistent with the assumption that the model is correct, exclusion confidence levels
(CL) equal to zero are obtained when exploring the ymod space.

In general, the ymod parameters in Eq. (5) are divided into relevant and irrelevant ones. The
relevant parameters (denoted a) are scanned for estimation purposes, whereas the irrelevant ones
(the nuisance parameters µ) are adjusted such that ∆χ2(a, µ) is at a minimum for µ = µ̂. Since in
frequentist statistics one cannot determine probabilities for certain a values to be true, one must
derive exclusion CLs. The goal is therefore to set exclusion CLs in the a space irrespective of the
µ values.

A necessary condition is that the CL constructed from ∆χ2(ymod) provides sufficient coverage,
that is, the CL interval for a parameter under consideration covers the true parameter value with
a frequency of at least 1 − CL if the measurement were repeated many times. For a Gaussian
problem, the test statistics follows a χ2 distribution [26] and one finds

1 − CL(a, µ̂) = Prob(∆χ2(a, µ̂),dim[a]) , (6)

where dim[a] is the dimension of the a space, which is the number of degrees of freedom6 of the
offset-corrected ∆χ2. Here the probability density distribution of ∆χ2 is independent of µ. In a
non-Gaussian case the CL interval for a must be evaluated with toy MC simulation for any possible
set of true µ values using, e.g., a Neyman construction [27] with likelihood-ratio ordering [28, 29].7

One may then choose for each a the set of µ that gives the smallest CL(a). This “supremum”
approach [24] (also described in Ref. [25] with however a somewhat different meaning) provides

5The application of the Rfit scheme in presence of theoretical uncertainties may lead to a non-unique {ŷmod}
solution space.

6 Note that the effective number of degrees of freedom may not always be equal to the dimension of the a space.
For example, if dim[a] = 2 but a single observable O = f(a) is scanned in a, only one of the two dimensions of a is
independent, while the other can be derived via O so that the effective dim[a] to be used here is one [23]. Similarly,
the available observables may only constrain one of the two dimensions of a. Again, the effective dimension to be
used in Eq. (6) would be one. Intermediate cases, mixing strong and weak constraints in different dimensions of a
may lead to an ill-posed situation, which can only be resolved by means of a full toy MC analysis. Such an analysis
is performed at some instances in this paper (see in particular Section 5.2.2 for the two-dimensional case).

7An ordering scheme is required because the construction of a Neyman CL belt is not unique. It depends on the
definition of the test statistics used.
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the most conservative result, which however overcovers in general. (Note also that the approach
depends on the ordering algorithm used [30]). It may lead to the paradoxical situation that µ
values excluded by the data may be chosen as the true set to determine CL(a). As a modification
to this scheme, one could only consider µ values that are within predefined ∆χ2(a, µ) bounds,
thus guaranteeing a minimum compatibility with the data [31, 32]. A vast literature on this
topic is available (see PhyStat conference proceedings and, e.g., Ref. [25]), mostly attempting to
prescribe a limitation of the µ space while maintaining good coverage properties.8 We point out
that the naive “plugin” approach that consists of using the set of µ̂ that minimises ∆χ2(a, µ̂) in
the fit to estimate the true µ is incorrect in general (it is trivially correct if the problem is strictly
Gaussian, as then the ∆χ2 distribution is µ-independent). It may lead to serious undercoverage
if the ∆χ2(a, µ) frequency distribution is strongly dependent on µ (cf. the analysis of the CKM
phase γ [24]).

As a shortcut to avoid the technically challenging full Neyman construction in presence of nuisance
parameters, one may choose a probabilistic interpretation of the profile likelihood L(a, µ̂) versus
a, which corresponds to a MINOS [33] parameter scan. Simple tests suggest satisfying coverage
properties of the profile likelihood scan (see, e.g., [34–36]). Mainly because of its simplicity this
assumption will be adopted for most (though not all) of the results presented in this paper.

2.4 Probing the Standard Model

By construction, the parameter estimation via the offset-corrected ∆χ2 is unable to detect whether
the SM fails to describe the data. This is because Eq. (5) wipes out the information contained in
χ2

min;ŷmod
. This value is a test statistics for the best possible agreement between data and theory.

The agreement can be quantified by the p-value P(χ2
min ≥ χ2

min;ŷmod
|SM), which is the tail proba-

bility to observe a test statistics value as large as or larger than χ2
min;ŷmod

, if the SM is the theory
underlying the data. It hence quantifies the probability of wrongly rejecting the SM hypothesis.
In a Gaussian case, χ2

min;ŷmod
can be readily turned into a p-value via Prob(χ2

min;ŷmod
, ndof).

9 In
presence of non-Gaussian effects, a toy MC simulation must be performed. Again, a full frequentist
analysis requires the scan of all possible (or “likely”) true nuisance parameters, followed by toy
MC studies to derive the corresponding p-values. Chosen is the set of true ŷmod that maximises
P(χ2

min;ŷmod
|SM), where here exact coverage is guaranteed by construction (note that in this phase

no explicit parameter determination is performed so that all ymod are nuisance parameters).

Such a goodness-of-fit test may not be the most sensitive manner to uncover physics beyond the
SM (BSM). If the number of degrees of freedom is large in the global fit, and if observables
that are sensitive to the BSM physics are mixed with insensitive ones, the fluctuations in the
latter observables dilute the information contained in the global p-value (or deficiencies in the SM
description may fake presence of new physics). It is therefore mandatory to also probe specific
BSM scenarios.10

8We recall here the reserve expressed in Footnote 1 on page 4 affecting the accuracy of any approach: the
dependence of the measured errors on the outcome of the observables (determined by a and µ) – if significant – must
be taken into account.

9The corresponding ROOT function is TMath::Prob(...).
10This problem is similar to those occurring in goodness-of-fit (GoF) tests in experimental maximum-likelihood

analyses. If, for instance, the data sample with respect to which a likelihood analysis is performed is dominated by
background events with a small but significant signal excess a successful global GoF test would only reveal agreement
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2.5 Probing New Physics

If the above analysis establishes that the SM cannot accommodate the data, that is, the p-value is
smaller than some critical value, the next step is to probe the BSM physics revealed by the observed
discrepancy. The goal is akin to the determination of the SM parameters: it is to measure new sets
of physical parameters yNP that complement the ymod SM parameters. The treatment is identical
to the one of Section 2.3, using a = {yNP}. Even if the SM cannot be said to be in significant
disagreement with the data, the estimation of yNP remains interesting because the most sensitive
observables, and the precision to be aimed at for their determination can only be derived by this
type of analysis. Moreover, the specific analysis might be able to faster detect the first signs of a
discrepancy between data and the SM if the theoretical extension used in the analysis turns out
to be the right one.

3 The Gfitter Package

The generic fitting package Gfitter comprises a statistical framework for model testing and param-
eter estimation problems. It is specifically designed to provide a modular environment for complex
fitting tasks, such as the global SM fit to electroweak precision data, and fits beyond the SM. Gfitter
is also a convenient framework for averaging problems, ranging from simple weighted means using
or not correlated input data, to more involved problems with non-Gaussian PDFs and/or common
systematic errors, requiring or not consistent rescaling due to parameter interdependencies.

Software

The Gfitter package [37] consists of abstracted object-oriented code in C++, relying on ROOT
functionality [10]. The core fitting code and the physics content are organised in separate packages,
each physics model package can be invoked as a plugin to the framework. The user interfaces Gfitter
through data cards in XML format, where all the input data and driving options are defined. The
fits are run alternatively as ROOT macros or executables, interactively or in a batch system.

Gfitter Parameters and Theories

Gfitter defines only a single data container, denoted parameter, which can have three distinct
manifestations according to its use case:

(A) Measurements xexp that are predicted by the model (e.g., W mass in the SM): parameters
of this type are not varied in the fit, but contribute to the log-likelihood function through
comparison between the model prediction and the corresponding measurement.

with the background model and say little about the signal. Similarly, a small p-value for the null hypothesis may
reflect problems in the background description rather than an excess of signal events. A possible remedy here
would be to restrict the GoF test to signal-like events, or more specifically, to test the GoF in all likelihood bins
independently.
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(B) Model parameters ymod that are not predicted by the theory but for which a direct mea-
surement exists (e.g., top mass in the SM): parameters of this type are varied in the fit, and
they contribute to the log-likelihood function through comparison between the fit parameter
value and the corresponding measurement.

(C) Model Parameters ymod that are not predicted by the theory and for which no direct mea-
surement exist (e.g., Higgs mass in the SM), or which parametrise theoretical uncertainties
according to the Rfit prescription (cf. Section 2.2): parameters of this type are varied freely
in the fit within bounds (if exist), and they do not contribute themselves to the log-likelihood
function.

A parameter is uniquely defined via a name (and optionally an alias to allow the user to declare
several correlated measurements of the same parameter, and to design theoretical predictions in a
polymorph class hierarchy) in the data card, and stored in a global parameter container. These
parameters are objects (of the GParameter class) that cannot be destroyed nor be recreated. Upon
creation of a parameter, Gfitter searches automatically in the physics libraries for a corresponding
theory (an object of the GTheory class), identified through the name of the parameter. If a theory
is found, the corresponding class object is instantiated11 and the parameter is categorised as of type
(A); if no theory is found, it is of type (B) or (C) depending on the presence of a measurement in the
data card.12 The categorisation of parameters is performed automatically by Gfitter maintaining
full transparency for the user.

Parameter Errors, Ranges, Correlations and Rescaling

Gfitter distinguishes three types of errors: normal errors following a Gaussian distribution describ-
ing statistical and experimental systematic errors, a user-defined log-likelihood functions including
statistical and systematic uncertainties, and allowed ranges describing physical limits or hard-to-
assess systematic errors (mostly of theoretical origin). All errors can be asymmetric with respect to
the central values given. All parameters may have combinations of Gaussian and range errors (but
only a single user-defined likelihood function). Parameters of type (A) and (B) do not contribute
to the log-likelihood functions if the theory prediction or floating parameter value is compatible
with the central value of the parameter within the ranges of the theoretical errors attributed to
the parameter (cf. Section 2.1 concerning the implications of the term “theoretical error”). Only
beyond these ranges, a Gaussian parabolic contribution to the log-likelihood function occurs. For
example, the combined log-likelihood function of a parameter with central value x0, positive (neg-
ative) Gaussian error σ+

Gauss (σ−Gauss), and positive (negative) theoretical error σ+
theo (σ−theo), for a

11A GTheory can depend on auxiliary theory objects (derived from GTheory) that are used to outsource complex
computation tasks. Caching of results from repetitive calculations also benefits from outsourcing.

12Measurement results can be given as central value and Gaussian (possibly asymmetric) and/or theoretical errors,
or as a user-defined log-likelihood function encoded in ROOT objects (e.g. histograms, graphs or functions).
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given set of ymod parameters and theoretical prediction f(ymod) reads

− 2 logL(ymod) =































0 , if: −σ−theo ≤ f(ymod) − x0 ≤ σ+
theo ,

(

f(ymod)−(x0+σ+
theo)

σ+
Gauss

)2

, if: f(ymod) − x0 > σ+
theo ,

(

f(ymod)−(x0−σ−
theo)

σ−
Gauss

)2

, if: x0 − f(ymod) > σ−theo .

(7)

Parameters of type (C) vary freely within the ranges set by the theoretical errors if available, or
are unbound otherwise.

Parameters can have correlation coefficients identified and set in the data card via the parameter
names (and alias if any). These correlations are taken into account in the log-likelihood test
statistics as well as for the creation of toy MC experiments.

It is possible to introduce dependencies among parameters, which can be used to parametrise
correlations due to common systematic errors, or to rescale parameter values and errors with
newly available results for parameters on which other parameters depend. For example, in the

global SM fit the experimental value used of the parameter ∆α
(5)
had(M2

Z) depends on αS(M2
Z). The

value for αS(M2
Z) used when evaluating ∆α

(5)
had(M2

Z) may have been updated in the meantime,

or may be updated in each fit step, which leads to a (not necessarily linear) shift of ∆α
(5)
had(M

2
Z)

and also to a reduced systematic error (for details see Footnote 17 on page 19). The rescaling
mechanism of Gfitter allows to automatically account for arbitrary functional interdependencies
between an arbitrary number of parameters.

Caching

An important feature of Gfitter is the possibility to cache computation results between fit steps.
Each parameter holds pointers to the theory objects that depend on it, and the theories keep track
of all auxiliary theory objects they depend on. Upon computation of the log-likelihood function in
a new fit step, only those theories (or part of theories) that depend on modified parameters (with
respect to the previous fit step) are recomputed. More importantly, time intensive calculations
performed by auxiliary theories that are shared among several theories are made only once per
fit step. The gain in CPU time of this caching mechanism is substantial, and can reach orders of
magnitudes in many-parameter fitting problems.

Fitting

The parameter fitting is transparent with respect to the fitter implementation, which by default
uses TMinuit [33], but which is extensible via the driving card to the more involved global min-
ima finders Genetic Algorithm and Simulated Annealing, implemented in the ROOT package
TMVA [38].
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Parameter Scans and Contours

Gfitter offers the possibility to study the behaviour of the log-likelihood test statistics as a function
of one or two parameters by one- or two-dimensional scans, respectively. If a parameter is of type
(A), penalty contributions are added to the log-likelihood test statistics forcing the fit to yield the
parameter value under study. In addition, two-dimensional contour regions of the test statistics
can be computed using the corresponding TMinuit functionality.

Toy Monte Carlo Analyses

Gfitter offers the possibility to perform toy Monte Carlo (MC) analyses repeating the minimisation
step for input parameter values that are randomly generated around expectation values according
to specified errors and correlations. For each MC experiment the fit results are recorded allowing
a statistical analysis, e.g., the determination of a p-value and an overall goodness-of-fit probabil-
ity. All parameter scans can be optionally performed that way, as opposed to using a Gaussian
approximation to estimate the p-value for a given scan point (manifestation of true values).

4 The Standard Model Fit to Electroweak Precision Data

In recent particle physics history, coined by the success of the electroweak unification and Quantum
Chromodynamics (QCD), fits to experimental precision data have substantially contributed to our
knowledge of the Standard Model (SM). The first application of global fits to electroweak data has
been performed by the LEP Electroweak Working Group [39] in the last decade of the 20th century,
unifying LEP and SLD precision data. The primary results of these fits were a prediction of the
top-quark mass (today’s fit precision ≃ 9 GeV) prior to its discovery, an accurate and theoretically
well controlled determination of the strong coupling constant at the Z-mass scale (today available
at the 3NLO level [17]), and a logarithmic constraint on the Higgs mass establishing that the SM
Higgs must be light. Other areas related to particle physics where global fits are performed are
neutrino oscillation [40], leading to constraints on mixing parameters and mass hierarchies, flavour
physics, with constraints on the parameters of the quark-flavour mixing (CKM) matrix and related
quantities [22, 41], and cosmology [42], leading to a large number of phenomenological results such
as the universe’s curvature, the relic matter and energy density, neutrino masses and the age of
the universe. Global fits also exist for models beyond the SM such as Supersymmetry [43, 44] with
however yet insufficient high-energy data for successfully constraining the parameters of even a
minimal model so that simplifications are in order.

We emphasise that the goal of such fits is twofold (cf. Section 2): (i) the determination of the
free model parameters, and (ii) a goodness-of-fit test measuring the agreement between model and
data after fit convergence. This latter goal can be only achieved if the model is overconstrained by
the available measurements. The situation is particularly favourable in the CKM sector, where the
primary goal of experiments and phenomenological analysis has been moved from CKM parameter
determination to the detection of new physics via inconsistencies in the CKM phase determination.
The relatively young field of neutrino oscillation measurements on the contrary does not yet provide
significant overconstraints of the neutrino flavour mixing matrix.



4.1 Formalism and Observables 12

In the following we revisit the global electroweak fit at the Z-mass scale using the Gfitter package.
We recall the relevant observables, their SM predictions, perform fits under various conditions,
and discuss the results.

4.1 Formalism and Observables

The formal analysis of this section is placed within the framework of the SM. The electroweak
fit focuses on the parameters directly related to the Z and W boson properties, and to radiative
corrections to these, providing the sensitivity to heavy particles like the top quark and the Higgs
boson. The floating parameters of the fit are the Higgs and Z-boson masses, the c, b, and t-quark
masses, as well as the electromagnetic and strong coupling strengths at the Z pole. Most of these
parameters are also directly constrained by measurements included in the fit.

We have put emphasis on the completeness of the information given in this paper, with a large part
of the relevant formulae quoted in the main text and the appendices. Readers seeking for a more
pedagogical introduction are referred to the many excellent reviews on this and related topics (see,
e.g., Refs. [16, 45–47]). Section 4.1.1 provides a formal introduction of tree-level relations, and
quantum loop corrections sensitive to particles heavier than the Z. The observables used in the
global fit and their SM predictions are summarised in Section 4.1.2 and Section 4.1.3 respectively.
Theoretical uncertainties are discussed in Section 4.1.4.

4.1.1 Standard Model Tree-Level Relations and Radiative Co rrections

The tree-level vector and axial-vector couplings occurring in the Z boson to fermion-antifermion

vertex ifγµ(g
(0)
V ,f + g

(0)
V ,fγ5)fZµ are given by13

g
(0)
V ,f ≡ g

(0)
L,f + g

(0)
R,f = If

3 − 2Qf sin2 θW , (8)

g
(0)
A,f ≡ g

(0)
L,f − g

(0)
R,f = If

3 , (9)

where g
(0)
L(R),f are the left-handed (right-handed) fermion couplings, and Qf and If

3 are respectively
the charge and the third component of the weak isospin. In the (minimal) SM, containing only
one Higgs doublet, the weak mixing angle is defined by

sin2 θW = 1 − M2
W

M2
Z

. (10)

Electroweak radiative corrections modify these relations, leading to an effective weak mixing angle
and effective couplings

sin2θf
eff = κf

Z sin2 θW , (11)

gV ,f =

√

ρf
Z

(

If
3 − 2Qf sin2θf

eff

)

, (12)

gA,f =

√

ρf
ZI

f
3 , (13)

13Throughout this paper the superscript ’(0)’ is used to label tree-level quantities.
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where κf
Z and ρf

Z are form factors absorbing the radiative corrections. They are given in Eqs. (58)
and (59) of Appendix A.3. Due to non-zero absorptive parts in the self-energy and vertex correction
diagrams, the effective couplings and the form factors are complex quantities. The observable
effective mixing angle is given by the real parts of the couplings

Re(gV ,f )

Re(gA,f )
= 1 − 4|Qf | sin2θf

eff . (14)

Electroweak unification leads to a relation between weak and electromagnetic couplings, which at
tree level reads

GF =
πα

√
2(M

(0)
W )2

(

1 − (M
(0)
W )2

M2
Z

) . (15)

Radiative corrections are parametrised by multiplying the r.h.s. of Eq. (15) with the form factor
(1 − ∆r)−1. Using Eq. (10) and resolving for MW gives

M2
W =

M2
Z

2



1 +

√

1 −
√

8πα(1 − ∆r)

GFM2
Z



 . (16)

The form factors ρf
Z , κf

Z and ∆r depend nearly quadratically on mt and logarithmically on MH .
They have been calculated including two-loop corrections in the on-shell renormalisation scheme
(OMS) [48–50], except for b quarks where an approximate expression, including the full one-loop
correction and the known leading two-loop terms ∝ m4

t , is provided. The relevant formulae used in
this analysis are summarised in Appendix A.3. Since ∆r also depends on MW an iterative method
is needed to solve Eq. (16). The calculation of MW has been performed including the complete one-
loop correction, two-loop and three-loop QCD corrections of order O(ααS) and O(αα2

s), fermionic
and bosonic two-loop electroweak corrections of order O(α2), and the leading O(G2

FαSm
4
t ) and

O(G3
Fm

6
t ) three-loop contributions [11–13]. Four-loop QCD corrections have been calculated for

the ρ-parameter [51–53]. Since they affect the W mass by 2 MeV only, they have been neglected
in this work.

For the SM prediction of MW we use the parametrised formula [11]

MW = M ini
W − c1 dH − c2 dH2 + c3 dH4 + c4(dh − 1) − c5 dα+ c6 dt

− c7 dt2 − c8 dHdt + c9 dhdt − c10 dαS + c11 dZ , (17)

with

dH = ln

(

MH

100 GeV

)

, dh =

(

MH

100 GeV

)2

, dt =
( mt

174.3 GeV

)2
− 1 ,

dZ =
MZ

91.1875 GeV
− 1 , dα =

∆α(M2
Z)

0.05907
− 1 , dαS =

αS(M2
Z)

0.119
− 1 ,

where here and below all masses are in units of GeV, and where mt is the top-quark pole mass, MZ

and MH are the Z and Higgs boson masses, ∆α(M2
Z) is the sum of the leptonic and hadronic contri-

butions to the running QED coupling strength at M2
Z (cf. Appendix A.1), αS(M2

Z) is the running
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strong coupling constant at M2
Z (cf. Appendix A.2.1), and where the coefficients M ini

W , c1, . . . , c11
read

M ini
W = 80.3799 GeV, c1 = 0.05429 GeV, c2 = 0.008939 GeV,

c3 = 0.0000890 GeV, c4 = 0.000161 GeV, c5 = 1.070 GeV,

c6 = 0.5256 GeV, c7 = 0.0678 GeV, c8 = 0.00179 GeV,

c9 = 0.0000659 GeV, c10 = 0.0737 GeV, c11 = 114.9 GeV.

The parametrisation reproduces the full result for MW to better than 0.5 MeV over the range
10 GeV < MH < 1 TeV, if all parameters are within their expected (year 2003) 2σ intervals [11].

The effective weak mixing angle of charged and neutral leptons and light quarks has been com-
puted [12, 13] with the full electroweak and QCD one-loop and two-loop corrections, and the leading
three-loop corrections of orders O(G2

FαSm
4
t ) and O(G3

Fm
6
t ). The corresponding parametrisation

formula for charged leptons reads

sin2θℓ
eff = s0 + d1LH + d2L

2
H + d3L

4
H + d4(∆

2
H − 1) + d5∆α

+ d6∆t + d7∆
2
t + d8∆t(∆H − 1) + d9∆αS

+ d10∆Z , (18)

with

LH = ln

(

MH

100 GeV

)

, ∆H =
MH

100 GeV
, ∆α =

∆α(MZ)

0.05907
− 1 ,

∆t =
( mt

178.0 GeV

)2
− 1 , ∆αS

=
αS(M2

Z)

0.117
− 1 , ∆Z =

MZ

91.1876 GeV
− 1 ,

and the numerical values

s0 = 0.2312527, d1 = 4.729 · 10−4, d2 = 2.07 · 10−5,

d3 = 3.85 · 10−6, d4 = −1.85 · 10−6, d5 = 0.0207,

d6 = −0.002851, d7 = 1.82 · 10−4, d8 = −9.74 · 10−6,

d9 = 3.98 · 10−4, d10 = −0.655.

Equation (18) reproduces the full expression with maximum (average) deviation of 4.5 · 10−6

(1.2 · 10−6), if the Higgs-boson mass lies within 10 GeV < MH < 1 TeV, and if all parameters are
within their expected (year 2003) 2σ intervals [13].

The prediction of the effective weak mixing angle for the remaining light fermions (u, d, s, c quarks
and neutrinos) differs slightly from the prediction for charged leptons. Again a parametrisation
formula is provided [13], which is used in this analysis. For bottom quarks, new diagrams with
additional top-quark propagators enter the calculation and the b quark specific two-loop vertex
corrections do not exist.14 Instead we use Eq. (11) and the calculation of κb

Z (cf. Appendix A.3),
which includes the full one-loop correction and the known leading two-loop terms ∝ m4

t .

14After completion of this work the two-loop electroweak fermionic corrections to sin2θb
eff have been published[54].

They will be included in future updates of this analysis.
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4.1.2 Summary of Electroweak Observables

The following classes of observables are used in the fit.

Z resonance parameters: Z mass and width, and total e+e− → Z → hadron production
cross section (i.e., corrected for photon exchange contributions).

Partial Z cross sections: Ratios of leptonic to hadronic, and heavy-flavour hadronic to total
hadronic cross sections.

Neutral current couplings: Effective weak mixing angle, and left-right and forward-backward
asymmetries for universal leptons and heavy quarks.15

W boson parameters: W mass and width.

Higgs boson parameters: Higgs mass.

Additional input parameters: Heavy-flavour (c, b, t) quark masses (masses of lighter quarks and
leptons are fixed to their world averages), QED and QCD coupling
strengths at the Z-mass scale.

4.1.3 Theoretical Predictions of Electroweak Observables

Parity violation in neutral current reactions e+e− → ff resulting from the different left and right-
handed Z-boson couplings to fermions leads to fermion polarisation in the initial and final states
and thus to observable asymmetry effects. They can be conveniently expressed by the asymmetry
parameters

Af =
g2

L,f − g2
R,f

g2
L,f + g2

R,f

= 2
gV ,f/gA,f

1 + (gV ,f/gA,f )2
, (19)

where only the real parts of the couplings are considered as the asymmetries refer to pure Z
exchange. For instance, the forward-backward asymmetry A0,f

FB = (σ0
F,f − σ0

B,f )/(σ0
F,f + σ0

B,f ),
where the superscript ’0’ indicates that the observed values have been corrected for radiative
effects and photon exchange, can be determined from the asymmetry parameters (19) as follows

A0,f
FB =

3

4
AeAf . (20)

The Af are obtained from Eqs. (19) and (14) using sin2θf
eff from the procedure described in the

previous section.

Unlike the asymmetry parameters, the partial decay width Γf = Γ(Z → ff) is defined inclusively,
i.e., it contains all real and virtual corrections such that the imaginary parts of the couplings must
be taken into account. One thus has

Γf = 4Nf
C Γ0|ρf

Z |(I
f
3 )2

(∣

∣

∣

∣

∣

g2
V ,f

g2
A,f

∣

∣

∣

∣

∣

Rf
V (M2

Z) +Rf
A(M2

Z)

)

, (21)

15Left-right and forward-backward asymmetries have been also measured for strange quarks, with however insuf-
ficient precision to be included here.
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where N
ℓ(q)
C = 1(3) is the colour factor, Rf

V (M2
Z) and Rf

A(M2
Z) are radiator functions (defined

further below), and Γ0 is given by

Γ0 =
GFM

3
Z

24
√

2π
. (22)

The sin2θf
eff term entering through the ratio of coupling constants in Eq. (21) is modified by

the real-valued contribution I2
f resulting from the product of two imaginary parts of polarisation

operators [6]

sin2θf
eff → sin2θf

eff + I2
f , (23)

where

I2
f = α2(M2

Z)
35

18

(

1 − 8

3
Re(κf

Z) sin2 θW

)

. (24)

The full expression for the partial leptonic width reads [6]

Γℓ = Γ0

∣

∣ρℓ
Z

∣

∣

√

1 − 4m2
ℓ

M2
Z

[

(

1 +
2m2

ℓ

M2
Z

)

(

∣

∣

∣

∣

gV ,ℓ

gA,ℓ

∣

∣

∣

∣

2

+ 1

)

− 6m2
ℓ

M2
Z

]

·
(

1 +
3

4

α(M2
Z)

π
Q2

ℓ

)

, (25)

which includes effects from QED final state radiation. The partial widths for qq final states, Γq,
involve radiator functions that describe the final state QED and QCD vector and axial-vector cor-
rections for quarkonic decay modes. Furthermore, they contain QED⊗QCD and finite quark-mass
corrections. For the massless perturbative QCD correction, the most recent fourth-order result is
used [17]. Explicit formulae for the radiator functions are given in Appendix A.4. The influence
of non-factorisable EW ⊗ QCD corrections, ∆EW/QCD, that must be added to the width (21) for
quark final states is small (less than 10−3). They are assumed to be constant [55, 56], and take
the values

∆EW/QCD =















−0.113 MeV for u and c quarks,

−0.160 MeV for d and s quarks,

−0.040 MeV for the b quark.

(26)

The total Z width for three light neutrino generations obeys the sum

ΓZ = Γe + Γµ + Γτ + 3Γν + Γhad , (27)

where Γhad = Γu + Γd + Γc + Γs + Γb is the total hadronic Z width. From these the improved
tree-level total hadronic cross-section at the Z pole is given by

σ0
had =

12π

M2
Z

ΓeΓhad

Γ2
Z

. (28)

To reduce systematic uncertainties, the LEP experiments have determined the partial-Z-width
ratios R0

ℓ = Γhad/Γℓ and R0
q = Γq/Γhad, which are used in the fit.

The computation of the W boson width is similar to that of the Z boson, but it is only known to
one electroweak loop. The expression adopted in this analysis can be found in [57]. An improved,
gauge-independent formulation exists [58], but the difference with respect to the gauge-dependent
result is small (0.01%) compared to the current experimental error (3%).
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The value of the QED coupling constant at the Z pole is obtained using three-loop results for
the leptonic contribution, and the most recent evaluation of the hadronic vacuum polarisation
contribution for the five quarks lighter than MZ . Perturbative QCD is used for the small top-
quark contribution. The relevant formulae and references are given in Appendix A.1.

The evaluation of the running QCD coupling constant uses the known four-loop expansion of
the QCD β-function, including three-loop matching at the quark-flavour thresholds (cf. Ap-
pendix A.2.1). The running of the b and c quark masses is obtained from the corresponding
four-loop γ-function (cf. Appendix A.2.2). All running QCD quantities are evaluated in the
modified minimal subtraction renormalisation scheme (MS).

4.1.4 Theoretical Uncertainties

Within the Rfit scheme, theoretical errors based on educated guesswork are introduced via bound
theoretical scale parameters in the fit, thus providing a consistent numerical treatment. For exam-
ple, the effect from a truncated perturbative series is included by adding a deviation parameter, δth,
describing the varying perturbative prediction as a function of the contribution from the unknown
terms. Leaving the deviation parameter floating within estimated ranges allows the fit to adjust
it when scanning a parameter, such that the likelihood estimator is increased (thus improving the
fit compatibility).

The uncertainties in the form factors ρf
Z and κf

Z are estimated using different renormalisation
schemes, and the maximum variations found are assigned as theoretical errors. A detailed nu-
merical study has been performed in [59] leading to the following real-valued relative theoretical
errors

δthρ
f
Z/|1 − ρf

Z | ≈ 5 · 10−3 , (29)

δthκ
f
Z/|1 − κf

Z | ≈ 5 · 10−4 , (30)

which vary somewhat depending on the fermion flavour. The corresponding absolute theoretical
errors are around 2 · 10−5 for both δthρ

f
Z and δthκ

f
Z and are treated as fully correlated in the fit.

These errors, albeit included, have a negligible effect on the fit results.

More important are theoretical uncertainties affecting directly the MW and sin2θℓ
eff predictions.

They arise from three dominant sources of unknown higher-order corrections [11, 13]: (i) O(α2αS)
terms beyond the known contribution of O(G2

FαSm
4
t ), (ii) O(α3) electroweak three-loop correc-

tions, and (iii) O(α3
S) QCD terms. The quadratic sums of the above corrections amount to

δthMW ≈ 4 MeV , (31)

δth sin2θℓ
eff ≈ 4.7 · 10−5 , (32)

which are the theoretical ranges used in the fit. The empirical W mass parametrisation (17) is
only valid for a relatively light Higgs boson, MH . 300 GeV, for which the error introduced by
the approximation is expected to be negligible [11]. For larger Higgs masses, the total theoretical
error used is linearly increased up to δthMW = 6 MeV at MH = 1 TeV, which is a coarse estimate
along the theoretical uncertainties given in [11].
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Theoretical uncertainties affecting the top mass from non-perturbative colour-reconnection effects
in the fragmentation process [60, 61] and due to ambiguities in the top-mass definition [62, 63]
have been recently estimated to approximately 0.5 GeV each. The systematic error due to shower
effects may be larger [60]. Especially the colour-reconnection and shower uncertainties, estimated
by means of a toy model, need to be verified with experimental data and should be included in
the top-mass result published by the experiments. Both errors have been neglected for the present
analysis.

Other theoretical uncertainties are introduced via the evolution of the QED and QCD couplings
and quark masses, and are discussed in Appendices A.1 and A.2.

4.2 Global Standard Model Analysis

The last two decades have been proliferous in providing precision experimental data at the elec-
troweak scale. Driven by measurements at LEP, SLC and the Tevatron, and significant theoretical
progress, many phenomenological analyses have been performed, of which we re-examine below the
global SM fit. The primary goal of this re-analysis is (i) to validate the new fitting toolkit Gfitter
and its SM library with respect to earlier results [5–8], (ii) to include the results from the direct
Higgs searches at LEP and the Tevatron in the global fit, (iii) to revisit the impact of theoretical
uncertainties on the results, and (iv) to perform more complete statistical tests.

4.2.1 Floating Fit Parameters

The SM parameters relevant for the global electroweak analysis are the coupling constants of the
electromagnetic (α), weak (GF ) and strong interactions (αS), and the masses of the elementary
bosons (Mγ , MZ , MW , MH) and fermions (mf with f = e, µ, τ, νe, νµ, ντ , u, c, t, d, s, b,), where
neutrinos are taken to be massless. The fit simplifies with electroweak unification resulting in a
massless photon and a relation between the W mass and the electromagnetic coupling α, the Z
mass, and the weak coupling GF , according to Eq. (15). Further simplification of the fit arises
from fixing parameters with insignificant uncertainties compared to the sensitivity of the fit.

• Compared to MZ the masses of leptons and light quarks are small and/or sufficiently well
known so that their uncertainties are negligible in the fit. They are fixed to their world
average values [64]. Only the masses of the heavy quarks,16 mc, mb and mt, are floating in
the fit while being constrained to their experimental values. The top mass uncertainty has
the strongest impact on the fit.

• The weak coupling constant GF has been accurately determined through the measurement
of the µ lifetime, giving GF = 1.16637(1) · 10−5 GeV−2 [64]. The parameter is fixed in the
fit.

• The leptonic and top-quark vacuum polarisation contributions to the running of the electro-
magnetic coupling are precisely known or small. Only the hadronic contribution for the five

16In the analysis and throughout this paper we use the MS renormalised masses of the c and b quarks, mc(mc)
and mb(mb), at their proper scales. In the following they are denoted with mc and mb respectively.
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lighter quarks, ∆α
(5)
had(M

2
Z), adds significant uncertainties and replaces the electromagnetic

coupling α(M2
Z) as floating parameter in the fit (cf. Appendix A.1).

With the Rfit treatment of theoretical uncertainties four deviation parameters are introduced in
the fit. They vary freely within their corresponding error ranges (cf. Section 4.1.4). The theoretical
uncertainties in the predictions of MW and sin2θℓ

eff are parametrised by δthMW and δth sin2θℓ
eff .

The form factors κf
Z and ρf

Z have theoretical errors δthκ
f
Z and δthρ

f
Z , which are treated as fully

correlated in the fit.

In summary, the floating parameters in the global electroweak fit are the coupling parameters

∆α
(5)
had(M2

Z) and αS(M2
Z), the masses MZ , mc, mb, mt and MH , and four theoretical error param-

eters.

4.2.2 Input Data

A summary of the input data used in the fit is given in the second column of Table 1, and discussed
below.

• The mass and width of the Z boson, the hadronic pole cross section σ0
had, the partial widths

ratio R0
ℓ , and the forward-backward asymmetries for leptons A0,ℓ

FB, have been determined by
fits to the Z lineshape measured precisely at LEP (see [46] and references therein). Measure-
ments of the τ polarisation at LEP [46] and the left-right asymmetry at SLC [46] have been
used to determine the lepton asymmetry parameter Aℓ. The corresponding c and b-quark

asymmetry parameters Ac(b), the forward-backward asymmetries A
0,c(b)
FB , and the widths ra-

tios R0
c and R0

b , have been measured at LEP and SLC [46]. In addition, the forward-backward
charge asymmetry (QFB) measurement in inclusive hadronic events at LEP was used to di-
rectly determine the effective leptonic weak mixing angle sin2θℓ

eff [46]. The log-likelihood
function used in the fit includes the linear correlation coefficients among the Z-lineshape and
heavy-flavour observables given in Table 2.

• For the running quark masses mc and mb, the world average values derived in [64] are used.
The combined top-quark mass is taken from the Tevatron Electroweak Working Group [65].

• For the five-quark hadronic contribution to α(M2
Z), the most recent phenomenological result

is used [66] (see also the discussion in [67]). Its dependence on αS(M2
Z) requires a proper

rescaling in the fit (cf. Section 3).17

• The LEP and Tevatron results for the W mass and width are respectively MW = (80.378 ±
0.033) GeV, ΓW = (2.196±0.083) GeV [68], and MW = (80.432±0.039) GeV, ΓW = (2.056±
0.062) GeV [69, 70]. Their weighted averages [69], quoted without the correlation coefficient

17 In [66] the light-quark hadronic contribution to α(M2
Z) was found to be ∆α

(5)
had(M2

Z) = 0.02768 ± 0.00022 ±
0.00002, where the second error singles out the uncertainty from the strong coupling constant for which αS(M2

Z) =

0.118 ± 0.003 was used. Linear rescaling leads to the modified central value ∆α
(5)
had(M2

Z) = 0.02768 + 0.00002 ·
(αS(M2

Z)fit − 0.118)/0.003. Since αS(M2
Z) is a free fit parameter and has no uncertainty in a certain fit step the

error on ∆α
(5)
had(M2

Z) used in the log-likelihood function does no longer include the contribution from αS(M2
Z), but

the corresponding variation is included in the rescaling of the central value only.
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Free Results from global EW fits: Complete fit w/o
Parameter Input value

in fit Standard fit Complete fit exp. input in line

MZ [GeV] 91.1875± 0.0021 yes 91.1874± 0.0021 91.1877± 0.0021 91.2001+0.0174
−0.0178

ΓZ [GeV] 2.4952± 0.0023 – 2.4959± 0.0015 2.4955± 0.0015 2.4950± 0.0017

σ0
had [nb] 41.540± 0.037 – 41.477± 0.014 41.477± 0.014 41.468± 0.015

R0
ℓ 20.767± 0.025 – 20.743± 0.018 20.742± 0.018 20.717+0.029

−0.025

A0,ℓ
FB 0.0171± 0.0010 – 0.01638± 0.0002 0.01610± 0.9839 0.01616± 0.0002

Aℓ
(⋆) 0.1499± 0.0018 – 0.1478+0.0011

−0.0010 0.1471+0.0008
−0.0009 –

Ac 0.670± 0.027 – 0.6682+0.00046
−0.00045 0.6680+0.00032

−0.00046 0.6680+0.00032
−0.00047

Ab 0.923± 0.020 – 0.93470+0.00011
−0.00012 0.93464+0.00008

−0.00013 0.93464+0.00008
−0.00011

A0,c
FB 0.0707± 0.0035 – 0.0741± 0.0006 0.0737+0.0004

−0.0005 0.0737+0.0004
−0.0005

A0,b
FB 0.0992± 0.0016 – 0.1036± 0.0007 0.1031+0.0007

−0.0006 0.1036± 0.0005

R0
c 0.1721± 0.0030 – 0.17224± 0.00006 0.17224± 0.00006 0.17225± 0.00006

R0
b 0.21629± 0.00066 – 0.21581+0.00005

−0.00007 0.21580± 0.00006 0.21580± 0.00006

sin2θℓ
eff(QFB) 0.2324± 0.0012 – 0.23143± 0.00013 0.23151+0.00012

−0.00010 0.23149+0.00013
−0.00009

MH [GeV] (◦) Likelihood ratios yes 80
+30[+75]
−23[−41] 116.4

+18.3[+28.4]
− 1.3[− 2.2] 80

+30[+75]
−23[−41]

MW [GeV] 80.399± 0.025 – 80.382+0.014
−0.016 80.364± 0.010 80.359+0.010

−0.021

ΓW [GeV] 2.098± 0.048 – 2.092+0.001
−0.002 2.091 ± 0.001 2.091+0.001

−0.002

mc [GeV] 1.25 ± 0.09 yes 1.25 ± 0.09 1.25 ± 0.09 –

mb [GeV] 4.20 ± 0.07 yes 4.20 ± 0.07 4.20 ± 0.07 –

mt [GeV] 172.4 ± 1.2 yes 172.5± 1.2 172.9± 1.2 178.2+9.8
−4.2

∆α
(5)
had(M2

Z) (†△) 2768 ± 22 yes 2772± 22 2767+19
−24 2722+62

−53

αs(M
2
Z) – yes 0.1192+0.0028

−0.0027 0.1193+0.0028
−0.0027 0.1193+0.0028

−0.0027

δthMW [MeV] [−4, 4]theo yes 4 4 –

δth sin2θℓ
eff

(†) [−4.7, 4.7]theo yes 4.7 −1.3 –

δthρ
f
Z

(†) [−2, 2]theo yes 2 2 –

δthκ
f
Z

(†) [−2, 2]theo yes 2 2 –

(⋆)Average of LEP (Aℓ = 0.1465 ± 0.0033) and SLD (Aℓ = 0.1513 ± 0.0021) measurements. The complete fit w/o

the LEP (SLD) measurement gives Aℓ = 0.1472+0.0008
−0.0011 (Aℓ = 0.1463 ± 0.0008 ). (◦)In brackets the 2σ errors. (†)In

units of 10−5. (△)Rescaled due to αs dependency.

Table 1: Input values and fit results for parameters of the global electroweak fit. The first and second
columns list respectively the observables/parameters used in the fit, and their experimental values or phe-
nomenological estimates (see text for references). The subscript “theo” labels theoretical error ranges. The
third column indicates whether a parameter is floating in the fit. The fourth (fifth) column quotes the
results of the standard (complete) fit not including (including) the constraints from the direct Higgs searches
at LEP and Tevatron in the fit. In case of floating parameters the fit results are directly given, while for
observables, the central values and errors are obtained by individual profile likelihood scans. The errors are
derived from the ∆χ2 profile using a Gaussian approximation. The last column gives the fit results for each
parameter without using the corresponding experimental constraint in the fit (indirect determination).
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MZ ΓZ σ0
had R0

ℓ A0,ℓ
FB

MZ 1 −0.02 −0.05 0.03 0.06

ΓZ 1 −0.30 0.00 0.00

σ0
had 1 0.18 0.01

R0
ℓ 1 −0.06

A0,ℓ
FB 1

A0,c
FB A0,b

FB Ac Ab R0
c R0

b

A0,c
FB 1 0.15 0.04 −0.02 −0.06 0.07

A0,b
FB 1 0.01 0.06 0.04 −0.10

Ac 1 0.11 −0.06 0.04

Ab 1 0.04 −0.08

R0
c 1 −0.18

Table 2: Correlation matrices for observables determined by the Z lineshape fit (left), and by heavy
flavour analyses at the Z pole (right) [46].

between mass and width, are used in the fit (cf. Table 1). Since a modest correlation has
insignificant impact on the fit results18 it is ignored in the following.

• The direct searches for the SM Higgs boson at LEP [71] and at the Tevatron [72, 73] use as
test statistics the negative logarithm of a likelihood ratio, −2 lnQ, of the SM Higgs signal
plus background (s + b) to the background-only (b) hypotheses. This choice guarantees
−2 lnQ = 0 when there is no experimental sensitivity to a Higgs signal. The corresponding
one-sided confidence levels CLs+b and CLb describe the probabilities of upward fluctuations
of the test statistics in presence and absence of a signal (1 − CLb is thus the probability of
a false discovery). They are derived using toy MC experiments.19

In the modified frequentist approach [74–76], a hypothesis is considered excluded at 95% CL
if the ratio CLs = CLs+b/CLb is equal or lower than 0.05. The corresponding exclusion
confidence levels defined by Eq. (6) are given by 1−CLs and 1−CLs+b, respectively. The use
of CLs leads to a more conservative limit [71] than the (usual) approach based on CLs+b.

20

Using this method the combination of LEP searches [71] has set the lower limit MH >
114.4 GeV at 95% CL. For the Tevatron combination [72, 73], ratios of the 95% CL cross
section limits to the SM Higgs boson production cross section as a function of the Higgs
mass are derived, exhibiting a minimum of 1.0 at MH = 170 GeV. The LEP Higgs Working
Group provided the observed and expected −2 lnQ curves for the s+b and b hypotheses, and
the corresponding values of the aforementioned confidence levels up to MH = 120 GeV. The
Tevatron New Phenomena and Higgs Working Group (TEVNPH) made the same information
available for 10 discrete data points in the mass range 155 GeV ≤ MH ≤ 200 GeV based on
preliminary searches using data samples of up to 3 fb−1 integrated luminosity [73]. For the
mass range 110 GeV ≤ MH ≤ 200 GeV, Tevatron results based on 2.4 fb−1 are provided for

18A correlation of 0.2 between W mass and width was reported for the Tevatron Run-I results [46]. Assuming the
same correlation for the LEP and Tevatron combined values of W mass and width leads to an increase of the χ2

min

of the standard fit (complete fit) by 0.09 (0.23). In the complete fit the central value of the Higgs mass estimate is
unchanged (only the +1σ bound slightly reduces by 0.6 GeV), whereas a downward shift of 1.1 GeV of the central
value is observed for the standard fit.

19 For a counting experiment with N observed events and Ns (Nb ≫ Ns) expected signal (background) events,
one has − lnQ = Ns − N ln(Ns/Nb + 1) ≃ Ns(1 − N/Nb), leading to small − lnQ values for large N (signal-like)
and large − lnQ values for small N (background-like). For sufficiently large Ns + Nb, the test statistics − lnQ has a
symmetric Gaussian probability density function.

20Assuming a simple counting experiment with a true number of 100 background and 30 signal events, the one-
sided probability CLs+b to fluctuate to equal or less than 111 observed event is 0.05. The corresponding value
CLs = 0.05 (which does not represent a probability) is however already reached between 105 and 106 events.
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−2 lnQ [72], however not for the corresponding confidence levels.

To include the direct Higgs searches in the complete SM fit we interpret the −2 lnQ results
for a given Higgs mass as measurements and derive a log-likelihood estimator quantifying
the deviation of the data from the corresponding SM Higgs expectation. For this purpose we
transform the one-sided CLs+b into two-sided confidence levels21 using CL2-sided

s+b = 2CLs+b

for CLs+b ≤ 0.5 and CL2-sided
s+b = 2(1 − CLs+b) for CLs+b > 0.5. The contribution to the

χ2 estimator of the fit is then obtained via δχ2 = 2 · [Erf−1(1 − CL2-sided
s+b )]2, where Erf−1 is

the inverse error function,22 and where the underlying probability density function has been
assumed to be symmetric (cf. Footnote 19 on page 21).

Where available, we employ the CLs+b values determined by the experiments. For the
Tevatron results in the mass range 110 GeV ≤MH ≤ 150 GeV, where this information is not
provided, we estimate CLs+b from the −2 lnQ values as measured in the data and expected
for the s + b hypothesis and the errors derived by the experiments for the b hypothesis.
We tested this approximation in the mass regions where CLs+b has been given and found
a systematic overestimation of the contribution to our χ2 test statistics of about 30%, with
small dependence on the Higgs mass. We thus rescale the test statistics in the mass region
where the CLs+b approximation is used by the fudge factor 0.77.23

Our method follows the spirit of a global SM fit and takes advantage from downward fluc-
tuations of the background in the sensitive region to obtain a more restrictive limit on the
SM Higgs production as is obtained with the modified frequentist approach. The resulting
χ2 curves versus MH are shown in Fig. 1. The low-mass exclusion is dominated by the LEP
searches, while the information above 120 GeV is contributed by the Tevatron experiments.
Following the original figure, the Tevatron measurements have been interpolated by straight
lines for the purpose of presentation and in the fit which deals with continuous MH values.

Constraints on the weak mixing angle can also be derived from atomic parity violation measure-
ments in caesium, thallium, lead and bismuth. For heavy atoms one determines the weak charge,
QW ≈ Z(1−4 sin2 θW )−N . Because the present experimental accuracy of 0.6% (3.2%) forQW from
Cs [77, 78] (Tl [79, 80]) is still an order of magnitude away from a competitive constraint on sin2θW ,
we do not include it into the fit. (Including it would reduce the error on the fitted Higgs mass
by 0.2 GeV). Due to the same reason we do not include the parity violation left-right asymmetry
measurement using fixed target polarised Møller scattering at low Q2 = 0.026 GeV2 [81].24

21The experiments integrate only the tail towards larger −2 lnQ values of the probability density function to
compute CLs+b (corresponding to a counting experiment with to too few observed events with respect to the s + b
hypothesis), which is later used to derive CLs in the modified frequentist approach. They thus quantify Higgs-
like (not necessarily SM Higgs) enhancements in the data. In the global SM fit, however, one is interested in the
compatibility between the SM hypothesis and the experimental data as a whole, and must hence account for any
deviation, including the tail towards smaller −2 lnQ values (corresponding to a counting experiment with too many
Higgs candidates with respect to the s + b hypothesis where, s labels the SM Higgs signal).

22The use of Erf−1 provides a consistent error interpretation when (re)translating the χ2 estimator into a confidence
level via CL = 1 − Prob(χ2, 1) = Erf(

p

χ2/2).
23The estimated CLs+b values will be replaced by the experimental values once provided by the TEVNPH Working

Group.
24The main success of this measurement is to have established the running of the weak coupling strength at the

6.4σ level.
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Figure 1: The contribution to the χ2 estimator versus MH derived from the experimental informa-
tion on direct Higgs boson searches made available by the LEP Higgs Boson and the Tevatron New
Phenomena and Higgs Boson Working Groups [71–73]. The solid dots indicate the Tevatron mea-
surements. Following the original figure they have been interpolated by straight lines for the purpose
of presentation and in the fit. See text for a description of the method applied.

The NuTeV Collaboration measured ratios of neutral and charged current cross sections in neutrino-
nucleon scattering at an average Q2 ≃ 20 GeV2 using both muon neutrino and muon anti-neutrino
beams [82]. The results derived for the effective weak couplings are not included in this analysis
because of unclear theoretical uncertainties from QCD effects such as next-to-leading order correc-
tions and nuclear effects of the bound nucleon parton distribution functions [83] (for reviews see,
e.g., Refs. [84, 85]).

Although a large number of precision results for αS at various scales are available, including recent
3NLO determinations at the τ -mass scale [17, 18, 86, 87], we do not include these in the fit, because
– owing to the weak correlation between αS(M2

Z) and MH (cf. Table 3) – the gain in precision
on the latter quantity is insignificant.25 Leaving αS(M2

Z) free provides thus an independent and
theoretically robust determination of the strong coupling at the Z-mass scale.

The anomaly of the magnetic moment of the muon (g− 2)µ has been measured very accurately to
a relative precision of 5 · 10−7. Because of the small muon mass the interesting weak corrections
only set in at a similar size, and this observable is thus not included in the analysis. However, the
sensitivity of (g − 2)µ to physics beyond the SM (expected to couple to the lepton mass-squared)
is similar to that of the other observables.
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Figure 2: Comparing fit results with direct measurements: pull values for the complete fit (left), and results
for MH from the standard fit excluding the respective measurements from the fit (right).
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Figure 3: Determination of MH excluding all the sensitive observables from the standard fit, except for the
one given. The results shown are not independent. The information in this figure is complementary to the
one in the right hand plot of Fig. 2.
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4.2.3 Fit Results

All fits discussed in this section minimise the test statistics χ2(ymod) defined in Eq. (1). The
χ2 function accounts for the deviations between the observables given in Table 1 and their SM
predictions (including correlations). Throughout this section we will discuss the results of two fits:

• The standard (“blue-band”) fit, which includes all the observables listed in Table 1, except
for results from the direct Higgs searches.

• The complete fit includes also the results from the direct searches for the Higgs boson at LEP
and the Tevatron using the method described in Section 4.2.2.

The standard (complete) fit converges at the global minimum value χ2
min = 16.4 (χ2

min = 18.0) for
13 (14) degrees of freedom, giving the naive p-value Prob(χ2

min, 13) = 0.23 (Prob(χ2
min, 14) = 0.21).

See Section 4.2.5 for a more accurate toy-MC-based determination of the p-value. The results for
the parameters and observables of the two fits are given in columns four and five of Table 1 together
with their one standard deviation (σ) intervals derived from the ∆χ2 estimator using a Gaussian
approximation.26 We discuss in the following some of the outstanding findings and features of the
fits.

Direct and Indirect Determination of Observables, Pulls

To test the sensitivity of the SM fit to the various input observables, we consecutively disabled
each of the observables in the fit and performed a log-likelihood scan of the disabled observable.
The corresponding results and the 1σ intervals are listed in the last column of Table 1. Comparing
the errors obtained in these indirect determinations with the available measurements reveals their
importance for the fit. For example, the measurement of MZ is a crucial ingredient, albeit the
available accuracy is not required. The indirect and direct determinations of MW are of similar
precision, such that an improved measurement would immediately impact the fit. The same is
true for the asymmetry Aℓ. On the other hand, due to an insufficient precision the heavy quark
asymmetries Ac and Ab do not significantly impact the fit (the fit outperforms the measurements
by almost two orders of magnitude in precision).

For further illustration, the pull values obtained from the difference between the fit result and the
measurement divided by the total experimental error (not including the fit error) are shown for
the complete fit in the left hand plot of Fig. 2 (the standard fit pulls are very similar). They reflect
the known tension between the leptonic and hadronic asymmetries, though it is noticeable that no
single pull value exceeds 3σ. The pulls of the c and b quark masses are very small indicating that
variations of these masses within their respective error estimates has negligible impact on the fit.

The same observation applies to MZ and ∆α
(5)
had(M2

Z) (and to a lesser extent even to mt). Thus,
without significant impact on the goodness-of-fit fit these parameters could have been fixed.27

25Including the constraint αS(M2
Z) = 0.1212±0.0011 [18] into the fit moves the central value of MH by +0.6 MeV,

and provides no reduction in the error.
26We have verified the Gaussian properties of the fit by sampling toy MC experiments. The results are discussed

in Section 4.2.4. In the following, unless otherwise stated, confidence levels and error ranges are derived using the
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Parameter lnMH ∆α
(5)
had(M

2
Z) MZ αS(M2

Z) mt mc mb

lnMH 1 −0.395 0.113 0.041 0.309 −0.001 −0.006

∆α
(5)
had(M2

Z) 1 −0.006 0.101 −0.007 0.001 0.003

MZ 1 −0.019 −0.015 −0.000 0.000

αS(M2
Z) 1 0.021 0.011 0.043

mt 1 0.000 −0.003

mc 1 0.000

Table 3: Correlation coefficients between the free fit parameters in the standard fit. The correlations with
and between the varying theoretical error parameters δth are negligible in all cases. The correlation between
MH and the input parameter MW amounts to −0.49.

Correlations

The correlation coefficients between the fit parameters of the standard fit are given in Table 3.

Significant are the correlations of −0.40 (+0.31) between lnMH and ∆α
(5)
had(M2

Z) (mt). An ex-
cellent precision of these two latter quantities is hence of primary importance for the Higgs-mass

constraint. The correlation between ∆α
(5)
had(M

2
Z) and αS(M2

Z) is due to the dependence of the
hadronic vacuum polarisation contribution on the strong coupling that is known to the fit (cf.
comment in Footnote 17 on page 19). The correlation coefficients obtained with the complete fit
are very similar.

Prediction of the Higgs Mass

The primary target of the electroweak fit is the prediction of the Higgs mass. The main results
are discussed in this paragraph, while more detailed aspects concerning the statistical properties
of the Higgs mass prediction are presented in Section 4.2.4. The complete fit represents the most
accurate estimation of MH considering all available data. We find

MH = 116.4+18.3
−1.3 GeV (33)

where the error accounts for both experimental and theoretical uncertainties. The theory param-
eters δth lead to an uncertainty of 8 GeV on MH , which does however not yet significantly impact
the error in (33) because of the spread among the input measurements that are sensitive to MH

(cf. Fig. 3).28 As seen in Fig. 12 of Section 4.3, once the measurements are (made) compati-
ble, the theoretical errors become visible by the uniform plateau around the ∆χ2 minimum, and

Gaussian approximation Prob(∆χ2, ndof).
27Fixing mc, mb, mt, MZ and ∆α

(5)
had(M2

Z) in the fit leads to only an insignificant increase of 0.03 in the overall
χ2

min, reflecting the little sensitivity of the fit to these parameters varying within the ranges of their (comparably

small) measurement errors. Of course, this does not prevent MH to strongly depend on the mt and ∆α
(5)
had(M2

Z)
input values.

28 This is a subtle feature of the Rfit treatment that we shall illustrate by mean of a simple example. Consider two
identical uncorrelated measurements of an observable A: 1± 1± 1 and 1± 1± 1, where the first errors are statistical
and the second theoretical. The weighted average of these measurements gives 〈A〉 = 1 ± 0.7 ± 1 = 1 ± 1.7, where
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also fully contribute to the fit error. The 2σ and 3σ allowed regions of MH , including all errors,
are [114, 145] GeV and [[113, 168] and [180, 225]] GeV, respectively. The result for the standard fit
without the direct Higgs searches is

MH = 80+30
−23 GeV . (34)

and the 2σ and 3σ intervals are respectively [39, 155] GeV and [26, 209] GeV. The 3σ upper limit is
tighter than for the complete fit because of the increase of the best fit value of MH in the complete
fit. The contributions from the various measurements to the central value and error of MH in the
standard fit are given in the right hand plot of Fig. 2, where all input measurements except for the
ones listed in a given line are used in the fit. It can be seen that, e.g., the measurements of mt

and MW are essential for an accurate estimation of the MH .

Figure 3 gives the complementary information. Among the four observables providing the strongest
constraint on MH , namely Aℓ(LEP), Aℓ(SLD), A0,b

FB and MW , only the one indicated in a given row
of the plot is included in the fit.29 The compatibility among these measurements (cf. Fig. 3) can be
estimated by (for example) repeating the global fit where the least compatible of the measurements

(here A0,b
FB) is removed, and by comparing the χ2

min estimator obtained in that fit to the one of the
full fit (here the standard fit). To assign a probability to the observation, the ∆χ2

min obtained this
way must be gauged with toy MC experiments to take into account the “look-elsewhere” effect
introduced by the explicit selection of the pull outlier. We find that in (1.4 ± 0.1)% (“2.5σ”) of
the toy experiments, the ∆χ2

min found exceeds the ∆χ2
min = 8.0 observed in current data.

In spite of the significant anticorrelation between MH and ∆α
(5)
had(M2

Z), the present uncertainty
in the latter quantity does not strongly impact the precision obtained for MH . Using the theory-

driven, more precise phenomenological value ∆α
(5)
had(M2

Z) = (277.0±1.6) ·10−4 [88], we find for the

standard fit MH = 80+28
−22 GeV. For comparison, with ∆α

(5)
had(M

2
Z) = (275.8 ± 3.5) · 10−4 [89], we

find MH = 83+34
−26 GeV, reproducing the result form the LEP Electroweak Working Group [39].

Prediction of the Top Mass

Figure 4 shows the ∆χ2 = χ2 −χ2
min profile as a function of mt obtained for the complete fit (solid

line) and the standard fit (dashed line), both excluding the direct measurement of the top-quark
mass from the fit. The one, two and three standard deviations from the minimum are indicated
by the crossings with the corresponding horizontal lines. From the complete fit we find

mt = 178.2+9.8
−4.2 GeV , (35)

which, albeit less precise, agrees with the experimental number indicated in Fig. 4 by the dot with
1σ error bars (cf. Table 1). The corresponding result for the standard fit is mt = 177.0+10.8

−8.0 GeV.

for the last term statistical and theoretical errors (likelihoods) have been combined. If the two measurements only
barely overlap within their theoretical errors, e.g., 1± 1± 1 and 3± 1± 1, their weighted average gives 〈A〉 = 2± 1.
Finally, if the two measurements are incompatible, e.g., 1 ± 1 ± 1 and 5 ± 1 ± 1, one finds 〈A〉 = 3 ± 0.7, i.e., the
theoretical errors are only used to increase the global likelihood value of the average, without impacting the error.
This latter situation occurs in the MH fits discussed here (although the theoretical errors in these fits are attached
to the theory predictions rather than to the measurements, which however does not alter the conclusion).

29The uncertainty in the ymod parameters that are correlated to MH (mainly ∆α
(5)
had(M2

Z) and mt) contributes to
the errors shown in Fig. 3, and generates a correlations between the four MH values found.
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Figure 4: ∆χ2 versus mt for the complete fit (solid line) and the standard fit (dashed), both excluding the
direct mt measurement which is indicated by the dot with 1σ error bars.

The insertion of the direct (LEP) Higgs searches leads to a more restrictive constraint towards
small top-quark masses. Because of the floating Higgs mass, and its positive correlation with mt,
the ∆χ2 profile of the standard fit exhibits an asymmetry (the constraint is less restrictive towards
larger mt values), which is opposite to the naive expectation from the dominantly quadratic mt

dependence of the loop corrections.

The Strong and Electromagnetic Couplings

From the complete fit we find for the strong coupling at the Z-mass scale

αS(M2
Z) = 0.1193+0.0028

−0.0027 ± 0.0001 , (36)

where the first error is experimental (including also the propagated uncertainties from the errors
in the c and b quark masses) and the second due to the truncation of the perturbative QCD series.
It includes variations of the renormalisation scale between 0.6MZ < µ < 1.3MZ [18], of massless
terms of order α5

S(MZ) and higher, and of quadratic massive terms of order and beyond α4
S(MZ)

(cf. Appendix A.4).30 Equation (36) represents the theoretically most robust determination of
αS to date. It is in excellent agreement with the recent 3NLO result from τ decays [17, 18],
αS(M2

Z) = 0.1212±0.0005±0.0008±0.0005, where the errors are experimental (first) and theoretical
(second and third), the latter error being further subdivided into contributions from the prediction

30The uncertainty related to the ambiguity between the use of fixed-order perturbation theory and the so-called
contour-improved perturbation theory to solve the contour integration of the complex Adler function has been found
to be very small (3 · 10−5) at the Z-mass scale [18].
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of the τ hadronic width (and spectral moments), and from the evolution to the Z-mass scale.31

Because of their precision, and the almost two orders of magnitude scale difference, the τ and
Z-scale measurements of αS represent the best current test of the asymptotic freedom property of
QCD.

Finally, the fit result for ∆α
(5)
had(M

2
Z) without using the constraint from the phenomenological

analysis in the fit (but including the constraint from the direct Higgs searches, cf. Table 1) precisely
establishes a running QED coupling,32 and can be translated into the determination α−1(MZ)|fit =
128.99±0.08. The result is in agreement with the phenomenological value α−1(MZ)|ph = 128.937±
0.030 [66].

4.2.4 Properties of the Higgs-Mass Constraint

We proceed with studying the statistical properties of the constraints (33) and (34). Figure 5
(top) shows the ∆χ2 profile versus MH obtained for the standard fit (outermost envelope). Also
shown is the 95% CL exclusion region obtained from the direct searches at LEP [71]. It exceeds
the best fit value of the standard fit. The Rfit approach provides an inclusive treatment of all
types of theoretical uncertainties considered in the fit. Fixing the δth parameters at zero in the fit
(which is equivalent to ignoring the corresponding theoretical uncertainties) results in a narrower
log-likelihood curve, with a +0.6 larger global χ2

min value, and a shift in MH at this minimum of
+2.4 GeV with respect to the result of the standard fit. The difference between the two envelopes
obtained with freely varying and fixed δth parameters is highlighted by the shaded band in Fig. 5
(top).

In previous electroweak fits [94] theoretical uncertainties were accounted for by independently shifting the
SM prediction of each affected observable by the size of the estimated theoretical uncertainty, and taking the
maximum observed cumulative deviation in MH as theoretical error. The error envelope obtained this way is
shown in Fig. 6. The dotted curve in the middle of the shaded band is the result of a fit ignoring all theoretical
uncertainties. The shaded band illustrates the maximum deviations of the ∆χ2 curves obtained with shifted
predictions. Including the systematic uncertainties in this way yields a 1σ interval of [55, 122] GeV and 95%
(99%) CL upper limits of 162 GeV (192 GeV) respectively. For comparison the solid curve in Fig. 6 shows
the result of the standard fit using the Rfit scheme.33 More detailed studies of systematic theoretical
uncertainties are reported in [59].

The ∆χ2 curve versus MH for the complete fit is shown in Fig. 5 (bottom). Again the shaded
band indicates the difference between the two envelopes obtained with freely varying and fixed
δth parameters, both normalised to the same χ2

min (from the fit with free δth parameters). The
inclusion of the direct Higgs search results from LEP leads to a strong rise of the ∆χ2 curve below

31Another analysis exploiting the τ hadronic width and its spectral functions, but using a different set of spectral
moments than [18], finds αS(M2

Z) = 0.1187± 0.0016 [87]. An analysis of the τ hadronic width relying on fixed-order
perturbation theory finds αS(M2

Z) = 0.1180 ± 0.0008, where all errors have been added in quadrature [86].
32This result is complementary (though more precise) to the LEP measurements of the scale dependence of α

using, e.g., small and large-angle Bhabha scattering at low energy [90, 91] and high energies [92], respectively, or
cross section and asymmetry measurements at high energies [93].

33The inclusion of the theory errors via freely varying parameters (Rfit) leads to a decrease in the global χ2
min of

the fit. Incompatibilities in the input observables (which may be due to statistical fluctuations) thus attenuate the
numerical effect of the theoretical errors on the fitted parameter (here MH). See Footnote 28 on page 26 for an
illustration of this effect.
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Figure 5: ∆χ2 as a function of MH for the standard fit (top) and the complete fit (bottom). The solid
(dashed) lines give the results when including (ignoring) theoretical errors. The minimum χ2

min of the fit
including theoretical errors is used for both curves in each plot to obtain the offset-corrected ∆χ2.
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Figure 6: ∆χ2 versus MH with an alternative treatment of theory uncertainties [94]. Shown are the
results of the standard fit ignoring theoretical uncertainties (dotted line), the regions determined from
the maximum deviation in ∆χ2 achieved by shifting the SM predictions of all observables according to 1
“standard deviation” of the various theory uncertainties (shaded band) and for comparison the result of the
standard fit (solid curve) in which theoretical uncertainties are included in the χ2 calculation.

MH = 115 GeV. The data points from the direct Higgs searches at the Tevatron, available in the
range 110 GeV < MH < 200 GeV with linear interpolation between the points, increases the ∆χ2

estimator for Higgs masses above 140 GeV beyond that obtained from the standard fit.

We have studied the Gaussian (parabolic) properties of the ∆χ2 estimator to test whether the
interpretation of the profile likelihood in terms of confidence levels can be simplified. Figure 7 gives
the 1 − CL derived for ∆χ2 as a function of the MH hypothesis for various scenarios: Gaussian
approximation Prob(∆χ2, 1) of the standard fit including theory errors (dashed/red line), Gaussian
approximation of the standard fit ignoring theory errors, i.e., fixing all δth parameters at zero
(solid/black line), and an accurate evaluation using toy MC experiments ignoring theory errors
(shaded/green area). Also shown is the complete fit result with Gaussian approximation. The toy
experiments are sampled using as underlying model the best fit parameters (and corresponding
observables) obtained for each MH hypothesis. As described in Section 2.4, such a hypothesis is
incomplete from a frequentist point of view because the true values of the nuisance parameters are
unknown.34 However, the persuasively Gaussian character of the fit makes us confident that our
assumption is justified in the present case (cf. the additional discussion and tests in Section 4.2.5).

34 Examples from other particle physics areas, such as the determination of the CKM phase γ via direct CP violation
measurements in B decays involving charm, show that this approximation can lead to severe undercoverage of the
result [24]. As described in Section 2, the full treatment would require a numerical minimisation of the exclusion
CLwith respect to any true SM (nuisance) parameter set used to generate the toy MC samples (cf. Refs. [24, 25]).
More formally, this corresponds to solving CL(MH) = minµCLµ(MH), where µ are the nuisance parameters of the fit

and CLµ(MH) =
R ∆χ2(MH ;data)

0
F (∆χ2|MH , µ)d∆χ2, and where F (∆χ2|MH , µ) is the probability density function

of ∆χ2 for true MH and µ determined from toy MC simulation.
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Figure 7: The 1 − CL function derived from the ∆χ2 estimator versus the MH hypothesis (cf. Fig. 5
(top) for ∆χ2 versus MH) for the standard fit. Compared are the Gaussian approximation Prob(∆χ2, 1)
for the standard fit with (dashed/red line) and without theoretical errors (solid/black line), respectively, to
an evaluation based on toy MC simulation for which theoretical errors have been ignored. Also given is the
result using Prob(.) for the complete fit (dotted/blue line).

The correlations given in Table 2 are taken into account for the generation of the toy experiments.
Theoretical errors being of non-statistical origin have been excluded from this test, which aims
at gauging the statistical properties of the test statistics. The curves in Fig. 7 show agreement
between the Gaussian approximation without theoretical errors, and the toy MC result. It proves
that the fit is well behaved, and the ∆χ2 estimator can be interpreted as a true χ2 function.

Figure 8 shows the 68%, 95% and 99% CL contours for the variable pairs mt vs. MH (top)

and ∆α
(5)
had(M2

Z) vs. MH (bottom), exhibiting the largest correlations in the fits. The contours
are derived from the ∆χ2 values found in the profile scans using Prob(∆χ2, 2) (cf. discussion in
Section 2.3). Three sets of fits are shown in these plots: the largest/blue (narrower/purple) allowed
regions are derived from the standard fit excluding (including) the measured values (indicated

by shaded/light green horizontal bands) for respectively mt and ∆α
(5)
had(M

2
Z) in the fits. The

correlations seen in these plots are approximately linear for lnMH (cf. Table 3). The third set
of fits, providing the narrowest constraints, uses the complete fit, i.e., including in addition to
all available measurements the direct Higgs searches. The structure of allowed areas reflects the
presence of local minima in the bottom plot of Fig. 5.

Figure 9 compares the direct measurements of MW and mt, shown by the shaded/green 1σ
bands, with the 68%, 95% and 99% CL constraints obtained with again three fit scenarios. The
largest/blue (narrowest/green) allowed regions are again the result of the standard fit (complete
fit) excluding (including) the measured values of MW and mt. The results of the complete fit
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Figure 8: Contours of 68%, 95% and 99% CL obtained from scans of fits with fixed variable pairs mt vs.

MH (top) and ∆α
(5)
had(M2

Z) vs. MH (bottom). The largest/blue (narrower/purple) allowed regions are the

results of the standard fit excluding (including) the measurements of mt (top) and ∆α
(5)
had(M2

Z) (bottom).
The narrowest/green areas indicate the constraints obtained for the complete fit including all the available

data. The horizontal bands indicate the 1σ regions of respectively the mt measurement and ∆α
(5)
had(M

2
Z)

phenomenological determination.



4.2 Global Standard Model Analysis 34

 [GeV]topm
150 155 160 165 170 175 180 185 190

 [G
eV

]
W

M

80.15

80.2

80.25

80.3

80.35

80.4

80.45

80.5

80.55
 WAtop band for mσ1

 WAW band for Mσ1

68%, 95%, 99% CL fit

top
, mWcontours excl. M

68%, 95%, 99% CL fit contours 
, incl. Higgs searches

top
, mWexcl. M

68%, 95%, 99% CL fit contours
, Higgs searches

top
, mWincl. M

 [GeV]topm
150 155 160 165 170 175 180 185 190

 [G
eV

]
W

M

80.15

80.2

80.25

80.3

80.35

80.4

80.45

80.5

80.55

Figure 9: Contours of 68%, 95% and 99% CL obtained from scans of fits with fixed variable pairs MW vs.
mt. The largest/blue allowed regions are the results of the standard fit excluding the measurements of MW

and mt. The narrow/yellow (narrowest/green) areas indicate the constraints obtained for the complete fit
excluding (including) the corresponding measurements. The horizontal bands indicate the 1σ regions of the
measurements (world averages).

excluding the measured values are illustrated by the narrower/yellow allowed region. The allowed
regions of the indirect determination is significantly reduced with the insertion of the direct Higgs
searches. Good agreement is observed between (i) indirect determination without (largest/blue
area) and with (narrower/yellow area) the direct Higgs searches, and (ii) the direct measurements
(shaded/green bands).

4.2.5 Probing the Standard Model

We evaluate the p-value of the global SM fit following the prescription outlined in Section 2.4. A toy
MC sample with 10 000 experiments has been generated using as true values for the SM parameters
the outcomes of the global fit (see the remarks below and in Section 2.4 and Footnote 34 on
page 31 about the limitation of this method). For each toy simulation, the central values of all the
observables used in the fit are generated according to Gaussian distributions around their expected
SM values (given the parameter settings) with standard deviations equal to the full experimental
errors taking into account all correlations.35 It is assumed that central values and errors are
independent. The Rfit treatment of theoretical uncertainties allows the fit to adjust theoretical
predictions and parameters at will within the given error ranges, and – as opposed to measurements
– the theoretical parameters cannot be described by a probability density distribution and are thus

35Since only bounds on MH are available with no probability density information given within these bounds, a
random generation of MH toy measurements is not possible. This experimental input is thus kept unchanged for all
toy MC experiments.
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Figure 10: Result of the MC toy analysis of the complete fit. Shown are the χ2
min distribution of a toy MC

simulation (open histogram), the corresponding distribution for a complete fit with fixed δth parameters at
zero (shaded/green histogram), an ideal χ2 distribution assuming a Gaussian case with ndof = 14 (black
line) and the p-value as a function of the χ2

min of the global fit.

not fluctuated in the toy MC. For each toy MC sample, the complete fit is performed (i.e., including
the results from the direct Higgs searches) yielding the χ2

min distribution shown by the light shaded
histogram in Fig. 10. The distribution obtained when fixing the δth parameters at zero is shown
by the dark shaded/green histogram. Including the theoretical uncertainties reduces the number
of degrees of freedom in the data and hence shifts the distribution to lower values. Overlaid is the
χ2 function expected for Gaussian observables and 14 degrees of freedom. Fair agreement with the
empirical toy MC distribution for fixed δth is observed.

The monotonously decreasing curves in Fig. 10 give the p-value of the SM fit as a function of χ2
min,

obtained by integrating the sampled normalised χ2 function between χ2
min and infinity. The value

of the global SM fit is indicated by the arrow. Including theoretical errors in the fit gives

p-value (data|SM) = 0.22 ± 0.01−0.02 , (37)

where the first error is statistical, determined by the number of toy experiments performed, and
the second accounts for the shift resulting from fixed δth parameters. The probability of falsely
rejecting the SM, expressed by the result (37), is sufficient and no significant requirement for
physics beyond the SM can be inferred from the fit.

To validate the pµ−best fit ≈ minµpµ assumption used in the above study, we have generated several
true parameter sets (µ) in the vicinity of the best fit result (varying parameters incoherently by
±1σ around their measurement errors), and repeated the toy-MC based p-value evaluation for
each of them. The χ2 probability density distributions derived from these tests have been found
to be compatible with each other, leading to similar p-values in all cases studied. It supports the
robustness of the result (37).
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Figure 11: P-value of the electroweak fit versus MH as obtained from toy MC simulation. The error band
represents the statistical error from the MC sampling.

We have extended the above analysis by deriving p-values for the standard fit as a function of the
true Higgs mass. The results are shown in Fig. 11. For values of MH around 80 GeV, corresponding
to the χ2

min of the standard fit, p-values of about 0.25 are found.36 With higher MH the p-value
drops reaching the 2σ level at MH = 190 GeV and the 3σ level at MH = 270 GeV.

4.3 Prospects for the LHC and ILC

The next generation of particle colliders, namely LHC and ILC, have the potential to significantly
increase the precision of most electroweak observables that are relevant to the fit. This will improve
the predictive power of the fit, and – in case of a Higgs discovery – its sensitivity to physics beyond
the SM by directly confronting theory and experiment, and by testing the overall goodness-of-fit
of the SM.

At the LHC the masses of the W boson and the top quark are expected to be measured with
precisions reaching σ(MW ) = 15 MeV and σ(mt) = 1.0 GeV [19, 20, 95, 96], respectively.37 At the

36By fixing MH the number of degrees of freedom of the fit is reduced compared to the standard fit resulting in a
larger average χ2

min and thus in a larger p-value.
37CMS expects a systematic (statistical) precision of better than 20 MeV (10 MeV) for an integrated luminosity

of 10 fb−1 [20, 97]. It uses a method based on solely the reconstruction of the charged lepton transverse momentum,
which has reduced systematic uncertainties compared to reconstructing the transverse W mass, with the downside
of a smaller statistical yield. In an earlier study using the transverse-mass method, ATLAS finds a systematic
(statistical) uncertainty of better than 25 MeV (2 MeV), for the same integrated luminosity [19]. Combining both,
lepton channels and experiments, a final uncertainty of about 15 MeV is anticipated in [95], which is used here. A
recent ATLAS study [98], superseding their previous results, finds that uncertainties of σ(MW ) ≈ 7 MeV may be
achievable for each lepton channel (with similar uncertainties for both aforementioned experimental approaches), by
heavily relying on the calibration of the lepton momenta and reconstruction efficiencies at the Z pole. Using this
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Expected uncertainty
Quantity

Present LHC ILC GigaZ (ILC)

MW [ MeV] 25 15 15 6

mt [ GeV] 1.2 1.0 0.2 0.1

sin2θℓ
eff [10−5] 17 17 17 1.3

R0
ℓ [10−2] 2.5 2.5 2.5 0.4

∆α
(5)
had(M2

Z) [10−5] 22 (7) 22 (7) 22 (7) 22 (7)

MH(= 120 GeV) [ GeV] +56
− 40

(

+ 52
− 39

) [

+ 39
− 31

]

+ 45
− 35

(

+ 42
− 33

) [

+30
− 25

]

+ 42
− 33

(

+39
− 31

) [

+28
− 23

]

+ 27
− 23

(

+20
− 18

) [

+ 8
− 7

]

αS(M2
Z) [10−4] 28 28 27 6

Table 4: Measurement prospects at future accelerators for key observables used in the electroweak fit, and
their impact on the electroweak fit. The columns give, from the left to the right: present errors, the expected
uncertainties for the LHC with 10 fb−1 integrated luminosity, the ILC without and with the option to run
at the Z resonance and along the W -pair production threshold (GigaZ) for one year of nominal running.

The estimated improvement for ∆α
(5)
had(M2

Z) (given in parenthesis of the corresponding line) over the current
uncertainty is unrelated to these accelerators, and must come from new low-energy hadronic cross section
measurements and a more accurate theory (see text). The lower rows give the results obtained for MH and

αS(M2
Z). For MH are also given the results with improved ∆α

(5)
had(M2

Z) precision (parentheses – this has no
impact on αS(M2

Z)), and when in addition ignoring the theoretical uncertainties [brackets]. Note that all
errors obtained on MH are strongly central value dependent (see text).

ILC it is expected that the top mass can be measured to an experimental precision of approximately
σ(mt) = 50 MeV using a threshold scan and an adapted mass definition [21, 99]. This should
translates into an error of 100–200 MeV on the MS-mass depending on the accuracy of the strong
coupling constant [21, 99, 100]. More improvements are expected for a linear collider running with
high luminosity and polarised beams at the Z resonance (GigaZ). The W -mass can be measured
to 6 MeV from a scan of the WW threshold [21]. The effective weak mixing angle for leptons
can be measured to a precision of 1.3 · 10−5 from the left-right asymmetry, ALR [21, 101]. At
the same time, the ratio of the Z leptonic to hadronic partial decay widths, R0

ℓ , can be obtained
to an absolute experimental precision of 0.004 [102]. These numbers do not include theoretical
uncertainties since it is assumed that substantial theoretical progress will be realised in the years
left before these measurements are possible.

At the time when the new measurements from the LHC experiments, and later the ILC, become

available, an improved determination of ∆α
(5)
had(M2

Z) will be needed to fully exploit the new pre-
cision data. This in turn requires a significant improvement in the quality of the hadronic cross
section data at energies around the cc resonances and below, and a better knowledge of the c
and b quark masses entering the perturbative prediction of the cross sections where applicable,
which serve as input to the dispersion integral. Reference [103] quotes expected uncertainties of

σ(∆α
(5)
had(M2

Z)) ∼ 7 · 10−5 and 5 · 10−5, compared to presently 22 · 10−5, if the relative precision

σ(MW ) in the fit improves the MH determination for the LHC prospective from MH = 120+ 42
− 33 to MH = 120+ 31

− 26

(using the improved ∆α
(5)
had(M2

Z) error of 7 · 10−5 for both fits, cf. Table 4).
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Figure 12: Constraints on MH obtained for the four scenarios given in Table 4, assuming the improvement

σ(∆α
(5)
had(M2

Z)) = 7 ·10−5 for all prospective curves. Shown are, from wider to narrower ∆χ2 curves: present
constraint, LHC expectation, ILC expectations with and without GigaZ option. The 1σ errors for MH given
in Table 4 correspond to the ∆χ2 = 1 intervals obtained from these graphs. The shaded bands indicate the
effect of theoretical uncertainties.

on the cross sections attains 1% below the J/ψ and the Υ resonances, respectively. The former
estimate will be used for the present study. Since most of present data is dominated by systematic
uncertainties, measurements of state-of-the-art experiments with better acceptance and control of
systematics are needed. High-statistics ISR analyses performed at the B and Φ factories already
provided promising results on many exclusive hadronic channels. New data will also come from
the BESIII experiment at the BEPCII e+e− collider that starts operation in Summer 2008.

The dominant theoretical uncertainties affecting the electroweak fit arise from the missing higher
order corrections in the predictions of MW and sin2θℓ

eff (cf. Section 4.1.4), which contribute
similarly to the error on MH . They amount to 10 GeV (13 GeV) at MH = 120 GeV (150 GeV).
Significant theoretical effort is needed to reduce these.

A summary of the current and anticipated future uncertainties on the quantities MW , mt, sin2θℓ
eff ,

R0
ℓ , and ∆α

(5)
had(M2

Z), for the LHC, ILC, and the ILC with GigaZ option, is given in Table 4. By
using these improved measurements the global SM fit (not using the results from direct Higgs
searches nor measurements of αS(M2

Z)) results in the constraints on the Higgs mass and αS(M2
Z)

quoted in Table 4. For all four scenarios the true Higgs mass has been assumed to be MH =
120 GeV and the central values for all observables are adjusted such that they are consistent with

this MH value. All fits are performed using respectively the present uncertainty on ∆α
(5)
had(M2

Z),
and assuming the above-mentioned improvement. For the latter case results for MH are given
including (parentheses) and excluding [brackets] theory uncertainties. With the GigaZ option,

the uncertainty from ∆α
(5)
had(M

2
Z) would dominate the overall fit error on MH if no improvement
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occurred. We emphasise that due (by part) to the logarithmic dependence, the error obtained on
MH is strongly MH dependent: with the same precision on the observables, but central values
that are consistent with a true value of 150 GeV, one would find MH = 150+66

−49 GeV in average,
i.e., an error increase over the MH = 120 GeV case of almost 30%. With the GigaZ option and
the resulting improvement for R0

ℓ the uncertainty on αS(M2
Z) from the fit is reduced by a factor

of four.

The MH scans obtained for the four scenarios, assuming the improved ∆α
(5)
had(M2

Z) precision to
be applicable for all future (LHC and beyond) scenarios, are shown in Fig. 12. The shaded bands
indicate the effect of the current theoretical uncertainties. As expected the theoretical errors
included with the Rfit scheme are visible by a broad plateau around the ∆χ2 minimum.

A discovery of the Higgs boson at the LHC in the clean decay mode H → γγ (H → 2ℓ2ℓ′) for a
light (heavy) Higgs would soon allow a precision measurement of MH beyond the percent level.
Inserting the measurement into the global electroweak fit would lead to a prediction of the W
boson mass with 13 MeV error, of which 5 MeV is theoretical. Prediction and measurement could
be directly confronted. More inclusively, the p-value of the data given the SM could be determined
as a direct test of the goodness of the SM fit.

5 Extending the SM Higgs Sector – The Two Higgs Doublet Model

Two Higgs Doublet Models (2HDM) [104] are simple extensions to the SM Higgs sector, only
introducing an additional SU(2)L × U(1)Y Higgs doublet with hypercharge Y = 1, leading to
five physical Higgs bosons. Three Higgs bosons (A0, h0, H0) are electrically neutral and the two
remaining ones (H±) are electrically charged. The free parameters of the 2HDM are the Higgs
boson masses MA0 ,Mh0 ,MH0 and MH± , the ratio of the vacuum expectation values of the two
Higgs doublets tanβ = v2/v1, occurring in the mixing of charged and neutral Higgs fields, and the
angle α, governing the mixing of the neutral CP -even Higgs fields.

Models with two Higgs doublets intrinsically fulfil the empirical equality M2
W ≈M2

Z cos2 θW . They
also increase the maximum allowed mass of the lightest neutral Higgs boson for electroweak Baryo-
genesis scenarios to values not yet excluded by LEP (see, e.g., [105]), and introduce CP violation
in the Higgs sector. Flavour changing neutral currents can be suppressed with an appropriate
choice of the Higgs-fermion couplings (see e.g., Ref. [106]). For example, in the Type-I 2HDM
this is achieved by letting only one Higgs doublet couple to the fermion sector. In the Type-II
2HDM [107], which is chosen for this analysis, one Higgs doublet couples to the up-type quarks
and leptons only, while the other one couples only to the down-type quarks and leptons. It resem-
bles the Higgs sector in the Minimal Supersymmetric Standard Model.

Our analysis is restricted to observables that are sensitive to corrections from the exchange of a
charged Higgs boson. From these we derive constraints on the allowed charged-Higgs mass MH±

and tanβ. Direct searches for the charged Higgs have been performed at LEP and the Tevatron.
LEP has derived a lower limit of MH± > 78.6 GeV at 95% CL [108], for any value of tanβ.
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5.1 Input Observables

The constraints on the charged Higgs are currently dominated by indirect measurements, as op-
posed to direct searches at high-energy accelerators. A multitude of heavy flavour observables
mainly from B-meson decays is available whose sensitivity to the 2HDM parameters varies how-
ever substantially, either due to limited experimental precision in case of rare decays, or because
specific 2HDM contributions are strongly suppressed. The most relevant observables for the search
of Type-II 2HDM signals are the electroweak precision variable R0

b , branching fractions of rare
semileptonic B, D and K decays, and loop-induced radiative B decays.38 A summary of the
experimental input used for this analysis is given in Table 5.

5.1.1 Hadronic Branching Ratio of Z to b Quarks R0
b

The sensitivity of R0
b to a charged Higgs boson arises from an exchange diagram modifying the Zbb

coupling. The corresponding corrections of the SM prediction have been calculated in Ref. [112]
and are given in Eqs. (6.3) and (6.4) thereof. The left- (right-) handed corrections to the effective
couplings δgL(R) are proportional to cot2β (tan2β) and to R/(R − 1) − R logR/(R − 1)2, where
R = m2

t/M
2
H± . The charged-Higgs exchange leads to a decrease of R0

b . Neutral Higgs contributions
can be neglected for small tanβ. For the SM prediction we use the result from the complete
electroweak fit, R0

b,SM = 0.21580±0.00006, where the direct measurement of R0
b has been excluded

(cf. Table 1). It is confronted in the fit with the experimental value R0
b,exp = 0.21629 ± 0.00066,

obtained at LEP [46], giving ∆R0
b = R0

b,exp −R0
b,SM = 0.00049 ± 0.00066.

5.1.2 The Decay B → Xsγ

The decay B → Xsγ is an effective flavour changing neutral current process occurring only at loop-
level in the SM. The SM prediction for its branching fraction (B) at NNLO accuracy is (3.15 ±
0.23) ·10−4 [113], where the theoretical uncertainty is estimated by studying (in decreasing order of
importance) nonperturbative, parametric, higher-order and mc interpolation ambiguity effects, and
where all errors have been added in quadrature. Averaging branching fraction measurements from
the BABAR, Belle and CLEO Collaborations gives B(B → Xsγ) = (3.52±0.23±0.09) ·10−4 [114],
where the first error is experimental and the second stems from the modelling of the photon energy
spectrum. The improved NNLO calculation yields a branching fraction approximately 1.5 σ lower
than the NLO calculation [115], resulting in a small tension with the experimental average and
thus leading to less stringent constraints on the charged Higgs mass. The 2HDM contribution to
the B(B → Xsγ) arises from a charged Higgs replacing the W± in the loop from which the photon
is radiated and is always positive in the type-II model. For the prediction of B(B → Xsγ) in
the 2HDM we have used parametrised formulae [116] reproducing the result of [113] within 0.2%.
While the value of the branching fraction changes with MH± and, to a lesser extent with tanβ, the
associated theoretical uncertainty stays to good approximation constant at 7%. Since it has been

38Decays of τ and µ leptons can also occur through charged-Higgs tree diagrams giving anomalous contributions
to the decay parameters (Michel parameters [109]) measured in these decays. Their present sensitivity is however
not competitive with the other observables (a 95% CL limit of MH± > 1.9 GeV · tanβ is currently achieved from τ
decays [110], see also [111] for a review of the µ decay parameters).



5.1 Input Observables 41

derived by quadratically combining several error estimates, we treat it as an additional Gaussian
systematic error in the fit.

5.1.3 Leptonic Decays of Charged Pseudoscalar Mesons

In the SM the leptonic decay of charged pseudoscalar mesons proceeds via the annihilation of the
heavy meson into a W boson and its subsequent leptonic decay. Angular momentum conservation
leads to a helicity suppression factor that is squared in the lepton mass. Competitive contributions
from the charged Higgs sector can therefore occur. Neglecting photon radiation, the leptonic decay
rate of a pseudoscalar meson P has the form

Γ (P → ℓν) =
B(P → ℓν)

τP
=
G2

F

8π
f2

Pm
2
ℓmP

(

1 − m2
ℓ

m2
P

)2

|Vq1q2|2 , (38)

where mP (mℓ) is the mass of the pseudoscalar meson (lepton), |Vq1q2| is the magnitude of the
CKM matrix element of the constituent quarks in P , and fP is the weak decay constant.

For P = B (implyingB± = B±
u ) we use [114] τB± = (1.639±0.009)ps and |Vub| = (3.81±0.47)·10−3 ,

where the latter result has been averaged over inclusive and exclusive measurements. For the B
decay constant we use the value fB = (216 ± 22) MeV, obtained by the HPQCD Collaboration
from unquenched Lattice QCD calculations [117]. For meson and lepton masses we use the values
of Ref. [64]. With these inputs, we find the SM predictions B(B → τν) = 1.53+0.46

−0.38 · 10−4 and

B(B → µν) = 0.69+0.21
−0.17 · 10−7.

An alternative approach uses for the r.h.s. of Eq. (38) additional constraints from the global
CKM fit enhancing the information on |Vub| beyond that of the direct measurement through the
fit of the Wolfenstein parameters ρ, η, and on fB through the measurement of the B0B0 mixing
frequency. This assumes that the measurements entering the fit are free from significant new
physics contributions. It is certainly the case for the charged Higgs, but cannot be excluded for
the CP -violation and neutral-B mixing observables. Hence, albeit using the global CKM fit is
an interesting test, it cannot replace the direct SM prediction of Eq. (38) based on tree-level
quantities and lattice calculations only. Not using the direct measurements, the global CKM fit
gives |Vub| = (3.44+0.22

−0.17) · 10−3, and for the complete prediction B(B → τν) = 0.83+0.27
−0.10 [118].

This latter result is about 1.9σ below the one from the “tree-level” determination, and a similar
discrepancy is found for B → µν (cf. Table 5).

The charged-Higgs amplitude contributes to the leptonic decays modifying Eq. (38) by a scaling
factor rH . In the Type-II 2HDM the b quark couples only to one of the Higgs doublets at tree
level so that the scaling factor for the decays B → τν and B → µν reads [119]

rH =

(

1 −m2
B

tanβ

MH±

)2

, (39)

which can lead to both, an increase and a decrease in the branching fraction, depending on whether
the W± and H± amplitudes interfere constructively or destructively.

The rare leptonic decay B → τν has been observed by the BABAR and Belle Collaborations [120–



5.1 Input Observables 42

122], with an average branching fraction39 of B(B → τν) = (1.51± 0.33) · 10−4. Only upper limits
are available for the muon channel so far, the tightest one, B(B → µν) < 1.3 · 10−6 at 90% CL
(−12± 20 fitted events), being found by BABAR [124]. For lack of an experimental likelihood we
use the measured branching fraction of (−5.7 ± 7.1stat ± 6.8syst) × 10−7.

For P = K, contributions from a charged Higgs are suppressed by (mK/mB)2 relative to leptonic
B decays. Moreover, due to the smaller phase space for hadronic final states, leptonic decays have
large branching fractions, which – on the other hand – have been measured to an excellent 0.2%
relative accuracy for ℓ = µ. We follow the approach of Ref. [125] and compare |Vus| determined
from helicity suppressed K → µν decays and helicity allowed K → πµν decays, considering the
expression

Rℓ23 =

∣

∣

∣

∣

Vus(K → µν)

Vud(π → µν)

Vud(0
+ → 0+)

Vus(K → πµν)

∣

∣

∣

∣

(40)

which in the SM is equal to 1. The ratio B(K → µν)/B(π → µν) ∼ (VusfK)/(Vudfπ) is used to
reduce the theoretical uncertainties from the kaon decay constant fK , and from electromagnetic
corrections in the decay K → µν [125]. The dominant uncertainty in Vus from K → πµν decays
stems from the K → π vector form factor at zero momentum transfer, f+(0), while Vud determined
from super-allowed nuclear beta-decays (0+ → 0+) is known with very high precision [126].

In the 2HDM of Type-II the dependence of Rℓ23 due to charged Higgs exchange is given by [125]

RH
ℓ23 =

∣

∣

∣

∣

1 −
(

1 − md

ms

)

m2
K+

m2
H+

tan2β

∣

∣

∣

∣

, (41)

where we use md/ms = 19.5 ± 2.5 [64]. Experimentally, a value of Rexp
ℓ23 = 1.004 ± 0.007 is

found [125], where (fK/fπ)/f+(0) has been taken from lattice calculations. It dominates the
uncertainty on Rℓ23.

5.1.4 The Semileptonic Decay B → Dτν

Similar to the B → τν decay, the semileptonic decay B → Dτν can be mediated a by charged
Higgs. We follow the arguments of Ref. [127] and use the ratio RDτ/e = B(B → Dτν)/B(B → Deν)
to reduce theoretical uncertainties from hadronic form factors occurring in the predictions of the
individual branching fractions. In the Type-II 2HDM the ratio RDτ/e can be expressed in the
following compact form [127]

RH
Dτ/e = (0.28 ± 0.02) ·

[

1 + (1.38 ± 0.03) · Re(Cτ
NP) + (0.88 ± 0.02) · |Cτ

NP|2
]

, (42)

where Cτ
NP = −mbmτ tan2β/m2

H± . As for leptonic decays the 2HDM contribution can either lead
to an increase or decrease in the branching fraction. Equation 42 is the result of an integration
of the partial width dΓ(B → Dℓν)/dw, assuming no Higgs contribution to B → Deν, and where
w = vBvD with vB (vD) being the four-velocity of the B (D) meson.

The ratio of branching fractions has been measured by BABAR to be Rexp
Dτ/e = 0.42 ± 0.12stat ±

0.05syst [128].

39Updated results from BABAR and Belle have been presented at the recent workshops CKM 2008 and Tau
2008 [123], leading to the new average B(B → τν) = (1.73 ± 0.35) · 10−4. They will be included in future updates
of this analysis.
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Figure 13: Two-sided 68%, 95% and 99% CL exclusion regions obtained for the various observables (see
text) in the 2HDM parameter plane MH± versus tanβ.
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Parameter Experimental value Ref. SM prediction Ref.

R0
b 0.21629 ± 0.00066 [46] 0.21580 ± 0.00006 This work

B(B → Xsγ) [10−4] 3.52 ± 0.23 ± 0.09 [114] 3.15 ± 0.23 [113]

1.53+0.46
−0.38 [fB , |Vub|] This work

B(B → τν) [10−4] 1.51 ± 0.33 [122]
0.83+0.27

−0.10 [CKM fit] [118]

0.69+0.21
−0.17 [fB , |Vub|] This work

B(B → µν) [10−7] −5.7 ± 6.8 ± 7.1 [124]
0.37+0.12

−0.04 [CKM fit] [118]

RDτ/e 0.42 ± 0.12 ± 0.05 [128] 0.28 ± 0.02 [127]

Rℓ23 1.004 ± 0.007 [125] 1 –

Table 5: Experimental results and SM predictions for the input observables used in the analysis of the
charged-Higgs sector of the Type-II 2HDM.

5.2 Results and Discussion

The theoretical predictions of the Type-II 2HDM for the various observables sensitive to corrections
from the exchange of charged Higgs bosons have been implemented in a separate library integrated
as a plug-in into the Gfitter framework. Exclusion confidence levels have been derived in two ways:
(i) for each observable separately, and (ii) in a combined fit.

5.2.1 Separate Constraints from Individual Observables

Constraints in the two-dimensional model parameter plane (tanβ,MH±) have been derived using
the individual experimental measurements and the corresponding theoretical predictions of the
Type-II 2HDM. Figure 13 displays the resulting two-sided 68% (yellow/light), 95% (orange) and
99% CL (red/dark) excluded regions separately for each of the observables given in Table 5. The
confidence levels are derived assuming Gaussian behaviour of the test statistics, and using one
degree of freedom (cf. discussion in Footnote 6 on page 6) , i.e., Prob(∆χ2, 1). Also indicated in
the plots is the 95% CL exclusion limit resulting from the direct searches for a charged Higgs at
LEP [108] (hatched area).

The figures show that Rb is mainly sensitive to tanβ excluding small values (below ≃1). B(B →
Xsγ) is only sensitive to tanβ for values below ≃1. For larger tanβ it provides an almost constant
area of exclusion of a charged Higgs lighter than ≃260 GeV. (All exclusions at 95% CL). The
leptonic observables lead to triangle-shaped excluded areas in the region of large tanβ and small
mH± values. B(B → τν) gives the strongest constraint.40 For these observables the 2HDM
contribution can be either positive or negative, because magnitudes of signed terms occur in the
predictions of the branching fractions giving a two-fold ambiguity in the (tanβ,MH±) plane.

40The stronger constraint obtained from the global CKM fit for B(B → τν) is a result of the increased theoretical
precision and, more importantly, the 1.9σ deviation with respect to the “tree-level” determination (cf. Table 5).
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5.2.2 Combined Fit

We have performed a global Type-II 2HDM fit combining all the available observables (and using
the tree-level SM predictions for the leptonic B decays). We find a global minimum χ2

min = 3.9 at
MH± = 860 GeV and tanβ = 7. Since the number of effective constraints varies strongly across
the (tanβ,MH±) plane, it is not straightforward to determine the proper number of degrees of
freedom to be used in the calculation of the CL – even if the test statistic follows a χ2 distribution.
According to the discussion in Footnote 6 on page 6 we avoid this problem by performing 2 000
toy-MC experiments in each scan point to determine the associated p-value. The upper plot of
Fig. 14 shows the 68%, 95% and 99% CL excluded regions obtained from the toy-MC analysis of
the combined fit. For comparison the 95% CL contours using Prob(∆χ2, ndof) for ndof = 1 and
ndof = 2 are also shown. As expected, the ndof = 2 approximation is more accurate in regions where
several observables contribute to the combined fit, while ndof = 1 is better when a single constraint
dominates over all the others (very small and very large values of tanβ). For comparison the lower
plot of Fig. 14 shows again the 95% CL excluded region obtained from the toy-MC analysis of the
combined fit (hatched area) together with the corresponding regions obtained from the individual
constraints. It can be seen that due to the increased number of effective degrees of freedom the
combined fit does not necessarily lead to stronger constraints.

The combination of the constraints excludes the high-tanβ, low-MH± region spared by the B → τν
constraint. We can thus exclude a charged-Higgs mass below 240 GeV independently of tanβ at
95% confidence level. This limit increases towards larger tanβ, e.g., MH± < 780 GeV are excluded
for tanβ = 70 at 95% CL.

5.2.3 Perspectives

Improvements on the low-energy B-meson observables are expected from the KEKB and Belle
upgrade program with an initial (final) target of 10 ab−1 (50 ab−1) integrated luminosity [129–131].
Parallel developments envision the construction of a new SuperB accelerator with similar target
luminosities [132]. With respect to the 2HDM analysis, these programs are particularly interesting
for the decays B → τν, B → µν and B → Dτν whose present branching fraction measurements
are statistically dominated. Further improvement can also be expected for the measurement of
B(B → Xsγ) with however less prominent effect on the 2HDM parameter constraints due to the
size of the theoretical uncertainties. The measurement of the ratio of partial Z widths, R0

b , could
be improved at an ILC running at the Z resonance (GigaZ, cf. Section 4.3). The authors of
Ref. [101] estimate a factor of five increase over the current precision, mostly by virtue of the
increased statistical yield, and the excellent impact parameter resolution suppressing background
from charm quarks.

The LHC experiments will attempt to directly detect signals from charged-Higgs production, either
via t → bH± decays, if MH± < mt, and/or via gluon-gluon and gluon-bottom fusion to t(b)H±,
and the subsequent decay H± → τν, or, if MH± > mt, via H± → tb. The full tanβ parameter
space is expected to be covered for H± lighter than top (a scenario already strongly disfavoured
by the current indirect constraints, especially the one from B(B → Xsγ)), while the discovery of
a heavy H± requires a large tanβ, which rapidly increases with rising MH± [19, 20, 133].
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Figure 14: Exclusion regions in the (tanβ,MH±) plane. The top plot displays the 68%, 95% and 99% CL
excluded regions obtained from the combined fit using toy MC experiments. For comparison the 95% CL
contours using Prob(∆χ2, ndof) for ndof = 1 and ndof = 2 are also shown (see discussion in text). The
bottom plot shows the 95% CL excluded regions from the individual constraints given in Table 5, and the
toy-MC-based result from the combined fit overlaid.
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6 Conclusions and Perspectives

The wealth of available precision data at the electroweak scale requires consistent phenomenological
interpretation via an overall (global) fit of the Standard Model and beyond. Such fits, mainly
determining the top-quark mass, the Higgs-boson mass, the strong coupling constant, and the
overall consistency of the model, have been performed by several groups in the past. The fit has
sensitivity to confirm electroweak unification and the Brout-Englert-Higgs mechanism [134, 135]
of spontaneous electroweak symmetry breaking for the dynamical generation of the fermion and
boson masses, while posing problems for alternatives such as Technicolour in its simplest form [136],
requiring more involved scenarios. Other theories, like Supersymmetry, are decoupling from the
Standard Model if their masses are large. For such models the high energy precision data as well
as constraints obtained from rare decays, flavour mixing and CP -violating asymmetries in the B
and K-meson sectors, the anomalous magnetic moment of the muon, and electric dipole moments
of electron and neutron, exclude a significant part of the parameter space. However, the models
can be adjusted to become consistent with the experimental data as long as these data agree with
the Standard Model predictions.

In this paper, we have revisited the global electroweak fit, and a simple extension of the Higgs sector
to two doublets, using the new generic fitting toolkit Gfitter and its corresponding electroweak
and 2HDM libraries. We have included the constraints from direct Higgs searches by the LEP
and Tevatron experiments in the former fit. Emphasis has been put on a consistent treatment of
theoretical uncertainties, using no assumptions other than their respective ranges, and a thorough
frequentist statistical analysis and interpretation of the fit results.

Gfitter is an entirely new fitting framework dedicated to model testing in high-energy physics.
It features transparent interfaces to model parameters and measurements, theory libraries, and
fitter implementations. Parameter caching significantly increases the execution speed of the fits.
All results can be statistically interpreted with toy Monte Carlo methods, treating consistently
correlations and rescaling due to parameter dependencies.

For the complete fit, including the results from direct Higgs searches, we find for the mass of
the Higgs boson the 2σ and 3σ intervals [114, 145] GeV and [[113, 168] and [180, 225]] GeV, re-
spectively. The corresponding results without the direct Higgs searches in the standard fit are
[39, 155] GeV and [26, 209] GeV. Theoretical errors considered in the fit parametrise uncertainties

in the perturbative predictions of MW and sin2θf
eff , and the renormalisation scheme ambiguity.

They contribute with approximately 8 GeV to the total fit error obtained for MH for the stan-
dard fit. In a fit excluding the measurement of the top quark mass (but including the direct
Higgs searches) we find mt = 178.2+9.8

−4.2 GeV, in fair agreement with the experimental world av-
erage. Finally, the strong coupling constant to 3NLO order at the Z-mass scale is found to be
αS(M2

Z) = 0.1193+0.0028
−0.0027, with negligible theoretical error (0.0001) due to the good convergence of

the perturbative series at that scale.

We have probed the goodness of the Standard Model fit to describe the available data with toy
Monte Carlo simulation. For the fit including the direct Higgs searches it results in a p-value of
0.22 ± 0.01−0.02, where the first error accounts for the limited Monte Carlo statistics, and the
second for the impact of theoretical uncertainties (without these, the p-value is reduced by 0.04).
The p-value for the fit without direct Higgs searches is similar (the reduced number of degrees of
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freedom approximately countervails the better χ2 value). The compatibility of the most sensitive
measurements determining MH has been estimated by evaluating the probability for a consistent
set of measurements to find a single measurement that increases the overall χ2 of the global fit by
as much as is observed in data, when adding the least compatible measurement (here A0,b

FB). An
analysis with toy MC experiments finds that this occurs in (1.4 ± 0.1)% of the cases.

We have analysed the perspectives of the electroweak fit considering three future experimental
scenarios, namely the LHC and an international linear collider (ILC) with and without high lumi-
nosity running at lower energies (GigaZ), all after years of data taking and assuming a good control
over systematic effects. For a 120 GeV Higgs boson, the improved MW and mt measurements ex-
pected from the LHC would reduce the error on the MH prediction by up to 20% with respect to
the present result. The ILC could further reduce the error by about 25% over the LHC, and –
if the hadronic contribution to α(M2

Z) can be determined with better precision (requiring better
hadronic cross section measurements at low and intermediate energies) – a 30% improvement is
possible. The largest impact on the fit accuracy can be expected from an ILC with GigaZ option.
Together with an improved α(M2

Z), the present fit error on MH could be reduced by more than
a factor of two. We point out however that, in order to fully exploit the experimental potential,
in particular the anticipated improvements in the accuracy of MW , theoretical developments are
mandatory. If the Higgs is discovered, the improved electroweak fit will serve as a sensitive test
for the Standard Model and its extensions.

By extending the Standard Model Higgs sector to two scalar doublets (2HDM of Type-II), we have
studied the experimental constraints on the charged-Higgs mass MH± and on tanβ, using as input
branching fractions of the rare B decays B → Xsγ, B → τν, B → µν, and B → Deν, the Kaon
decay K → µν, and the electroweak precision observable R0

b . Exclusion confidence levels have
been derived by carrying out toy experiments for every point on a fine grid of the (MH± , tanβ)
parameter space. At 95% confidence level we exclude charged Higgs masses MH± < 240 GeV for
any value of tanβ, and MH± < 780 GeV for tanβ = 70.

Inputs and numerical and graphical outputs of the Gfitter Standard Model and 2HDM analyses
are available on the Gfitter web site: http://cern.ch/gfitter. They will be kept in line with the
experimental and theoretical progress. Apart from these update commitments, new theoretical
libraries such as the minimal Supersymmetric extension of the Standard Model will be included
and analysed.

Acknowledgements

We are indebted to the LEP-Higgs and Tevatron-NPH working groups for providing the numerical results
of the direct Higgs-boson searches. We thank Daisuke Nomura and Thomas Teubner for information on
their analysis of the hadronic contribution to the running α(M2

Z). We are grateful to Malgorzata Awramik
for providing detailed information about the SM electroweak calculations, and to Bogdan Malaescu for
help on the evaluation of theoretical errors affecting the determination of αS(M2

Z). We are obliged to the
DESY Summer Student Kieran Omahony for his work on the fit automation and the Gfitter web page. We
thank the CKMfitter group for providing the best-effort predictions of the rare leptonic B decays used in
the 2HDM analysis, and Paolo Gambino, Ulrich Haisch and Mikolaj Misiak for valuable discussions and
exchanges regarding the constraints on the 2HDM parameters. Finally, we wish to thank Jérôme Charles,
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A Standard Model Formulae

This section gives the relevant formulae for the calculation of the electroweak observables used in
the global electroweak fit. We discuss the scale evolution of the QED and QCD couplings and
quark masses, and give expressions for the electroweak form factors and radiator functions.

A.1 Running QED Coupling

The electroweak fit requires the knowledge of the electromagnetic couping strength at the Z-mass
scale to an accuracy of 1% or better. The evolution of α(s) versus the mass scale-squared s is
conventionally parametrised by

α(s) =
α(0)

1 − ∆α(s)
, (43)

following from an all-orders resummation of vacuum polarisation diagrams, sole contributors to
the running α. Here α = α(0) = 1/137.035 999 679(94) is the fine structure constant in the long-
wavelength Thomson limit [137], and the term ∆α(s) controls the evolution. It is conveniently
decomposed into leptonic and hadronic contributions

∆α(s) = ∆αlep(s) + ∆α
(5)
had(s) + ∆αtop(s) , (44)

where the hadronic term has been further separated into contributions from the five light quarks
(with respect to MZ) and the top quark. The leptonic term in (44) is known up to three loops in
the q2 ≫ m2

ℓ limit [138]. The dominant one-loop term at the Z-mass scale reads

∆α
(1-loop)
lep (M2

Z) = α
∑

ℓ=e,µ,τ

(

−5

9
+

1

3
ln
M2

Z

m2
ℓ

− 2
m2

ℓ

M2
Z

+ O
(

m4
ℓ

M4
Z

))

≈ 314.19 · 10−4 . (45)

Adding the sub-leading loops gives a total of ∆αlep(s) = 314.97·10−4 , with negligible uncertainty.41

The hadronic contribution for quarks with masses smaller than MZ cannot be obtained from per-
turbative QCD alone because of the low energy scale involved. Its computation relies on analyticity
and unitarity to express the photon vacuum polarisation function as a dispersion integral involving
the total cross section for e+e− annihilation to hadrons at all time-like energies above the two-
pion threshold. In energy regions where perturbative QCD fails to locally predict the inclusive
hadronic cross section, experimental data is used. The accuracy of the calculations has therefore
followed the progress in the quality of the corresponding data. Recent calculations improved the
precision by extending the use of perturbative QCD to energy regions of relatively low scales,
benefiting from global quark-hadron duality. For the fits in this paper we use the most recent

value, ∆α
(5)
had(M2

Z) = (276.8 ± 2.2) · 10−4, from Ref. [66]. The error is dominated by systematic
uncertainties in the experimental data used to calculate the dispersion integral. A small part
of the error, 0.14 · 10−4, is introduced by the uncertainty in αS(s) (the authors of [66] used the
value αS(M2

Z) = 0.1176 ± 0.0020 [139]). We include this dependence in the fits via the parameter
rescaling mechanism implemented in Gfitter (cf. Section 3).

41While the two-loop leptonic contribution of 0.78 · 10−4 is significant (roughly one third of the uncertainty in the
hadronic contribution), the third order term, 0.01 · 10−4, is very small,
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The small top-quark contribution at M2
Z up to second order in αS reads [140–143] to

∆αtop(M2
Z) = − 4

45

α

π

M2
Z

m2
t

{

1 + 5.062 a
(5)
S (µ2) +

(

28.220 + 9.702 ln
µ2

m2
t

)

(

a
(5)
S (µ2)

)2
(46)

+
M2

Z

m2
t

[

0.1071 + 0.8315 a
(5)
S (µ2) +

(

6.924 + 1.594 ln
µ2

m2
t

)

(

a
(5)
S (µ2)

)2
]}

,

≈ − 0.7 · 10−4 ,

where the short-hand notation aS = αS/π is used, and where α
(5)
S is the strong coupling constant

for five active quark flavors, and µ is an arbitrary renormalisation scale, chosen to be µ = MZ in
the fit.

The uncertainty on α(M2
Z) is dominated by the hadronic contribution ∆α

(5)
had(M2

Z), which is a
floating parameter of the fit constrained to its phenomenological value. The errors due to uncer-
tainties in MZ , mt and αS are properly propagated throughout the fit. Other uncertainties are
neglected.

A.2 QCD Renormalisation

Like in QED, the subtraction of logarithmic divergences in QCD is equivalent to renormalising the
coupling strength (αS ≡ g2

s/4π), the quark masses (mq), etc., and the fields in the bare (superscript
B) Lagrangian such as αB

S = sεZαS
αS, mB

q = sεZmmq, etc. Here s is the renormalisation scale-
squared, ε the dimensional regularisation parameter, and Z denotes a series of renormalisation
constants obtained from the generating functional of the bare Green’s function. Renormalisation
at scale µ introduces a differential renormalisation group equation (RGE) for each renormalised
quantity, governing its running. All formulae given below are for the modified minimal subtraction
renormalisation scheme (MS) [144, 145].

A.2.1 The Running Strong Coupling

The RGE for αS(µ2) reads

dαS

d lnµ2
= β(αS) = −β0α

2
S − β1α

3
S − β2α

4
S − β3α

5
S − . . . , (47)
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The perturbative expansion of the β-function is known up to four loops [146, 147] (and references
therein), with the coefficients

β0 =
1

4π

[

11 − 2

3
nf

]

, (48)

β1 =
1

(4π)2

[

102 − 38

3
nf

]

, (49)

β2 =
1

(4π)3

[

2857

2
− 5033

18
nf +

325

54
n2

f

]

, (50)

β3 =
1

(4π)4

[(

149753

6
+ 3564 ζ3

)

−
(

1078361

162
+

6508

27
ζ3

)

nf

+

(

50065

162
+

6472

81
ζ3

)

n2
f +

1093

729
n3

f

]

, (51)

where nf is the number of active quark flavours with masses smaller than µ, and where ζ3 ≃
1.2020569. Solving Eq. (47) for αS introduces a constant of integration, Λ(nf ), with dimension of
energy. The solution in the ultraviolet limit reads [148, 149]

αS(µ2) =
1

β0 L

{

1 − β1

β2
0

lnL

L
+

1

β2
0L

2

[

β2
1

β2
0

(

ln2L− lnL− 1
)

+
β2

β0

]

+
1

β3
0L

3

[

β3
1

β3
0

(

− ln3L+
5

2
ln2L+ 2 lnL− 1

2

)

− 3
β1β2

β2
0

lnL+
β3

2β0

]}

,

(52)

where L = 2 ln(µ/Λ(nf )) ≫ 1.

As αS evolves it passes across quark-flavour thresholds. Matching conditions at these thresholds

connect α
(nf )
S of the full theory with nf flavors to the effective strong coupling constant α

(nf−1)
S ,

where the heaviest quark decouples. The coupling constant of the full theory is developed in
a power series of the coupling constant of the effective theory with coefficients that depend on
x = 2 ln(µ/mq) [148, 150–152]:

a
(nf )
S = a

(nf−1)
S

[

1 + C1(x)
(

a
(nf−1)
S

)

+ C2(x)
(

a
(nf−1)
S

)2
+ C3(x)

(

a
(nf−1)
S

)3
]

, (53)

with aS = αS/π (recalled), and

C1(x) =
x

6
, C2(x) = c2,0 +

19

24
x+

x2

36
,

C3(x) = c3,0 +

(

241

54
+

13

4
c2,0 −

(

325

1728
+
c2,0

6

)

nf

)

x+
511

576
x2 +

x3

216
.

(54)

The integration coefficients ci,0 computed in the MS scheme at the scale of the quark masses are

c2,0 = −11

72
, c3,0 =

82043

27648
ζ3 −

575263

124416
+

2633

31104
nf . (55)

The solution of the RGE (47) at arbitrary scale requires αS to be known at some reference scale,
for which the Z pole is commonly chosen. Three evolution procedures are implemented in Gfitter,
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which lead to insignificant differences in the result. The first uses numerical integration of the RGE
with a fourth-order Runge-Kutta method. The second (the one chosen for this paper) determines
Λ(5) at MZ by numerically evaluating the root of Eq. (52), and the values for Λ(nf 6=5) are obtained
via the matching conditions. Both methods use αS(M2

Z) as floating parameter in the fit. In the
third approach, Λ(5) is directly determined by the fit without explicit use of αS(M2

Z).

A.2.2 Running Quark Masses

The MS RGE for massive quarks is governed by the γ-function defined by

1

mq

dmq

lnµ2
= γ(αS) = −γ0αS − γ1α

2
S − γ2α

3
S − γ3α

4
S − . . . . (56)

Its perturbative expansion has been computed to four loops [153] (and references therein), which
for the c and b-quark flavours reads [153]

mc(µ
2) = m̂ca

12/25
S

[

1 + 1.0141 aS + 1.3892 a2
S + 1.0905 a3

S

]

,

mb(µ
2) = m̂ba

12/23
S

[

1 + 1.1755 aS + 1.5007 a2
S + 0.1725 a3

S

]

.
(57)

The scale dependence of mq(µ
2) is given by the scale dependence of aS = aS(µ2). The renormal-

isation group independent mass parameters m̂q are determined from the measured quark masses
at fixed scales (cf. Table 1).

A.3 Electroweak Form Factors

The calculation of the electroweak form factors for lepton or quark flavours f , ρf
Z and κf

Z , absorbing
the radiative corrections (cf. Eqs. 11–13), follows the ZFITTER procedure [6]. It includes two-loop
electroweak corrections [6, 16, 45, 154–157]. We use the intermediate on-shell mass scheme [6],
which lies between OMS-I and OMS-II. These latter two schemes are used to estimate the un-
certainty arising from the renormalisation scheme ambiguity (see [59] for more information). The
form factors in the intermediate scheme are given by

ρf
Z =

1 + δρ
f,[G]
rem

1 + δρ̂(G)
(

1 − ∆r̄
[G]
rem

) + δρf,G2

rem , (58)

κf
Z =

(

1 + δκf,[G]
rem

)

[

1 − c2W
s2W

δρ̂(G)
(

1 − ∆r̄[G]
rem

)

]

+ δκf,G2

rem , (59)

where the superscript (G) stands for the inclusion of all known terms, whereas [G] = G + αSG
includes the electroweak one-loop corrections together with all known orders in the strong coupling
constant. These QCD corrections are taken from [158]. The parameter δρ̂(G) contains all known
corrections to the Veltman parameter, defined by the ratio of effective couplings of neutral to

charged currents [159, 160]. The subscript “rem” stands for “remainder”. The correction ∆r̄
[G]
rem is

given by

∆r̄[G]
rem = ∆r̄G

rem + ∆rGαS
rem , (60)
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with the one-loop remainder

∆r̄G
rem =

√
2GFM

2
Zs

2
Wc

2
W

4π2

{

−2

3
+

1

s2W

(

1

6
Nf

C − 1

6
− 7c2W

)

ln c2W

+
1

s2W

[

∆ρF

W +
11

2
− 5

8
c2W
(

1 + c2W
)

+
9c2W
4s2W

ln c2W

]

}

, (61)

where N
f=q(ℓ)
C = 3(1) is the colour factor, s2W = sin2θW and c2W = cos2θW , and where ∆ρF

W is given
by

∆ρF
W

=
1

M2
W

[

ΣF
WW (0) − ΣF

WW (M2
W )
]

. (62)

The terms ΣF
WW (0) and ΣF

WW (M2
W ) are the W boson self energies discussed below.

For the purpose of illustration we give the formulae for the one-loop corrections of the electroweak
form factors at the Z pole for vanishing external fermion masses [161]:

δρf,[G]
rem =

α

4πs2W

[

Σ′
ZZ

(M2
Z) − ∆ρF

Z − 11

2
+

5

8
c2W (1 + c2W ) − 9

4

c2W
s2W

ln c2W + 2uf

]

, (63)

δκf,[G]
rem =

α

4πs2W

[

− c
2
W

s2W
∆ρF + ΠF

Zγ(M2
Z) +

s4W
c2W

Q2
fV1Z(M2

Z) − uf

]

, (64)

where

uf =
1

4c2W

[

1 − 6|Qf |s2W + 12Q2
fs

4
W

]

V1Z(M2
Z) +

[

1

2
− c2W − |Qf |s2W

]

V1W (M2
Z) + c2WV2W (M2

Z) ,

∆ρF
Z =

1

M2
W

[

ΣF
WW (0) − ΣF

ZZ(M2
Z)
]

.

The term ΣF
ZZ(M2

W ) is the Z boson self energy. The vertex functions in the chiral limit are given
by [16]

V1V (s) = −7

2
− 2RV − (3 + 2RV ) ln(−R̃V ) + 2(1 +RV )2

[

Li2(1 + R̃V ) − Li2(1)
]

, (65)

V2W (s) = −1

6
− 2RW −

(

7

6
+RW

)

LWW (s)

s
+ 2RW (RW + 2)F3(s,M

2
W ) , (66)

where Li2 is the dilogarithm function, and where R̃V = RV −iγ
V
, γV = MV ΓV /s, and RV = M2

V /s.
The Z–γ mixing function in Eq. (64) is given by

ΠF
Zγ(M2

Z) = 2
∑

f

Nf
C |Qf |vf I3(−s;m2

f ,m
2
f ) , (67)

where vf = 1 − 4Qfs
2
W , and where the index f runs over all fundamental fermions. The integrals

F3 in (66) and I3(Q
2;M2

1 ,M
2
2 ) in (67) are given in Appendices C and D of Ref. [162].

For the two-loop corrections to the electroweak form factors, δρf,G2

rem and δκf,G2

rem in Eqs. (58) and
(59), the interested reader is referred to the original literature [6, 16, 45, 154–157]. Because of
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missing two-loop corrections to the form factors ρb
Z and κb

Z occurring in Z → bb, an approximate
expression is used, which includes the full one-loop correction and the known leading two-loop
terms ∝ m4

t . Non-universal top contributions [6, 163, 164] must be taken into account in this
channel due to a CKM factor close to one and the large mass difference of bottom and top quarks

τb = −2xt

[

1 − π

3
αs(m

2
t ) +

GFm
2
t

8π2
√

2
τ (2)

(

m2
t

M2
Z

)]

, (68)

where the function τ (2)(m2
t/M

2
Z) is given in [163]. Since the first term in Eq. (68) represents one-

loop corrections, it must be subtracted from the universal form factors to avoid double-counting.
Let ρ′b and κ′b be these corrected form factors (cf. Refs. [6, 163, 164] for the correction procedure),
the form factors beyond one-loop are obtained by ρb = ρ′b (1 + τb)

2 and κb = κ′b(1 + τb)
−1.

A.3.1 Self-Energies of W and Z Boson

The W and Z boson self-energies
∑F

WW
and

∑F
ZZ

and on-shell derivative
∑′F

ZZ
are the sums of

bosonic and fermionic parts. The bosonic parts read [16, 165]

∑Bos,F
WW

(0)

M2
W

=
5c2W (1 + c2W )

8
− 17

4
+

5

8c2W
− rW

8
+

(

9

4
+

3

4c2W
− 3

s2W

)

ln c2W +
3rW

4(1 − rW )
ln rW ,

(69)
∑Bos,F

WW
(M2

W )

M2
W

= − 157

9
+

23

12c2W
+

1

12c4W
− rW

2
+
r2W
12

+
1

c2W

(

−7

2
+

7

12c2W
+

1

24c4W

)

ln c2W

+ rW

(

−3

4
+
rW
4

− r2W
24

)

ln rW +

(

1

2
− rW

6
+
r2W
24

)

LWH(M2
W )

M2
W

+

(

−2c2W − 17

6
+

2

3c2W
+

1

24c4W

)

LWZ(M2
W )

M2
W

, (70)

∑Bos,F
ZZ

(M2
Z)

M2
W

= − 8c4W − 34c2W
3

+
35

18

(

1 +
1

c2W

)

− rW
2

+
r2Z

12c2W
+ rW

(

−3

4
+
rZ
4

− r2Z
24

)

ln rZ

+
5 ln c2W
6c2W

+

(

1

2
− rZ

6
+
r2Z
24

)

LZH(M2
Z)

M2
W

+

(

−2c6W − 17

6
c4W +

2

3
c2W +

1

24

)

LWW (M2
Z)

M2
W

, (71)

∑′Bos,F

ZZ
(M2

Z) = − 4c4W +
17c2W

3
− 23

9
+

5

18c2W
− rW

2
+
rW rZ

6
+ rW

(

−3

4
+

3rZ
8

− r2Z
12

)

ln rZ

− 1

12c2W
ln c2W +

ln rZ
2c2W

+

(

−c6W +
7c4W
6

− 17c2W
12

− 1

8

)

LWW (M2
Z)

M2
W

+

(

1

2
− 5rZ

24
+
r2Z
12

+
1

2(rZ − 4)

)

LZH(M2
Z)

MW
2 , (72)

where the shorthand notation rW = M2
H/M

2
W and rZ = M2

H/M
2
Z has been used. The function

LV1V2(s) ≡ L(−s;M2
V1
,M2

V2
) is defined in Eq. (2.14) of Ref. [166].
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The fermionic parts read [16, 165]

∑Fer,F
WW

(M2
W )

M2
W

=
∑

f=fu,fd

Nf
C

[

− 2s

M2
W

I3(. . . ) +
m2

fu

M2
W

I1(. . . ) +
m2

fd

M2
W

I1(−s;m2
fd
,m2

fu
)

]

, (73)

∑Fer,F
ZZ

(M2
Z)

M2
W

=
1

2c2W

∑

f

Nf
C

[

− s

M2
Z

(

1 + v2
f

)

I3(−s;m2
f ,m

2
f ) +

m2
f

M2
Z

I0(−s;m2
f ,m

2
f )

]

, (74)

∑′Fer,F

ZZ
(M2

Z) = −
∑

f

Nf
C

{

rf
2

[

1 − rfM
2
WF(−M2

Z ,m
2
f ,m

2
f )
]

+
1

6c2W

(

1 + v2
f

)

(75)

×
[

1

2
ln(rf c

2
W ) + rf c

2
W + (− 1

4c2W
+
rf
2

− r2fc
2
W )M2

WF(−M2
Z ,m

2
f ,m

2
f )

]}

,

with rf = m2
f/M

2
W and vf = 1− 4Qfs

2
W (recalled from above), and where (. . . ) in Eq. (73) stands

for (−s;m2
fu
,m2

fd
). The sums are taken over all fundamental up-type and down-type fermions of

all SU(2) ⊗ U(1) doublets with masses mfu and mfd
, respectively. The integrals In(Q2;M2

1 ,M
2
2 )

and F are given in Appendix D of Ref. [162].

A.4 Radiator Functions

The radiator functions Rq
V (s) and Rq

A(s) absorb the final state QED and QCD corrections to the
vector and axial-vector currents in hadronic Z decays. They also contain mixed QED ⊗ QCD
corrections and finite quark-mass corrections expressed in terms of running masses. The following
formulae are taken from [45]. They have been updated to take into account results from the recent
3NLO calculation of the massless QCD Adler function [17] (represented by the coefficient C04).

Rq
V (s) = 1 +

3

4
Q2

q

α(s)

π
+ aS(s) − 1

4
Q2

q

α(s)

π
aS(s)

+

[

C02 + Ct
2

(

s

m2
t

)]

a2
S(s) + C03a

3
S(s) + C04a

4
S(s)

+ δC05a
5
S(s) +

m2
c(s) +m2

b(s)

s
C23a

3
S(s)

+
m2

q(s)

s

[

CV
21aS(s) + CV

22a
2
S(s) + CV

23a
3
S(s)

]

+
m4

c(s)

s2

[

C42 − ln
m2

c(s)

s

]

a2
S(s) +

m4
b(s)

s2

[

C42 − ln
m2

b(s)

s

]

a2
S(s)

+
m4

q(s)

s2

{

CV
41aS(s) +

[

CV
42 + CV,L

42 ln
m2

q(s)

s

]

a2
S(s)

}

+ 12
m′4

q (s)

s2
a2

S(s) −
m6

q(s)

s3

{

8 +
16

27

[

155 + 6 ln
m2

q(s)

s

]

aS(s)

}

, (76)
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Rq
A(s) = 1 +

3

4
Q2

q

α(s)

π
+ aS(s) − 1

4
Q2

q

α(s)

π
aS(s)

+

[

C02 + Ct
2

(

s

m2
t

)

− (2Iq
3 )I(2)

(

s

m2
t

)]

a2
S(s)

+

[

C03 − (2Iq
3 ) I(3)

(

s

m2
t

)]

a3
S(s) + [C04 − (2Iq

3) δI(4) ] a4
S(s)

+ δC05a
5
S(s) +

m2
c(s) +m2

b(s)

s
C23a

3
S(s)

+
m2

q(s)

s

[

CA
20 + CA

21aS(s) + CA
22a

2
S(s) + 6

(

3 + ln
m2

t

s

)

a2
S(s) + CA

23a
3
S(s)

]

− 10
m2

q(s)

m2
t

[

8

81
+

1

54
ln
m2

t

s

]

a2
S(s)

+
m4

c(s)

s2

[

C42 − ln
m2

c(s)

s

]

a2
S(s) +

m4
b(s)

s2

[

C42 − ln
m2

b(s)

s

]

a2
S(s)

+
m4

q(s)

s2

{

CA
40 + CA

41aS(s) +

[

CA
42 + CA,L

42 ln
m2

q(s)

s

]

a2
S(s)

}

− 12
m′4

q (s)

s2
a2

S(s) , (77)

where the finite quark-mass corrections are retained for charm and bottom quarks only, i.e., all
lighter quarks are taken to be massless. This restricts the validity of the above formula to energies
well above the strange-pair and below the top-pair production thresholds, which is sufficient for
our use. The mass m′

q denotes the other quark mass, i.e., it is mb if q = c and mc if q = b.

The running of the quark masses is computed in the MS scheme according to Eq. (57). The two
parameters δI(4) and δC05 represent the next unknown coefficients in the perturbative expansion.
They are treated as theoretical errors within the Rfit scheme, and vary within the bounds obtained
when assuming a geometric growth of the perturbative coefficients with the perturbative order,
i.e., for a coefficient H one has δHn = (Hn−1/Hn−2) ·Hn−1.

The expressions for the fixed-order perturbative coefficients C
(V/A)
ij in Eqs. (76) and (77) are given

below.

Massless non-singlet corrections [17, 167–170]:

C02 =
365

24
− 11 ζ(3) +

(

−11

12
+

2

3
ζ(3)

)

nf , (78)

C03 =
87029

288
− 121

8
ζ(2) − 1103

4
ζ(3) +

275

6
ζ(5)

+

(

−7847

216
+

11

6
ζ(2) +

262

9
ζ(3) − 25

9
ζ(5)

)

nf +

(

151

162
− 1

18
ζ(2) − 19

27
ζ(3)

)

n2
f , (79)

C04 = − 156.61 + 18.77nf − 0.7974n2
f + 0.0215n3

f , (80)

which for nf = 5 take the values C02 = 1.40923, C03 = −12.7671 and C04 = −80.0075, exhibiting
satisfactory convergence given that αS(M2

Z)/π ≃ 0.04.
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Quadratic massive corrections [171]:

C23 = − 80 + 60 ζ(3) +

[

32

9
− 8

3
ζ(3)

]

nf , (81)

CV
21 = 12 , (82)

CV
22 =

253

2
− 13

3
nf , (83)

CV
23 = 2522 − 855

2
ζ(2) +

310

3
ζ(3) − 5225

6
ζ(5)

+

[

−4942

27
+ 34 ζ(2) − 394

27
ζ(3) +

1045

27
ζ(5)

]

nf +

[

125

54
− 2

3
ζ(2)

]

n2
f , (84)

CA
20 = − 6 , (85)

CA
21 = − 22 , (86)

CA
22 = − 8221

24
+ 57 ζ(2) + 117 ζ(3) +

[

151

12
− 2 ζ(2) − 4 ζ(3)

]

nf , (87)

CA
23 = − 4544045

864
+ 1340 ζ(2) +

118915

36
ζ(3) − 127 ζ(5)

+

[

71621

162
− 209

2
ζ(2) − 216 ζ(3) + 5 ζ(4) + 55 ζ(5)

]

nf

+

[

−13171

1944
+

16

9
ζ(2) +

26

9
ζ(3)

]

n2
f . (88)

Quartic massive corrections [171]:

C42 =
13

3
− 4 ζ(3) , (89)

CV
40 = − 6 , (90)

CV
41 = − 22 , (91)

CV
42 = − 3029

12
+ 162 ζ(2) + 112 ζ(3) +

[

143

18
− 4 ζ(2) − 8

3
ζ(3)

]

nf , (92)

CV,L
42 = − 11

2
+

1

3
nf , (93)

CA
40 = 6 , (94)

CA
41 = 10 , (95)

CA
42 =

3389

12
− 162 ζ(2) − 220 ζ(3) +

[

−41

6
+ 4 ζ(2) +

16

3
ζ(3)

]

nf , (96)

CA,L
42 =

77

2
− 7

3
nf . (97)

Power suppressed top-mass correction [171]:

Ct
2(x) = x

(

44

675
− 2

135
lnx

)

. (98)
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Singlet axial-vector corrections [171]:

I(2)(x) = − 37

12
+ lnx+

7

81
x+ 0.0132x2 , (99)

I(3)(x) = − 5075

216
+

23

6
ζ(2) + ζ(3) +

67

18
lnx+

23

12
ln2x . (100)

Singlet vector correction [171]:

Rh
V (s) =





∑

f

vf





2

(−0.41317) a3
S(s) . (101)
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