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At Run II of the Tevatron it will be possible to measure the W boson mass with a relative precision of about 2 × 10−4,

which will eventually represent the best measured observable beyond the input parameters of the SM. Proper interpretation

of such an ultrahigh precision measurement, either within the SM or beyond, requires the meticulous implementation and

control of higher order radiative corrections. The FORTRAN package GAPP, described here, is specifically designed to meet

this need and to ensure the highest possible degrees of accuracy, reliability, adaptability, and efficiency.

1. PRECISION TESTS

Precision analysis of electroweak interactions follows
three major objectives: high precision tests of the SM;
the determination of its fundamental parameters; and
studies of indications and constraints of possible new
physics beyond the SM, such as supersymmetry or
new gauge bosons. Currently, the experimental in-
formation comes from the very high precision Z bo-
son measurements at LEP 1 and the SLC, direct mass
measurements and constraints from the Tevatron and
LEP 2, and low energy precision experiments, such as
in atomic parity violation, ν scattering, and rare de-
cays. These measurements are compared with the pre-
dictions of the SM and its extensions. The level of
precision is generally very high. Besides the need for
high-order loop calculations, it is important to utilize
efficient renormalization schemes and scales to ensure
sufficient convergence of the perturbative expansions.

The tasks involved called for the creation of a
special purpose FORTRAN package, GAPP, short
for the Global Analysis of Particle Properties [ 1].
It is mainly devoted to the calculation of pseudo-
observables, i.e., observables appropriately idealized
from the experimental reality. The reduction of raw
data to pseudo-observables is performed by the ex-
perimenters with available packages (e.g., ZFITTER
for Z pole physics). For cross section and asymme-
try measurements at LEP 2 (not implemented in the
current version, GAPP 99.7), however, this reduction
is not optimal and convoluted expressions should be
used instead. GAPP attempts to gather all available
theoretical and experimental information; it allows the
addition of extra parameters describing new physics;
it treats all relevant SM inputs as global fit parame-
ters; and it can easily be updated with new calcula-
tions, data, observables, or fit parameters. For clarity
and speed it avoids numerical integrations throughout.

It is based on the modified minimal subtraction (MS)
scheme which demonstrably avoids large expansion co-
efficients.

GAPP is endowed with the option to constrain non-
standard contributions to the oblique parameters de-
fined to affect only the gauge boson self-energies [ 2]
(e.g. S, T , and U); specific anomalous Z couplings; the
number of active neutrinos (with standard couplings
to the Z boson); and the masses, mixings, and cou-
pling strengths of extra Z bosons appearing in models
of new physics. With view on the importance of su-
persymmetric extensions of the SM on one hand, and
upcoming experiments on the other, I also included
the b → sγ transition amplitude, and intend to add
the muon anomalous magnetic moment. In the latter
case, there are theoretical uncertainties from hadronic
contributions which are partially correlated with the
renormalization group (RG) evolutions of the QED
coupling and the weak mixing angle. These correla-
tions will be partially taken into account by including
heavy quark effects in analytical form; see Ref. [ 3] for
a first step in this direction. By comparing this scheme
with more conventional ones, it will also be possible to
isolate a QCD sum rule and to rigorously determine
the charm and bottom quark MS masses, m̂c and m̂b,
with high precision.

2. GAPP

2.1. Basic structure

In the default running mode of the current version,
GAPP 99.7, a fit is performed to 41 observables, out of
which 26 are from Z pole measurements at LEP 1 and
the SLC. The Fermi constant, GF (from the muon life-
time), the electromagnetic fine structure constant, α
(from the quantum Hall effect), and the light fermion
masses are treated as fixed inputs. The exception is
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m̂c which strongly affects the RG running1 of α̂(µ) for
µ > m̂c. I therefore treat m̂c as a fit parameter and
include an external constraint with an enhanced er-
ror to absorb hadronic threshold uncertainties of other
quark flavors, as well as theoretical uncertainties from
the application of perturbative QCD at relatively low
energies. Other fit parameters are the Z boson mass,
MZ , the Higgs boson mass, MH , the top quark mass,
mt, and the strong coupling constant, αs, so that there
are 37 effective degrees of freedom. Given current pre-
cisions, MZ may alternatively be treated as an addi-
tional fixed input.

The file fit.f basically contains a simple call to the
minimization program MINUIT [ 4] (from the CERN
program library) which is currently used in data driven
mode (see smfit.dat). It in turn calls the core sub-
routine fcn and the χ2-function chi2, both contained
in chi2.f. Subroutine fcn defines constants and flags;
initializes parts of the one-loop package FF [ 5, 6]; and
makes the final call to subroutine values in main.f

which drives the output (written to file smfit.out). In
chi2 the user actively changes and updates the data for
the central values, errors, and correlation coefficients
of the observables, and includes or excludes individual
contributions to χ2 (right after the initialization, chi2
= 0.d0). To each observable (as defined at the begin-
ning of chi2) corresponds an entry in each of the fields
value, error, smval, and pull, containing the cen-
tral observed value, the total (experimental and the-
oretical) error, the calculated fit value, and the stan-
dard deviation, respectively. The function chi2 also
contains calls to various other subroutines where the
actual observable calculations take place. These are
detailed in the following subsections.

Another entry to GAPP is provided through mh.f

which computes the probability distribution function
of MH . The probability distribution function is the
quantity of interest within Bayesian data analysis (as
opposed to point estimates frequently used in the con-
text of classical methods), and defined as the product
of a prior density and the likelihood, L ∼ exp(−χ2/2).
If one chooses to disregard any further information
on MH (such as from triviality considerations or di-
rect searches) one needs a non-informative prior. It
is recommanded to choose a flat prior in a variable
defined on the whole real axis, which in the case of
MH is achieved by an equidistant scan over log MH .
An informative prior is obtained by activating one of
the approximate Higgs exclusion curves from LEP 2
near the end of chi2.f. These curves affect values of
MH even larger than the corresponding quoted 95%
CL lower limit and includes an extrapolation to the

1Quantities defined in the MS scheme are denoted by a caret.

kinematic limit; notice that this corresponds to a con-
servative treatment of the upper MH limit.

Contour plots can be obtained using the routine
mncontours from MINUIT. For the cases this fails,
some simpler and slower but more robust contour pro-
grams are also included in GAPP, but these have to be
adapted by the user to the case at hand.

2.2. α̂, sin2 θ̂W , MW

At the core of present day electroweak analyses is
the interdependence between GF , MZ , the W boson
mass, MW , and the weak mixing angle, sin2 θW . In
the MS scheme it can be written as [ 7, 8],

ŝ2 =
A2

M2
W (1 − ∆r̂W )

, ŝ2ĉ2 =
A2

M2
Z(1 − ∆r̂Z)

, (1)

where,

A =

[

πα√
2GF

]1/2

= 37.2805(2) GeV, (2)

ŝ2 is the MS mixing angle, ĉ2 = 1 − ŝ2, and where,

∆r̂W =
α

π
∆̂γ +

Π̂WW (M2
W ) − Π̂WW (0)

M2
W

+ V + B, (3)

and,

∆r̂Z = ∆r̂W + (1 − ∆r̂W )
Π̂ZZ(M2

Z) − Π̂W W (M2
W

)
ĉ2

M2
Z

, (4)

collect the radiative cor-
rections computed in sin2th.f. The Π̂ indicate MS
subtracted self-energies, and V + B denote the ver-
tex and box contributions to µ decay. Although these
relations involve the MS gauge couplings they employ
on-shell gauge boson masses, absorbing a large class of
radiative corrections [ 9].

∆r̂W and ∆r̂Z are both dominated by the contribu-
tion ∆̂γ(MZ) which is familiar from the RG running
of the electromagnetic coupling,

α̂(µ) =
α

1 − α
π ∆̂γ(µ)

, (5)

and computed in alfahat.f up to four-loop O(αα3
s).

Contributions from c and b quarks are calculated using
an unsubtracted dispersion relation [ 3]. If µ is equal to
the mass of a quark, three-loop matching is performed
and the definition of α̂ changes accordingly. Pure QED
effects are included up to next-to-leading order (NLO)
while higher orders are negligible. Precise results can
be obtained for µ < 2mπ and µ ≥ mc.

Besides full one-loop electroweak corrections, ∆r̂W

and ∆r̂Z include enhanced two-loop contributions
of O(α2m4

t ) [ 10] (implemented using the ana-
lytic expressions of Ref. [ 11]) and O(α2m2

t ) [ 12]

2



(available as expansions in small and large MH);
mixed electroweak/QCD corrections of O(ααs) [ 13]
and O(αα2

sm
2
t ) [ 14]; the analogous mixed elec-

troweak/QED corrections of O(α2); and fermion mass
corrections also including the leading gluonic and pho-
tonic corrections.

2.3. Z decay widths and asymmetries

The partial width for Z → f f̄ decays is given by,

Γff̄ =
Nf

CMZα̂

24ŝ2ĉ2
|ρ̂f |

[

1 − 4|Qf |Re(κ̂f )ŝ2 + 8Q2
f ŝ4|κ̂f |2

]

×
[

1 + δQED + δNS
QCD + δS

QCD − α̂α̂s

4π2
Q2

f + O(m2
f )

]

.(6)

Nf
C is the color factor, Qf is the fermion charge, and

ρ̂f and κ̂f are form factors which differ from unity
through one-loop electroweak corrections [ 15] and are
computed in rho.f and kappa.f, respectively. For
f 6= b there are no corrections of O(α2m4

t ) and con-
tributions of O(α2m2

t ) to κ̂f [ 16] and ρ̂f [ 9] are very
small and presently neglected. On the other hand, ver-
tex corrections of O(ααs) [ 17] are important and shift
the extracted αs by ∼ 0.0007.

The Z → bb̄ vertex receives extra corrections due
to heavy top quark loops. They are large and have
been implemented in bvertex.f based on Ref. [ 18].
O(α2m4

t ) corrections [ 10, 11] are included, as well,
while those of O(α2m2

t ) are presently unknown. The
leading QCD effects of O(ααsm

2
t ) [ 19] and all sublead-

ing O(ααs) corrections [ 20] are incorporated into ρ̂b

and κ̂b, but not the O(αα2
sm

2
t ) contribution which is

presently available only for nonsinglet diagrams [ 21].
In Eq. (6), δQED are the O(α) and O(α2) QED cor-

rections. δNS
QCD are the universal QCD corrections up

to O(α3
s) which include quark mass dependent contri-

butions due to double-bubble type diagrams [ 22, 23].
δS
QCD are the singlet contributions to the axial-vector

and vector partial widths which start, respectively, at
O(α2

s) and O(α3
s), and induce relatively large family

universal but flavor non-universal mt effects [ 23, 24].
The corrections appearing in the second line of Eq. (6)
are evaluated in lep100.f.

The dominant massless contribution to δNS
QCD can be

obtained by analytical continuation of the Adler D-
function, which (in the MS scheme) has a very well
behaved perturbative expansion ∼ 1 +

∑

i=0 dia
i+1
s in

as = α̂s(MZ)/π (see the Appendix for details). The
process of analytical continuation from the Euclidean
to the physical region induces further terms which are
proportional to β-function coefficients, enhanced by
powers of π2, and start at O(α3

s). Fortunately, these
terms [ 25] involve only known coefficients up to O(α5

s),
and the only unknown coefficient in O(α6

s) is propor-

tional to the four-loop Adler function coefficient, d3.
In the massless approximation,

δNS
QCD ≈ as + 1.4092a2

s − (0.681 + 12.086)a3
s + (7)

(d3 − 89.19)a4
s + (d4 + 79.7)a5

s + (d5 − 121d3 + 3316)a6
s,

and terms of order a7
s ∼ 10−10 are clearly negligible.

Notice, that the O(α6
s) term effectively reduces the sen-

sitivity to d3 by about 18%. Eq. (7) amounts to a reor-
ganization of the perturbative series in terms of the di

times some function of αs; a similar idea is routinely
applied to the perturbative QCD contribution to τ de-
cays [ 26].

Final state fermion mass effects [ 22, 27] of O(m2
f )

(and O(m4
b) for b quarks) are best evaluated by ex-

panding in m̂2
q(MZ) thus avoiding large logarithms

in the quark masses. The singlet contribution of
O(α2

sm
2
b) is also included.

The dominant theoretical uncertainty in the Z line-
shape determination of αs originates from the mass-
less quark contribution, and amounts to about ±0.0004
as estimated in the Appendix. There are several fur-
ther uncertainties, all of O(10−4): from the O(α4

s)
heavy top quark contribution to the axial-vector part
of δS

QCD; from the missing O(αα2
sm

2
t ) and O(α2m2

t )

contributions to the Zbb̄-vertex; from further non-
enhanced but cohering O(αα2

s)-vertex corrections; and
from possible contributions of non-perturbative origin.
The total theory uncertainty is therefore,

∆αs(MZ) = ±0.0005, (8)

which can be neglected compared to the current ex-
perimental error. If m̂b is kept fixed in a fit, then its
parametric error would add an uncertainty of ±0.0002,
but this would not change the total uncertainty (8).

Polarization asymmetries are (in some cases up to
a trivial factor 3/4 or a sign) given by the asymmetry
parameters,

Af =
1 − 4|Qf |Re(κ̂f )ŝ2

1 − 4|Qf |Re(κ̂f )ŝ2 + 8Q2
f ŝ4|κ̂f |2

, (9)

and the forward-backward asymmetries by,

AFB(f) =
3

4
AeAf . (10)

The hadronic charge asymmetry, QFB, is the linear
combination,

QFB =
∑

q=d,s,b

RqAFB(q) −
∑

q=u,c

RqAFB(q), (11)

and the hadronic peak cross section, σhad, is stored in
sigmah, and defined by,

σhad =
12πΓe+e−Γhad

M2
ZΓ2

Z

. (12)
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Widths and asymmetries are stored in the fields
gamma(f), alr(f), and afb(f). The fermion index,
f, and the partial width ratios, R(f), are defined in
Table 1.

Table 1
Some of the variables used in lep100.f. Γinv and Γhad

are the invisible and hadronic decays widths, respec-
tively.

0 ν gamma(0) = Γinv alr(0) = 1
1 e R(1) = Γhad/Γe+e− alr(1) = Ae

2 µ R(2) = Γhad/Γµ+µ− alr(2) = Aµ

3 τ R(3) = Γhad/Γτ+τ− alr(3) = Aτ

4 u R(4) = Γuū/Γhad —
5 c R(5) = Γcc̄/Γhad alr(5) = Ac

6 t R(6) = 0 —
7 d R(7) = Γdd̄/Γhad —
8 s R(8) = Γss̄/Γhad alr(8) = As

9 b R(9) = Γbb̄/Γhad alr(9) = Ab

10 had gamma(10) = Γhad afb(10) = QFB

11 all gamma(11) = ΓZ —

2.4. Fermion masses

I use MS masses as far as QCD is concerned, but re-
tain on-shell masses for QED since renormalon effects
are unimportant in this case. This results in a hybrid
definition for quarks. Accordingly, the RG running of
the masses to scales µ 6= m̂q uses pure QCD anoma-
lous dimensions. The running masses correspond to
the functions msrun(µ), mcrun(µ), etc. which are
calculated in masses.f to three-loop order. Anoma-
lous dimensions are also available at four-loop order [
28], but can safely be neglected. Also needed is the
RG evolution of αs which is implemented to four-loop
precision [ 29] in alfas.f.

I avoid pole masses for the five light quarks through-
out. Due to renormalon effects, these can be deter-
mined only up to O(ΛQCD) and would therefore in-
duce an irreducible uncertainty of about 0.5 GeV. In
fact, perturbative expansions involving the pole mass
show unsatisfactory convergence. In contrast, the MS
mass is a short distance mass which can, in principle,
be determined to arbitrary precision, and perturbative
expansions are well behaved with coefficients of order
unity (times group theoretical factors which grow only
geometrically). Note, however, that the coefficients of
expansions involving large powers of the mass, m̂n, are
rather expected to be of O(n). This applies, e.g., to
decays of heavy quarks (n = 5) and to higher orders in
light quark mass expansions.

The top quark pole mass enters the analysis

when the results on mt from on-shell produced top
quarks at the Tevatron are included. In subroutine
polemasses(nf,mpole) m̂q(m̂q) is converted to the
quark pole mass, mpole, using the two-loop pertur-
bative relation from Ref. [ 30]. The exact three-loop
result [ 31] has been approximated (for mt) by employ-
ing the BLM [ 32] scale for the conversion. Since the
pole mass is involved it is not surprising that the coef-
ficients are growing rapidly. The third order contribu-
tion is 31%, 75%, and 145% of the second order for mt

(nf = 6), mb (nf = 5), and mc (nf = 4), respectively. I
take the three-loop contribution to the top quark pole
mass of about 0.5 GeV as the theoretical uncertainty,
but this is currently negligible relative to the experi-
mental error. At a high energy lepton collider it will
be possible to extract the MS top quark mass directly
and to abandon quark pole masses altogether.

2.5. ν scattering

The ratios of neutral-to-charged current cross sec-
tions,

Rν =
σNC

νN

σCC
νN

, Rν̄ =
σNC

ν̄N

σCC
ν̄N

, (13)

have been measured precisely in deep inelastic ν
(ν̄) hadron scattering (DIS) at CERN (CDHS and
CHARM) and Fermilab (CCFR). The most precise re-
sult was obtained by the NuTeV Collaboration at Fer-
milab who determined the Paschos-Wolfenstein ratio,

R− =
σNC

νN − σNC
ν̄N

σCC
νN − σCC

ν̄N

∼ Rν − rRν̄ , (14)

with r = σCC
ν̄N /σCC

νN . Results on Rν are frequently
quoted in terms of the on-shell weak mixing angle (or
MW ) as this incidentally gives a fair description of the
dependences on mt and MH . One can write approxi-
mately,

Rν = g2
L + g2

Rr, Rν̄ = g2
L +

g2
R

r
, R− = g2

L − g2
R, (15)

where,

g2
L =

1

2
− sin2 θW +

5

9
sin4 θW , g2

R =
5

9
sin4 θW . (16)

However, the study of new physics requires the im-
plementation of the actual linear combinations of ef-
fective four-Fermi operator coefficients, ǫL,R(u) and
ǫL,R(d), which have been measured. With the ap-
propriate value for the average momentum trans-
fer, q2, as input, these are computed in the sub-
routines nuh(q2,epsu L,epsd L,epsu R,epsd R) (ac-
cording to Ref. [ 33]), nuhnutev, nuhccfr, and
nuhcdhs, all contained in file dis.f. Note, that the
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CHARM results have been adjusted to CDHS condi-
tions [ 34]. While the experimental correlations be-
tween the various DIS experiments are believed to
be negligible, large correlations are introduced by the
physics model through charm mass threshold effects,
quark sea effects, radiative corrections, etc. I con-
structed the matrix of correlation coefficients using the
analysis in Ref. [ 34],

R− Rν Rν Rν Rν̄ Rν̄ Rν̄





















1.00 0.10 0.10 0.10 0.00 0.00 0.00
0.10 1.00 0.40 0.40 0.10 0.10 0.10
0.10 0.40 1.00 0.40 0.10 0.10 0.10
0.10 0.40 0.40 1.00 0.10 0.10 0.10
0.00 0.10 0.10 0.10 1.00 0.15 0.15
0.00 0.10 0.10 0.10 0.15 1.00 0.15
0.00 0.10 0.10 0.10 0.15 0.15 1.00





















.(17)

The effective vector and axial-vector couplings, gνe
V

and gνe
A , from elastic νe scattering are calculated in

subroutine nue(q2,gvnue,ganue) in file nue.f. The
momentum transfer, q2, is currently set to zero [
36]. Needed is the low energy ρ parameter, rhonc,
which describes radiative corrections to the neutral-
to-charged current interaction strengths. Together
with sin2t0 (described below) it is computed in file
lowenergy.f.

2.6. Low energy observables

The weak atomic charge, Qw, from atomic parity
violation and fixed target ep scattering is computed
in subroutine apv(Qw,Z,AA,C1u,C1d,C2u,C2d) where
Z and AA are, respectively, the atomic number and
weight. Also returned are the coefficients from lepton-
quark effective four-Fermi interactions which are cal-
culated according to [ 37].

These observables are sensitive to the low energy
mixing angle, sin2t0, which defines the electroweak
counterpart to the fine structure constant and is sim-
ilar to the one introduced in Ref. [ 7]. There is sig-
nificant correlation between the hadronic uncertainties
from the RG evolutions of α̂ and the weak mixing an-
gle. Presently, this correlation is ignored, but with the
recent progress in atomic parity violation experiments
it should be accounted for in the future.

An additional source of hadronic uncertainty is in-
troduced by γZ-box diagrams which are unsuppressed
at low energies. At present, this uncertainty can be
neglected relative to the experimental precision.

Besides apv, file pnc.f contains in addition the sub-
routine moller for the anticipated polarized fixed tar-
get Møller scattering experiment at SLAC. Radiative
corrections are included following Ref. [ 38].

2.7. b → sγ
Subroutine bsgamma returns the decay ratio,

R =
B(b → sγ)

B(b → ceν)
. (18)

It is given by [ 39, 40],

R =
6α

π

∣

∣

∣

∣

V ∗

tsVtb

Vcb

∣

∣

∣

∣

2
S

f(z)

|D̄|2 + A/S + δNP + δEW

(1 + δSL
NP )(1 + δSL

EW )
, (19)

where |V ∗

tsVtb/Vcb|2 = 0.950 is a combination of
Cabbibo-Kobayashi-Maskawa matrix elements and S
is the Sudakov factor [ 41]. δNP and δEW are non-
perturbative and NLO electroweak [ 42] corrections,
both for the b → sγ and the semileptonic (b → ceν)
decay rates.

D̄ = C0
7 +

α̂s(m̂b)

4π
(C1

7 + V ), (20)

is called the reduced amplitude for the process b → sγ,
and is given in terms of the Wilson coefficient C7 at
NLO. C7 and the other Ci appearing below are ef-
fective Wilson coefficients with NLO RG evolution [
43] from the weak scale to µ = m̂b understood. The
NLO matching conditions at the weak scale have been
calculated in Ref. [ 44]. D̄ includes the virtual gluon
corrections,

V = r2C
0
2 + r7C

0
7 + r8C

0
8 , (21)

so that it squares to a positive definite branching frac-
tion. On the other hand, the amplitude for gluon
Bremsstrahlung (b → sγg),

A = α̂s(m̂b)
π [C0

2 (C0
8f28(1) + C0

7f27(1) + C0
2f22(1))+

C0
8 (C0

8f88(δ) + C0
7f78(δ)) + (C0

7 )2f77(δ)], (22)

is added linearly to the cross section. The Wilson co-
efficient C0

2 is defined as in Ref. [ 45]. It enters only
at NLO, is significantly larger than C0

7 , and dominates
the NLO contributions. The parameter 0 ≤ δ ≤ 1
in the coefficient functions fij characterizes the min-
imum photon energy and has been set to δ = 0.9 [
41], except for the first line in Eq. (22) where δ = 1.0
corresponding to the full cross section. The f2i are
complicated integrals which can be solved in terms of
polylogarithms up to 5th order. In the code I use an
expansion in z = m2

c/m2
b and δ = 1.0. Once experi-

ments become more precise the correction to δ = 0.9
should be included.

f(z) is the phase space factor for the semileptonic
decay rate including NLO corrections [ 46]. I defined
the MS mass ratio in z = [m̂c(m̂b)/m̂b(m̂b)]

2 at the
common scale, µ = m̂b, which I also assumed for the
factor m̂5

b multiplying the decay widths. Since I do not
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reexpand the denominator this effects the phase space
function at higher orders. Using the O(α2

s)-estimate2

from Ref. [ 47], I obtain for the semileptonic decay
width,

ΓSL ∼ m̂5
bf0(z)

[

1 + 2.7
α̂s(m̂b)

π
− 1.6

(

α̂s

π

)2
]

, (23)

where f0(z) is the leading order phase space factor. It
is amusing that the coefficients in Eq. (23) are comfort-
ably (and perhaps somewhat fortuitously) small, with
the O(a2

s)-coefficient even smaller than the one in Ref. [
47] where a low scale running mass had been advo-
cated. Moreover, using the prefactor m̂5

b in the numer-
ator of R reduces the size of r7 in Eq. (21) and there-
fore the coefficient κ(δ) = f77(δ) + r7/2 which multi-

plies the term as(C
0,eff
7 )2. I obtain −2.1 < κ(δ) < 1.4,

while with the pole mass prefactor M5
b one would have

−8.7 ≤ κ(δ) < −5.3.
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A. Uncertainties from perturbative QCD

Writing the perturbative expansion of some quantity
in its general form for an arbitrary gauge group, it can
easily be decomposed into separately gauge invariant
parts. Table 2 shows for some (related) examples that
after removing the group theoretical prefactors, all co-
efficients, yi, are strictly of order unity, and that their
mean, ȳ, is very close to zero. In particular, there is no
sign of factorial growth of coefficients. These observa-
tions offer a valuable tool to estimate the uncertainties
associated with the truncation of the loop expansion,
so I would like to make them more precise.

Assume (for simplicity) that the yi are random draws
from some normal distribution with unknown mean,
µ, and variance, σ2. One can show that the marginal
distribution of µ follows a Student-t distribution with
n − 1 degrees of freedom, tn−1, centered about ȳ, and
with standard deviation,

∆µ =

√

∑

i(yi − ȳ)2

n(n − 3)
. (24)

As can be seen from the Table, µ is consistent with zero
in all cases, justifying the nullification of the unknown
coefficients from higher loops. I next assert that the

2I computed the O(α2
s
) coefficient for comparison only, and did

not include it in the code.

distribution of σ, conditional on µ = 0, follows a scaled
inverse-χ2 distribution with n degrees of freedom, from
which I obtain the estimate,

σ = σ0 ± ∆σ =

√

∑

i y2
i

n − 2

[

1 ±
√

1

2(n − 4)

]

. (25)

Inspection of the Table shows indeed that σ, as the
typical size of a coefficient, is estimated to be <

∼ O(1).
I now focus on the partial hadronic Z decay width.

As discussed in Section 2.3, the O(α3
s) term, d2, is

much smaller than the π2 term arising from analytical
continuation. This is specifically true for the relevant
case of nf = 5 active flavors, where large cancellations
occur between gluonic and fermionic loops. Notice,
that the D-function, in contrast to Rhad, has opposite
signs in the leading terms proportional to C2

ACF and
CACF TF nF . Indeed, the Adler D-function and the
β-function have similar structures regarding the signs
and sizes of the various terms (see Table 2), and we
do expect large cancellations in the β-function. The
reason is that it has to vanish identically in the case of
N = 4 supersymmetry. Ignoring scalar contributions
this case can be mimicked by setting TF nf = 2CA

(there are 2 Dirac fermions in the N = 4 gauge multi-
plet) or nf = 12 for QCD, which is of the right order.
In fact, all known QCD β-function coefficients become
very small for some value of nf between 6 and 16. We
therefore have a reason to expect that similar cancel-
lations will reoccur in the di at higher orders. As a 1σ
error estimate for d3, I suggest to use the largest known
coefficient (3×0.71) times the largest group theoretical
prefactor in the next order (C3

ACF ) which results in

d3 = 0 ± 77. (26)

With Eq. (7) and α̂s(MZ) = 0.120 one can absorb all
higher order effects into the O(α4

s)-coefficient of Rhad,
reff
3 = −81 ± 63. This shifts the extracted αs from

the Z lineshape by +0.0005 and introduces the small
uncertainty of ±0.0004.

The argument given above does certainly not apply
to the quenched case, nf = 0, and indeed d2(nf = 0) is
about −73% of the π2 term, i.e., large and positive. In
the case of nf = 3, which is of interest for the precision
determination of αs from τ decays, d2 is about −38%
of the π2 term. If one assumes that the same is true
of d3, one would obtain d3(nf = 3) = 60. Estimates
based on the principles of minimal sensitivity, PMS,
or fastest apparent convergence, FAC, yield d3(nf =
3) = 27.5 [ 25] so there might be some indications for a
positive d3(nf = 3). In any case, all these estimates lie
within the uncertainty in Eq. (26) and we will have to
await the proper calculation of the O(α4

s)-coefficient to
test these hypotheses. Note, that the current τ decay

6



analysis by the ALEPH Collaboration uses d3 = 50 ±
50 [ 50] which is more optimistic.

The analogous error estimate for the five-loop β-
function coefficient yields,

β4 = 0 ± 579. (27)

To get an estimate for the uncertainty in the RG run-
ning of α̂s, I translate Eq. (27) into

β3 = β3 ±
α̂s(µ0)

π
β4, (28)

where µ0 is taken to be the lowest scale in-
volved. This overestimates the uncertainty from β4,
thereby compensating for other neglected terms of
O(αn+4

s lnn µ2/µ2
0). For the RG evolution from µ = mτ

to µ = MZ this yields an uncertainty of ∆αs(MZ) =
±0.0005. Conversely, for fixed αs(MZ) = 0.120, I ob-
tain α̂s(m̂b) = 0.2313 ± 0.0006, α̂s(mτ ) = 0.3355 ±
0.0045, and α̂s(m̂c) = 0.403±0.011, where I have used
m̂b = 4.24 GeV and m̂c = 1.31 GeV. For comparison,
the ALEPH Collaboration quotes an evolution error of
∆αs(MZ) = ±0.0010 which is twice as large. I empha-
size that it is important to adhere to consistent stan-
dards when errors are estimated. This is especially true
in the context of a global analysis where the precisions
of the observables enter as their relative weights.
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2. M. Peskin and T. Takeuchi, Phys. Rev. Lett. 65,
964 (1990); D. Kennedy and P. Langacker, Phys.

Rev. Lett. 65, 2967 (1990); B. Holdom and J. Tern-
ing, Phys. Lett. B247, 88 (1990); G. Altarelli and
R. Barbieri, Phys. Lett. B253, 161 (1990).

3. J. Erler, Phys. Rev. D59, 054008 (1999).
4. The MINUIT writeup is available at URL:

http://consult.cern.ch/writeup/minuit/.
5. G.J. van Oldenborgh and J.A.M. Vermaseren, Z.

Phys. C46, 425 (1990); G.J. van Oldenborgh,
Comput. Phys. Commun. 66, 1 (1991).

6. The FF package is available at URL:
http://www.xs4all.nl/ g̃jvo/FF.html.

7. A. Sirlin, Nucl. Phys. B332, 20 (1990);
8. G. Degrassi, S. Fanchiotti, and A. Sirlin, Nucl.

Phys. B351, 49 (1991); G. Degrassi and A. Sirlin,
Phys. Rev. D46 3104 (1992).

9. G. Degrassi and P. Gambino, e-print
hep-ph/9905472.

10. R. Barbieri et al., Phys. Lett. B288, 95 (1992) and
Nucl. Phys. B409, 105 (1993).

11. J. Fleischer, O.V. Tarasov, and F. Jegerlehner,
Phys. Lett. B319, 249 (1993).

12. G. Degrassi, P. Gambino, and A. Vicini, Phys. Lett.

B383, 219 (1996);
13. A. Djouadi and C. Verzegnassi, Phys. Lett. B195,

265 (1987); A. Djouadi, Nuovo Cimento 100A, 357
(1988); B.A. Kniehl, Nucl. Phys. B347, 86 (1990);
S. Fanchiotti, B.A. Kniehl, and A. Sirlin, Phys.

Rev. D48, 307 (1993); A. Djouadi and P. Gambino,
Phys. Rev. D49, 3499 (1994), D49, 4705 (1994),
and D53, 4111(E) (1996).

14. K.G. Chetyrkin, J.H. Kühn, and M. Steinhauser,
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Table 2
Coefficients (MS ) appearing in the β-function of a
simple group [ 29]; in non-Abelian corrections to the
QED β-function (denoted D̃) [ 3, 48]; in the Adler
D-function [ 49] (rescaled by an overall factor 1/3);
and in Rhad (analytical continuation of D). The first
four segments correspond, respectively, to the first four
loop orders of non-singlet type. The fifth segment is
the singlet (double triangle) contribution in O(α3

s). In
D̃, D, and Rhad, an overall factor α̂MZ and the sums
involving charges or Z couplings have been dropped.
The completely symmetrical tensors of rank four, dA

and dF , as well as TF when appearing in parenthesis,
apply to the β-function only. Each TF is understood to
be multiplied by the number of flavors, nf , except for
the singlet term involving the symmetrical structure
constants, d.

group factor β D̃ D Rhad

CA 0.92 — — —
(TF ) −0.33 −0.33 0.33 0.33
C2

A 0.71 — — —
CATF −0.42 — — —
CF (TF ) −0.25 −0.25 0.25 0.25
C3

A 0.83 — — —
C2

ATF −0.82 — — —
CACF (TF ) −0.36 −0.23 0.18 0.18
CAT 2

F 0.09 — — —
C2

F (TF ) 0.03 0.03 −0.03 −0.03
CF TF (TF ) 0.08 0.08 −0.06 −0.06
C4

A 1.19 — — —
C3

ATF −1.67 — — —
C2

ACF (TF ) −0.23 −0.28 0.32 −0.38
C2

AT 2
F 0.50 — — —

CAC2
F (TF ) −0.42 −0.07 0.51 0.51

CACF TF (TF ) 0.51 0.42 −0.71 −0.21
CAT 3

F 0.01 — — —
C3

F (TF ) 0.18 0.18 −0.18 −0.18
C2

F TF (TF ) −0.17 −0.17 0.02 0.02
CF T 2

F (TF ) 0.02 0.02 0.09 −0.01
d2

A/NA 1.07 — — —
dAdF /NA −2.38 — — —
d2

F /NA (T 2
F d2/4) 0.50 0.50 −0.50 −0.50

ȳ −0.02 −0.01 0.02 −0.01
∆µ 0.17 0.09 0.11 0.09
σ0 0.83 0.28 0.37 0.31
∆σ 0.13 0.07 0.09 0.08
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