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We present a new QCD sum rule with high sensitivity to the continuum regions of charm and
bottom quark pair production. Combining this sum rule with existing ones yields very stable results
for the MS quark masses, m̂c(m̂c) and m̂b(m̂b). We introduce a phenomenological parametrization
of the continuum interpolating smoothly between the pseudoscalar threshold and asymptotic quark
regions. Comparison of our approach with recent BES data allows for a robust theoretical error esti-
mate. The parametric uncertainty due to αs is reduced by performing a simultaneous fit to the most
precise sum rules and other high precision observables. This includes a new evaluation of the lifetime
of the τ lepton, ττ , serving as a strong constraint on αs. Our results are m̂c(m̂c) = 1.289+0.040

−0.045 GeV,

m̂b(m̂b) = 4.207+0.030
−0.031 GeV (with a correlation of 29%), and αs(MZ)[ττ ] = 0.1221+0.0026

−0.0023 .

The determination of the fundamental Standard Model
(SM) parameters is important not only in its own right,
but also as a SM test when results from various sources
are compared. Such comparisons can foster our under-
standing of SM dynamics (such as strong QCD effects)
or may ultimately lead to hints of new physics beyond
the SM. Moreover, precise values of the SM parameters
can be compared against the predictions of more funda-
mental theories. Well known examples are Grand Unified
Theories [1] which typically predict values for the strong
coupling constant, αs, and the mass ratio mb/mτ .

It is generally difficult to obtain reliable informa-
tion on quark masses. The Particle Data Group [2]
lists only ranges for their values, indicating a lack of
confidence in the theoretical methods used to evaluate
them. Indeed, αs is quite large at the mass scales of
the bottom and charm quarks, questioning the conver-
gence of perturbative QCD (PQCD). Furthermore, non-
perturbative (power suppressed) effects governed by the
scale ΛQCD ∼ 0.5 GeV could be large, thus compromis-
ing reliable calculations. Two types of conditions are
known to improve the situation: high energy or inclu-
siveness. As an example for the former, αs and mb

can be determined at LEP energies using PQCD. This
yields αs(MZ) = 0.1200± 0.0028 [3] with very little the-
oretical uncertainty, but b quark effects are small and
m̂b(MZ) = 2.67 ± 0.50 GeV [4] is not well constrained.

In this Letter, we compute αs from ττ , by definition an
inclusive quantity and known to be quite insensitive to
effects from non-perturbative QCD (NPQCD) [5]. Like-
wise, we use a set of inclusive QCD sum rules to derive
values for m̂c(m̂c) and m̂b(m̂b). One of these sum rules is
new, and its use together with existing ones [6, 7] proves
to be a powerful tool to constrain the continuum region of
quark pair production. This will be particularly helpful
for the case of the b quark for which precise measurements

of R(s) (the inclusive hadronic cross section normalized
to the leptonic point cross section) or of Rb(s) (exclusive
cross section for bb̄ pairs) are unavailable.

On the basis of an unsubtracted dispersion relation
(UDR) it was shown in Ref. [8] that knowledge of mc,
mb, and αs is sufficient to compute the charm and bottom
quark contributions to the QED coupling α(

√
t = MZ), a

vital parameter entering the analysis of the very high pre-
cision LEP 1 and SLC data. Or conversely, comparison
of this UDR with the more traditional approach using a
subtracted dispersion relation (SDR) offers information
on mc and mb. The resulting equation relates an inclu-
sive integrated cross section to a difference of vacuum
polarization tensors, viz.

12π2
[

Π̂q(0) − Π̂q(−t)
]

= t

∫

∞

4m2
q

ds

s

Rq(s)

s + t
. (1)

Eq. (1) defines a continuous set of sum rules parametrized
by t, where the limit t → 0 coincides with the first mo-
ment of Πq(t). Similarly, there is a sum rule,

12π2

n!

dn

dtn
Πq(t)

∣

∣

∣

∣

t=0

=

∫

∞

4m2
q

ds

sn+1
Rq(s), (2)

for each higher moment, Mn, as well [6, 7, 9, 10, 11]. We
now take the opposite limit in Eq. (1), t → ∞, and regu-
larize the divergent expression (which will render M0 < 0
!),

Rq(s)

3Q2
q

−→ Rq(s)

3Q2
q

− λq
1(s) ≡

Rq(s)

3Q2
q

− 1 − αs(
√

s)

π
(3)

−
[

αs(
√

s)

π

]2 [

365

24
− 11ζ(3) + nq

(

2

3
ζ(3) − 11

12

)]

.

Qq and nq are the quark charge and the number of active
flavors. Using expressions derived in Refs. [12, 13], we can
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now explicitly write down the sum rule (1) for t → ∞:

∑

resonances

3πΓe
R

Q2
qMRα̂2(MR)

+

∞
∫

4M2

ds

s

Rcont
q

3Q2
q

−
∞
∫

m̂2
q

ds

s
λq

1(s)

= −5

3
+

α̂s

π

[

4ζ(3) − 7

2

]

+
α̂2

s

π2

[

11

4
ζ(2) +

2429

48
ζ(3)−

25

3
ζ(5) − 2543

48
+ nq

(

677

216
− ζ(2)

6
− 19

9
ζ(3)

)]

. (4)

Here, MR and Γe
R are the mass and the electronic partial

width of resonance R, and Rcont
q denote the continuum

regions integrated from M = MB± for b and M = MD0

for c. The ζ(2) terms arose from the regularization (3)
which together with the scale choices m̂q = m̂q(m̂q) and
α̂s = α̂s(m̂q) eliminates (resums) all logarithmic terms in
Eq. (4). Unlike in any of the sum rules (2), Rcont

q appears
unsuppressed in Eq. (4) so that m̂q varies exponentially
with the experimental information on the resonances. An
optimal approach to compute α(MZ) would first identify
the sum rule most sensitive to mq, and then use the value
so obtained in theoretical expressions such as the one
presented in Ref. [8]. We will use Eq. (4) to constrain the
continuum region and work with the following ansatz :

Rcont
q (s)

3Q2
q

= λq
1(s)

√

1 −
4 m̂2

q(2M)

s′

[

1 + λq
3

2 m̂2
q(2M)

s′

]

≈

λq
1(4M2)

√

1 −
4 m̂2

q

s′

[

1 + λq
3

2 m̂2
q

s′

]

− α̂s

π

λq
2(s)

1 + λq
2(s)

, (5)

where now α̂s = α̂s(2M), s′ ≡ s+4(m̂2
q(2M)−M2), and

λq
2(s) =

α̂s

π
β0 ln

s

4M2
=

α̂s(2M)

π

(

11

4
− nq

6

)

ln
s

4M2
.

We will use the form in the second line (applying it to
all moments) of Eq. (5) with the corresponding change in
the regularization in Eq. (4). This keeps only the leading
logarithms resummed but allows for an analytical inte-
gration. Eq. (5) coincides asymptotically with the pre-
dictions of PQCD for massless quarks and interpolates
smoothly between the vanishing phase space at the pseu-
doscalar threshold and the strong onset of fermion pair
production. The quark parton model predicts λq

3 = 1,
while from third order massive QCD corrections [14] one
expects λq

3 > 1 (in agreement with our results). But
unlike when PQCD is applied to R(s) directly and rela-
tively close to the resonance region, we minimize the ex-
posure to local quark-hadron duality violations by using
QCD inclusively and by merely requiring stable results
across the moments. No claim is being made about the
local shape of Rq — we only need theoretical information
about global averages .

We use the narrow resonance data [2] listed in Table I
as the only experimental input. The wider resonances in
the continuum region are assumed to be accounted for by
our ansatz (5) because (i) they decay almost exclusively
into flavored hadrons; (ii) they interfere with the non-
resonating part of the continuum rendering a common

R MR [GeV] Γe
R [keV] R MR [GeV] Γe

R [keV]

J/Ψ 3.09687 5.26 (37) Υ(1S) 9.46030 1.320 (50)

Ψ(2S) 3.68596 2.19 (15) Υ(2S) 10.02326 0.520 (32)

Υ(3S) 10.35520 0.476 (78)

TABLE I: Resonance data [2] used in the analysis. The un-
certainties from the resonance masses are negligible.

treatment virtually impossible; (iii) the δ-function ap-
proximation (which is perfect for the narrow resonances)
becomes successively worse; (iv) the philosophy of our
ansatz supposes that it averages over local cross-section
fluctuations; and (v) we wish to compare Eq. (5) directly
to experimental data on the charm continuum region such
as from Beijing [15]. The narrow resonance contribution

n resonances continuum total theory

0 1.16 (6) −3.03 ± 0.37 −1.86 ± 0.37 input ( 4)

1 1.12 (6) 1.04 ± 0.14 2.16 ± 0.16 2.19 ( 6)

2 1.10 (7) 0.37 ± 0.07 1.47 ± 0.10 1.49 ( 9)

3 1.10 (7) 0.17 ± 0.04 1.27 ± 0.08 1.26 (14)

4 1.11 (7) 0.09 ± 0.02 1.20 ± 0.08 1.16 (20)

5 1.13 (7) 0.05 ± 0.01 1.18 ± 0.08 1.10 (31)

0 1.17 (5) −52.44 ± 1.24 −51.27 ± 1.24 input ( 2)

1 1.24 (5) 3.12 ± 0.53 4.36 ± 0.54 4.51 ( 2)

2 1.31 (5) 1.33 ± 0.30 2.64 ± 0.31 2.79 ( 3)

3 1.40 (5) 0.75 ± 0.19 2.15 ± 0.20 2.27 ( 5)

4 1.50 (5) 0.48 ± 0.13 1.98 ± 0.14 2.06 ( 7)

5 1.61 (5) 0.33 ± 0.10 1.94 ± 0.11 1.99 (10)

6 1.74 (6) 0.23 ± 0.07 1.98 ± 0.09 1.98 (14)

7 1.89 (6) 0.17 ± 0.05 2.06 ± 0.08 2.03 (19)

TABLE II: Results for the lowest moments, Mn, defined
in Eq. (1) for n = 0 (t → ∞) and Eq. (2) for n ≥ 1.
The upper (lower) half of the Table corresponds to the
charm (bottom) quark. Each moment has been multiplied
by 10nGeV2n (102n+1GeV2n). The continuum error is from

∆λb,c
3 = ±1.47. The last column shows the theoretical pre-

diction for m̂c(m̂c) = 1.289 GeV, m̂b(m̂b) = 4.207 GeV, and
αs(MZ) = 0.1211, where the uncertainty is our estimate for
the truncation error (see text).

to the various moments is shown in the second column of
Table II. The Γe

R are obtained from constrained fits [2] to
a great number of measurements independently for each
resonance, and should have very small correlations. We
will therefore combine their propagated errors in quadra-
ture. The 3rd column gives the continuum contribution,
and the 4th column shows the totals to be compared with
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the theoretical moments in the last column, viz.

Mtheory
n =

9

4
Q2

q

(

1

2m̂q(m̂q)

)2n

C̄n. (6)

The C̄n are known up to O(α2
s) and from Refs. [12, 16]

where they were computed for arbitrary renormalization
scale µ. It seems appropriate to choose µ = m̂q(m̂q),
eliminating all logarithmic terms as there is only one scale
in the problem. Indeed, the authors of Ref. [11], who have
chosen µ = 3 (10) GeV for the charm (bottom) quark and
then evolved to µ = m̂q, report a variation over the first
5 (7) moments of 122 (312) MeV. (For larger moments the
αs expansion [17] of the gluon condensate contribution [7]
breaks down.) Using the same moments [11] but choos-
ing µ = m̂q instead, we observe a variation of less than
27 (16) MeV. This impressive improvement clearly over-
compensates for the larger α̂s. We will choose µ = m̂q

in the following. As for the theoretical uncertainty as-
sociated with the truncation of the perturbative series,
we use the method suggested in Ref. [18]. It exploits the
fact that once stripped off all group theoretical factors,
the coefficients appearing in PQCD (to the very least for
highly inclusive quantities defined in the Euclidean do-
main) are strictly of order unity[18]. Since one can easily
determine the largest group theoretical factor in the next
uncalculated perturbative order, this offers a reliable and
transparent way to assess truncation errors. In our case
this yields the error estimate,

± NCQ2
qCF C2

A

α̂3
s(m̂q)

π3

(

1

2m̂q(m̂q)

)2n

, (7)

(NC = CA = 4CF = 3) corresponding to ±16α̂3
s/π3 in

the C̄n. Comparing the corresponding estimate against
the exactly known coefficients of the first eight moments
up to order α2

s [12, 16] shows that with µ = m̂q, 23 of
24 coefficients are within the estimate, while only one
coefficient would have been underestimated by a factor
≈ 1.437. This seems to be a reasonable state of affairs
for a 1σ error estimate and corresponds to ±20 MeV for
m̂c(m̂c) from M1, while variation of the renormalization
scale [11] assesses this error to only 1 MeV, which is op-
timistic. We show the estimate (7) in the last column
of Table II. The last two columns of that Table would
agree within errors even if we had chosen significantly
smaller variations in λb

3 and especially λc
3 (∆λb,c

3 = ±1.47
accounts for the error introduced by our ansatz and is
above and beyond the variations induced by the fit pa-
rameters). The reason for our more conservative error is
shown in Table III. It shows that Eq. (5) with λc

3 = 0.50
reproduces the n dependence of the moments computed
from recent data by the BES Collaboration [15] remark-
ably well. However, our method favors λc

3 ≈ λb
3 ≈ 1.97,

and thus 30 to 40% larger contributions. Table III also
compares the BES data to the Ψ(3S) contribution [2] in
the narrow width approximation. Even assuming that

n BES λc
3 = 0.50 λc

3 = 1.97 BES Ψ(3S)

0 5.51 (35) 5.50 7.19 0.215 (39) 0.348 (54)

1 3.02 (19) 3.01 3.98 0.151 (27) 0.245 (38)

2 1.68 (11) 1.68 2.25 0.106 (19) 0.172 (27)

3 0.95 ( 6) 0.96 1.29 0.074 (13) 0.121 (19)

4 0.55 ( 4) 0.55 0.76 0.052 ( 9) 0.085 (13)

5 0.32 ( 2) 0.33 0.45 0.037 ( 6) 0.060 ( 9)

TABLE III: The left part shows contributions to the charm
moments (×10n+1GeV2n) from 2MD0 ≤

√
s ≤ 4.8 GeV, and

the right part from 2MD0 ≤
√

s ≤ 3.83 GeV. Following
Ref. [11], we computed the columns labeled BES by sub-
tracting from the threshold data on R(s) the average, R̄,
below threshold. (We applied corrections for the leading s-
dependence.) The errors combine the statistical and uncorre-
lated systematic ones of R̄ with those in the continuum region
and with the common systematics (≤ 3.5%) of the difference.

the Ψ(3S) resonance (MΨ(3S) = 3.7699 GeV) saturates
the charm cross-section in that region, we observe a di-
rect experimental 2σ discrepancy between Ref. [15] and
Γe

Ψ(3S) = 0.26±0.04 keV [2]. Thus there is a discrepency
between the theory and the BES data, though the the-
ory does seem to be consistent with the Ψ(3S) data. This
constitutes a great puzzle which needs to be resolved in
the future. We may be able to quote smaller errors after
this situation has been resolved. Nevertheless, the quark
masses can still be determined precisely through the sum
rule approach.

There is a possible contribution from the gluon con-
densate [7]. It is known up to O(αs) [17], but its actual
value is not well known. Its inclusion lowers the extracted
quark masses, increases λc

3, and sharpens the discrep-
ancy with the BES data. We can bound its value to
<
∼ 0.07 GeV4 by demanding n independent results within
the uncertainties. We use this bound (with a central
value of zero) to account collectively for non-perturbative
uncertainties. They induce errors of about 29 MeV into
m̂c(m̂c) (n = 2) and 2.4 MeV into m̂b(m̂b) (n = 6).

The parametric uncertainties from αs and the quark
masses themselves are correlated in a complicated way
(i) across the moments, (ii) across the two quark flavors,
(iii) between the theoretical moments and the continuum
contribution, and (iv) with each other. In practice, all
this is accounted for by performing fits to the moments.
Heavy quark radiation by light quarks [19] is not res-
onating and problems associated with singlet contribu-
tions [19, 20] appear only at O(α3

s), so these issues should
not introduce further uncertainties into our analysis. We
will present our final results after discussing the τ life-
time.

For our analysis of the τ mean lifetime,

ττ =
h̄

Γτ

= h̄
1 − BS

Γe
τ + Γµ

τ + Γud
τ

= 290.96 ± 0.59 fs, (8)

we evaluate the partial widths into leptons, Γe
τ +Γµ

τ , and
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hadrons with vanishing net strangeness, Γud
τ , theoreti-

cally. The relative fraction of decays with ∆S = −1,
BS = 0.0286± 0.0009 [2], is based on experimental data,
since the value for the strange quark mass, m̂s(mτ ), is
not well known, and the PQCD expansion, CD=2

QCD, pro-

portional to m2
s converges poorly and cannot be trusted.

CD=2
QCD also multiplies the corresponding m2

u,d terms in

Γud
τ , posing the same but numerically less important

problem there. We solved it, by relating CD=2
QCD to

the ratio Γus
τ |Vud|2/(Γud

τ |Vus|2) = 0.896 ± 0.034 [2] (in
which to linear order all universal terms cancel), and
find CD=2

QCD(m2
s −m2

d) = m2
τ (0.091± 0.046). We included

one-loop electroweak (SEW) [21] and QED (phase space)
corrections [22], quark condensate contributions, as well
as c quark effects in an expansion in m2

τ/4m2
c [23]. E.g.,

Γud
τ =

G2
F m5

τ |Vud|2
64π3

SEW(1+
3m2

τ

5M2
W

)

[

FQCD +
α̂

π
(
85

24
− π2

2
)

−0.09
m2

u + m2
d

m2
s − m2

d

− f2
π±

m4
τ

[m2
π±(8π2 + 23α2

s) − 4m2
K±α2

s]

]

.

FQCD − 1 is the massless QCD correction. Due to ef-
fects governed by the β-function, the 3-loop PQCD ex-
pansion [5] shows slow convergence. The series can be
reorganized [24] into a well-behaved expansion with co-
efficients, di [14], from the Adler D-function. The new
expansion is not a power series. Rather, the di multiply
complicated functions, Ai(αs) [24], which we calculate
numerically up to 4-loop order in the β function [25].

We computed the world average (8) by combining the
direct value, ττ = 290.6 ± 1.1 fs [2], with ττ (Be,Bµ) =
291.1 ± 0.7 fs derived from the leptonic branching ra-
tios Be = 0.1784(6) and Bµ = 0.1737(6) [2] taking into
account their 1% correlation. The dominant theoretical
error induced by the unknown coefficient d3 = 0±77 [18]
is itself strongly αs-dependent, is recalculated in each call
within a fit, and induces an asymmetric αs error.

Other experimental uncertainties arise from [2] mτ =
1.77699(28) GeV, |Vud| = 0.97485(46), and BS . Uncer-
tainties from higher dimensional terms in the operator
product expansion, OPE, are taken from Ref. [26] and
add up to ∆ττ (OPE) = ±0.64 fs. We assume that
an uncertainty of the same size is induced by possi-
ble OPE breaking effects[28]. The unknown five-loop
β-function coefficient, β4 = 0 ± 579 [18], contributes
mainly to the evolution of αs(mτ ) to αs(MZ) and less
to the Ai. The subleading errors listed in this para-
graph amount to ±1.2 fs. We find, αs(mτ ) = 0.356+0.027

−0.021

and αs(MZ) = 0.1221+0.0026
−0.0023, in excellent agreement with

αs(MZ) = 0.1200 ± 0.0028 from Z-decays [3] and most
other recent evaluations of ττ [26, 27]. Including ττ , and
the n = 2 and n = 6 moments for the c and b quark,

respectively, as constraints in a fit to all data [3] yields,

αs(MZ) = 0.1211+0.0018
−0.0017,

m̂c(m̂c) = 1.289+0.040
−0.045 GeV,

m̂b(m̂b) = 4.207+0.030
−0.031 GeV.

(9)

These results reduce the error [8] in α(MZ) by 25%.
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