Five jets at LEP @ NLO and $\alpha_s(M_Z)$

Giulia Zanderighi Oxford University

with R. Frederix, S. Frixione, and K. Melnikov

based on JHEP 1011 (2010) 050 [arXiv:1008.5313]

Jet observables at LEP

 $e+e^- \rightarrow$ hadrons is one of the most studied process in high-energy physics. Analyses at PEP, KEK, PETRA, SLD, and LEP were instrumental for

- Understanding jet structures, developing jet algorithms
- **Improving perturbative calculations**
- Model of the strain of the
- *investigating non-perturbative effects*
- $\widecheck{\mathbf{M}}$ fits of the strong-coupling constant α_{s}

At LEP exclusive processes with up to five jets were measured. Five-jet cross-sections start at $O(\alpha_s^3) \Rightarrow$ very sensitive to α_s . But, no previous fit of α_s from five jets, because of large uncertainties of LO predictions

Calculation of five jets @ NLO

We performed the full NLO calculation of five jets by computing

- virtual corrections using D-dimensional unitarity as implemented in Rocket Ellis et al., '07; Giele et al. '08
- Using MadFKS for real radiation, subtraction, and phase-space integration
 Alwall et al. '07; Frederix et al., '09

This calculation started as an academic exercise:

- For Rocket: how does FKS subtraction compare to Catani-Seymour subtraction used previously?
- For MadFKS: test the performance of the new automated subtraction code with a highly non-trivial calculation.

<u>NB</u>: all elements, but for the finite part of the virtual, are obtained by MadFKS through calls to Madgraph routines

Five-jet observables

Definitions:

$$y_{ij} = \frac{2\min(E_i^2, E_j^2)}{s} \left(1 - \cos\theta_{ij}\right)$$

Durham

jet-algorithm

$$\frac{1}{\sigma_{\text{tot}}} \int_{y_{\text{cut}}}^{1} \mathrm{d}y_{45} \ \frac{\mathrm{d}\sigma}{\mathrm{d}y_{45}} = \frac{\sigma_{\text{incl}}^{5-\text{jet}}(y_{\text{cut}})}{\sigma_{\text{tot}}}$$
$$R_5(y_{\text{cut}}) = \frac{\sigma_{\text{excl}}^{5-\text{jet}}(y_{\text{cut}})}{\sigma_{\text{tot}}},$$

$$\sigma_{\text{tot}}^{-1} \frac{\mathrm{d}\sigma}{\mathrm{d}y_{45}} = \left(\frac{\alpha_s(\mu)}{2\pi}\right)^3 A_{45}(y_{45}) + \left(\frac{\alpha_s(\mu)}{2\pi}\right)^4 \left(B_{45}(y_{45}) + 3b_0 A_{45}(y_{45}) \ln \frac{\mu}{\sqrt{s}}\right)$$
$$R_5(y_{\text{cut}}) = \left(\frac{\alpha_s(\mu)}{2\pi}\right)^3 A_5(y_{\text{cut}}) + \left(\frac{\alpha_s(\mu)}{2\pi}\right)^4 \left(B_5(y_{\text{cut}}) + 3b_0 A_5(y_{\text{cut}}) \ln \frac{\mu}{\sqrt{s}}\right)$$

NB: A_{45,5} B_{45,5} do not depend on the CM energy

Hadronization corrections

Because of factorization of long- and short-distance physics, hadronization corrections to infrared safe observables can be estimated by running an event generator at parton and hadron level:

Once an improved PT prediction \mathcal{O}_{pt} is available, one defines

$$\mathcal{O}_{impr} = H^i[\mathcal{O}] \ \mathcal{O}_{pt}$$

and compares this with data

This procedure is widespread, but it is clear for a number of reasons that it cannot be fully valid. This issue becomes particularly important for high jetmultiplicity and when the size of hadronization corrections is large

• All Herwig, Pythia, and Ariadne describe data surprisingly well

- All Herwig, Pythia, and Ariadne describe data surprisingly well
- However, very large hadronization corrections and large differences in their size (generator dependent!)

$$H^{i}[\mathcal{O}] = rac{\mathcal{O}_{ ext{hadr}}^{i}}{\mathcal{O}_{ ext{part}}^{i}}$$

- All Herwig, Pythia, and Ariadne describe data surprisingly well
- However, very large hadronization corrections and large differences in their size (generator dependent!)
- For -ln(y₄₅) > 6 large logarithmic effects (Sudakov peak)
 ⇒ can not be described by NLO calculation

Large Logarithms

 $\bullet~R_5$ has been resummed to NLLA accuracy, including all terms

 $\alpha_s^n L^{2n} + \alpha_s^n L^{2n-1}$

Catani et al. '91

- This resummation is valid for $L \gg 1$ but $\alpha_s L \ll 1$
- Since $\alpha_s \sim 0.15$ this means practically $L \gg 5 \mbox{ but } L \ll 6$

 \Rightarrow No suitable range where the approach is valid. We restrict our comparison to data to L < 6

NB: a similar bound appears since we neglect the mass of the b-quark. This implies that the resolution parameter must satisfy $sy_{45} > m_b^2$ which at LEP I translates to L < 6

Comparison with Sherpa

Unlike Pythia/Herwig, Sherpa includes the full LO matrix element for $e^+e^- \rightarrow 5$ jets and uses the CKKW procedure to match to parton shower

 Description of data slightly worse than Ariadne/Pythia/Herwig

Comparison with Sherpa

Unlike Pythia/Herwig, Sherpa includes the full LO matrix element for $e^+e^- \rightarrow 5$ jets and uses the CKKW procedure to match to parton shower

- Description of data slightly worse than Ariadne/Pythia/Herwig
- Size of hadronization corrections depend on hadronization model (Lund or cluster)

Comparison with Sherpa

Unlike Pythia/Herwig, Sherpa includes the full LO matrix element for $e^+e^- \rightarrow 5$ jets and uses the CKKW procedure to match to parton shower

- Description of data slightly worse than Ariadne/Pythia/Herwig
- Size of hadronization corrections depend on hadronization model (Lund or cluster)
- Hadronization corrections are smaller in the range of interest than those of Pythia/Herwig/ Ariadne

We will take hadronization corrections from Sherpa. Since the LO matrix element is implemented, hadronization is less contaminated by PT effects

Comparison: ALEPH vs. NLO

- use default hadronization model of Sherpa (Cluster) to correct NLO
- use renormalization scale μ = 0.3 Mz ($k_{\perp \max} \sim \langle \sqrt{y_{23}s} \rangle \sim 0.3 M_Z$)

- Good agreement with data
- NLO corrections increase LO predictions by +(10-20)%^{*}
- Reduced uncertainties: from [-30%, +45%] at LO to [-20%,+25%] at NLO

^(*) if $\alpha_s = 0.130$ is used at LO, if the world average is used, then corrections are ~ 45-60%

α_s from 5-jets: fit details

• Each bin in y_{45} or R_5 at a given energy is an observable

$$\mathcal{O}_i = [X_i, \sigma_i^{\text{stat}}, \sigma_i^{\text{syst}}]$$

• Each observable can be used to extract α_{s} by solving

$$T_i H_i = E_i$$

• The values obtained from the fit can be written as

$$\alpha_s^i = \overline{\alpha}_s^i \pm \delta \alpha_s^{i, \text{stat}} \pm \delta \alpha_s^{i, \text{syst}} \pm \delta \alpha_s^{i, \text{scale}} \pm \delta \alpha_s^{i, \text{hadr}}$$

Central value: $\mu_0 = 0.3 M_Z$, use cluster hadronization-model

• $\delta \alpha_s^{i,\text{stat}}, \delta \alpha_s^{i,\text{syst}}$: solve \square with $E_i = X_i \pm \sigma^{i,\text{stat/syst}}$

•
$$\delta \alpha_s^{i,scale}$$
 : solve with $\mu = [\mu_0/2; 2\mu_0]$

• $\delta \alpha_s^{\mathrm{i,hadr}}$: solve \square with the Lund model

The result of this procedure is a set of values of α_s with corresponding errors that need to be combined

α_s from 5-jets: fit details

Define a covariance matrix as the sum of the individual covariance matrices:

$$V = V^{\text{stat}} + V^{\text{syst}} + V^{\text{scale}} + V^{\text{hadr}}$$
$$V_{ij} = \delta_{ij} \left(\delta \alpha_s^i\right)^2 + (1 - \delta_{ij}) \min\left\{ (\delta \alpha_s^i)^2, (\delta \alpha_s^i)^2, C_{ij} \delta \alpha_s^j \delta \alpha_s^j \right\}$$

where C_{ij} describes the correlation, for which we assume

- <u>statistical errors</u>: uncorrelated at different Q. At fixed Q: y_{45} bins uncorrelated, R_5 fully correlated, y_{45} and R_5 are correlated for $y_{cut} < y_{45}$ (we compute the correlation)
- <u>systematic errors</u>: fully correlated at fixed Q, but uncorrelated at different Q (detectors were re-calibrated)
- perturbative errors: fully correlated for all observables and Q, except for the LEP I/LEP II correlation that we neglect
- <u>hadronization errors</u>: assumed to be uncorrelated

α_s from 5-jets: fit details

Finally, we compute the weights^{*}

$$w_i = \sum_{j=1}^{N} (V^{-1})_{ij} / \sum_{k,l=1}^{N} (V^{-1})_{kl}$$

and use them to estimate the average value of the coupling and its error

$$\alpha_s = \sum_{i=1}^N w_i \bar{\alpha}_s^i \qquad \sigma^2(\alpha_s) = \sum_{i,j=1}^N w_i V_{ij} w_j$$

We take ALEPH data for R₅ and $I/\sigma_{tot} d\sigma/dy_{45}$ as measured at LEP I (Q=M_Z) and LEP II (Q = 183, 189, 200, 206 GeV) **

^(*) For the central value, we neglect off diagonal entries in V^{scale} and V^{hadr}

^(**) Similar to other precision studies at LEP we do not take data with Q < 183 GeV. Data for $1/\sigma_{tot} d\sigma/dy45$ is not available at Q = 200 GeV.

α_s from 5-jets: fit range

Take fit range as large as possibly, where NLO is reliable and data good enough

<u>LEP I:</u>

We take as a fit range

 $3.8 < -Ln(y_{45}) < 5.2$ (7 data points) and $4.0 < -Ln(y_{cut}) < 5.6$ (8 data points)

and estimate the error due to the fit range by performing a second fit with larger ranges

 $3.4 < -Ln(y_{45}) < 5.6$ (11 points) and $3.4 < -Ln(y_{cut}) < 6.0$ (13 points)

LEP II:

Because of worse quality of data at small y, we reduce the fit ranges to $4.8 < -Ln(y_{45}) < 6.4$ (2 points/Q) and 2.1 $< -Log_{10}(y_{cut}) < 2.9$ (4 points/Q) and estimate the error due to the fit range by performing a second fit with ranges $4.8 < -Ln(y_{45}) < 5.6$ (1 point/Q) and 2.1 $< -Log_{10}(y_{cut}) < 2.5$ (2 points/Q)

this choice leads to the largest change in α_s

α_s from five-jets at LEP |

	LEP1, hadr.	LEP1, no hadr.
	$\sigma_{ m tot}^{-1}{ m d}\sigma/{ m d}y_{45},R_5$	$\sigma_{ m tot}^{-1} { m d}\sigma/{ m d}y_{45},R_5$
stat.	+0.0001	+0.0001
	-0.0002	-0.0002
syst.	+0.0027	+0.0027
	-0.0029	-0.0029
pert.	+0.0062	+0.0068
	-0.0043	-0.0047
fit range	+0.0014	+0.0005
	-0.0014	-0.0005
hadr.	+0.0012	
	-0.0012	_
$\alpha_s(M_Z)$	0.1150 + 0.0070	0.1163 + 0.0073
	-0.0055	-0.0055

- high sensitivity: very small statistical error
- agreement between values extracted with and without hadr. corrections

α_s from five-jets at LEP II

Because hadr. effects are so small at LEP I we neglect them at LEP II

	LEP2, no hadr. $\sigma_{ m tot}^{-1} { m d}\sigma/{ m d}y_{45}$	LEP2, no hadr. R_5	$ m LEP2, \ no \ hadr. \ \sigma_{tot}^{-1} d\sigma/dy_{45}, \ R_5$
stat.	$+0.0020 \\ -0.0022$	$+0.0022 \\ -0.0025$	+0.0015 -0.0016
syst.	$+0.0008 \\ -0.0009$	$+0.0012 \\ -0.0012$	$^{+0.0008}_{-0.0008}$
pert.	$+0.0049 \\ -0.0034$	$+0.0029 \\ -0.0020$	$^{+0.0029}_{-0.0020}$
fit range	$+0.0038 \\ -0.0038$	$+0.0030 \\ -0.0030$	+0.0028 -0.0028
$\alpha_s(M_Z)$	$0.1188 {+0.0065 \\ -0.0056}$	$0.1116 {+0.0048 \\ -0.0045}$	$0.1149 + 0.0044 \\ -0.0039$

Combined α_s from five-jets

Combining α_s from ALEPH data for R₅ and $I/\sigma_{tot} d\sigma/dy_{45}$ at LEP I and LEP II we obtain the value of the coupling from five-jet observables

$$\alpha_s(M_Z) = 0.1152^{+0.0037}_{-0.0032}$$

This value compares well with other determinations, and is compatible with the world average (but it is on the lower side)

Performing a simultaneous fit to LEP I and LEP II data we get

$$\alpha_s(M_Z) = @.1154^{+0.0042}_{-0.0037}$$

in good agreement with the value above

Conclusions

NLO corrections to R₅ and $I/\sigma_{tot} d\sigma/dy_{45}$ at LEP I, LEP II are moderate (~+10-20%) and scale uncertainties are reduced by a factor 2 to ~ ±20%

Hadronization corrections from Pythia/Herwig are large and uncertain \Rightarrow need to use an event generator with correct matrix elements to extract hadronization. This is an important message for LHC jet-physics too.

With hadronization corrections from Sherpa, combining α_s from ALEPH data for R₅ and $I/\sigma_{tot} d\sigma/dy_{45}$ at LEP I and LEP II we obtain *the value of the coupling from five-jet observables*

$$\alpha_s(M_Z) = 0.1152^{+0.0037}_{-0.0032}$$

There is room for improving this number: resumming large logarithms, with a more detailed knowledge of correlation of systematics and a more sophisticated treatment of theoretical errors

Extra slides

Hadronization at different Q

Hadronization for y23,y34,y45

