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Jet observables at LEP

ete” — hadrons is one of the most studied process in high-energy physics.
Analyses at PEP, KEK, PETRA, SLD, and LEP were instrumental for

A understanding jet structures, developing jet algorithms
[ improving perturbative calculations

[ developing, testing, and tuning of parton showers

[ investigating non-perturbative effects

[ fits of the strong-coupling constant os

At LEP exclusive processes with up to five jets were measured. Five-jet
cross-sections start at O(as’) = very sensitive to as. But, no previous fit
of as from five jets, because of large uncertainties of LO predictions




Calculation of five jets @ NLO

We performed the full NLO calculation of five jets by computing

[ virtual corrections using D-dimensional unitarity as implemented in

Rocket Ellis et al,, '07; Giele et al.'08

M using MadFKS for real radiation, subtraction, and phase-space
g P P

integration Alwall et al.’07; Frederix et al.,, ‘09

This calculation started as an academic exercise:

* For Rocket: how does FKS subtraction compare to Catani-Seymour
subtraction used previously?

* For MadFKS: test the performance of the new automated subtraction
code with a highly non-trivial calculation.

NB: all elements, but for the finite part of the virtual, are obtained by
MadFKS through calls to Madgraph routines




Five-jet observables
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NB: A4s5 Bass do not depend on the CM energy




Hadronization corrections

Because of factorization of long- and short-distance physics, hadronization
corrections to infrared safe observables can be estimated by running an
event generator at parton and hadron level:

Once an improved PT prediction O, is available, one defines
Oimpr = H'[O] Opy

and compares this with data

This procedure is widespread, but it is clear for a number of reasons that it
cannot be fully valid. This issue becomes particularly important for high jet-
multiplicity and when the size of hadronization corrections is large




Comparison with PS
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Comparison with PS
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Comparison with PS
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Comparison with PS
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Large Logarithms

* Rs5 has been resummed to NLLA accuracy, including all terms

Oé?LQn 4 a?LQn—l |
Catani et al. 9|

* This resummation is valid for L > 1 but o, L < 1

* Since a; ~ 0.15 this means practically . > 5but L < 6

= No suitable range where the approach is valid. We restrict our

comparison to data to L. < 6

NB: a similar bound appears since we neglect the mass of the b-quark.
This implies that the resolution parameter must satisfy siy5 > m;
which at LEP | translates to L < 6




Comparison with Sherpa

Unlike Pythia/Herwig, Sherpa includes the full LO matrix element for
e*e” — 5 jets and uses the CKKW procedure to match to parton shower
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Comparison with Sherpa

Unlike Pythia/Herwig, Sherpa includes the full LO matrix element for
e*e” — 5 jets and uses the CKKW procedure to match to parton shower
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Comparison with Sherpa

Unlike Pythia/Herwig, Sherpa includes the full LO matrix element for
e*e” — 5 jets and uses the CKKW procedure to match to parton shower
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We will take hadronization corrections from Sherpa. Since the LO matrix
element is implemented, hadronization is less contaminated by PT effects




Comparison: ALEPH vs. NLO

* use default hadronization model of Sherpa (Cluster) to correct NLO

* use renormalization scale i = 0.3 Mz (k| max ~ (\/Y235) ~ 0.3M )
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* Good agreement with data
e NLO corrections increase LO predictions by +(10-20)%
* Reduced uncertainties: from [-30%, +45%] at LO to [-20%,+25%] at NLO

M if as = 0.130 is used at LO, if the world average is used, then corrections are ~ 45-60%




os from 5-jets: fit details

* Each bin in y45 or Rs at a given energy is an observable

L stat syst
Oi — [X iy 0 y O, ]

* Fach observable can be used to extract as by solving
| T;H; = E,

e The values obtained from the fit can be written as

T =1 | 1,stat | 1,8yst | 1,scale | 1,hadr
o, =0, T oa" " £ oa £ ooy + 0,

Central value: po = 0.3 Mz, use cluster hadronization-model

i,stat 1,syst . '
* o, ™, 0™ 1 solve I:I with E; = X, 4 ghstat/syst

i,scale

Y : solve I:I with w = [ po/2 ;2po ]

i,had .
e 0arg ™ - solve [I with the Lund model

The result of this procedure is a set of values of as with corresponding errors
that need to be combined




os from 5-jets: fit details

Define a covariance matrix as the sum of the individual covariance matrices:

V = Vstat + Vsyst + Vscale 4+ Vhadr
Vij = dij (601)” + (1 = 8;;) min {(5047;)2, (dery)?, Cz‘j(SOéZ(SO%}

where Cjj describes the correlation, for which we assume

e statistical errors: uncorrelated at different Q. At fixed Q: y4s bins

uncorrelated, Rs fully correlated, y4s and Rs are correlated for ycut < yas
(we compute the correlation)

e systematic errors: fully correlated at fixed Q, but uncorrelated at

different Q (detectors were re-calibrated)
* perturbative errors: fully correlated for all observables and Q, except
for the LEP I/LEP Il correlation that we neglect

e hadronization errors: assumed to be uncorrelated




os from 5-jets: fit details

Finally, we compute the weights
N N
w; = Z(V_l)ij/ > (V7 )k
j=1 k=1

and use them to estimate the average value of the coupling and its error

(" )

N N
_3 )
g = E w;al, o (os) = E w; Vijw;
1=1

2,7=1

. _J

We take ALEPH data for Rs and |/Ow: do/dyss as measured at LEP |
(Q=Mgz) and LEP Il (Q = 183, 189,200,206 GeV)

) For the central value, we neglect off diagonal entries inVse@'e and \/hadr

) Similar to other precision studies at LEP we do not take data with Q < 183 GeV.
Data for |/t da/dy45 i1s not avallable at Q = 200 GeV.




os from 5-jets: fit range

Take fit range as large as possibly, where NLO is reliable and data good enough

~
LEP |:

We take as a fit range
3.8 < -Ln(y4s) < 5.2 (7 data points) and 4.0 < -Ln(Ycu.t) < 5.6 (8 data poins)

and estimate the error due to the fit range by performing a second fit with
larger ranges

3.4 < -Ln(y4s) < 5.6 (I | points) and 3.4 < -Ln(Ycut) < 6.0 (13 points)
\

-

LEP 1l

Because of worse quality of data at small y, we reduce the fit ranges to
4.8 < -Ln(ys4s) < 6.4 (2 points/Q) and 2.1 < -Logio(Ycut) < 2.9 (4 points/Q)
and estimate the error due to the fit range by performing a second fit
with ranges

4.8 < -Ln(ys4s) < 5.6 (I point/Q) and 2.1 < -Logio(Ycur) < 2.5 (2 points/Q)
this choice leads to the largest change in as




os from five-jets at LEP |

LEP1, hadr. LEP1, no hadr.
0rdo/dyss, Rs oy do/dyss, Rs

tot

stat.

syst.

pert.

fit range

hadr.

+0.0001
—0.0002

+0.0027
—0.0029

+0.0062
—0.0043

+0.0014
—0.0014

+0.0012
—0.0012

+0.0001
—0.0002

+0.0027
—0.0029

+0.0068
—0.0047

+0.0005
—0.0005

+0.0070 +0.0073
A 115 )
as(Mz) 0.1159 00055 0.1163 —0.0055

* high sensitivity: very small statistical error

* agreement between values extracted with and without hadr. corrections




as from five-jets at LEP ||

Because hadr. effects are so small at LEP | we neglect them at LEP Il

LEP2, no hadr. LEP2, no hadr. LEP2, no hadr.
ot do/dyas R Orordo/dyss, Rs

stat.

syst.

pert.

fit range

+0.0020
—0.0022

+0.0008
—0.0009

+0.0049
—0.0034

+0.0038
—0.0038

+0.0022
—0.0025

+0.0012
—0.0012

+0.0029
—0.0020

+0.0030
—0.0030

+0.0015 +
—0.0016
+0.0008
—0.0008
+0.0029
—0.0020
+0.0028 *
—0.0028

os(Mz) 01188 TO0905 41176700088 4 1149

—0.0056 —0.0045

+0.0044
—0.0039




Combined o5 from five-jets

Combining &s from ALEPH data for Rs and |/Ow: do/dyss at LEP | and
LEP Il we obtain the value of the coupling from five-jet observables

0u(M) = 0115275085

This value compares well with other determinations, and 1s compatible with
the world average (but It Is on the lower side)

Performing a simultaneous fit to LEP | and LEP Il data we get

0y (My) = 01154700082

in good agreement with the value above




Conclusions

NLO corrections to Rs and |/0oc do/dyss at LEP |, LEP Il are moderate
(~+10-20%) and scale uncertainties are reduced by a factor 2 to ~ +20%

Hadronization corrections from Pythia/Herwig are large and uncertain
= need to use an event generator with correct matrix elements to
extract hadronization. This is an important message for LHC jet-physics too.

With hadronization corrections from Sherpa, combining &s from ALEPH
data for Rs and |/O: do/dyss at LEP | and LEP Il we obtain the value of

the coupling from fivejet observables

a5 (Mz) = 0.11527 035

o _J

There Is room for improving this number: resumming large logarithms,
with a more detalled knowledge of correlation of systematics and a more
sophisticated treatment of theoretical errors




Extra slides



Hadronization at different
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Hadronization for y23,y34,y4s
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