α_{s} at NNLO(+NLLA) from (mainly) ALEPH data

Thomas Gehrmann (Universität Zürich)

Workshop on 'Precision Measurements of α_s ', MPI Munich, 9-11 February 2011

Jets and event shapes

- Jets: direct signature of quark and gluon production
 - defined through jet algorithm (distance measure)
 - e.g. Durham algorithm

$$y_{ij,D} = \frac{2\min(E_i^2, E_j^2)(1 - \cos\theta_{ij})}{E_{\text{vis}}^2}$$

• Event shapes: measure of event geometry

- standard set
 - thrust T

$$T = \max_{\vec{n}} \left(\frac{\sum_{i} |\vec{p_i} \cdot \vec{n}|}{\sum_{i} |\vec{p_i}|} \right)$$

- heavy jet mass $M_H (\rho = M_H^2/s)$
- C-parameter
- wide and total broadening: B_W, B_T
- 2 \rightarrow 3 jet transition parameter Y_3

 $e^+e^- \rightarrow 3$ jets and event shapes

• perturbative expansion in α_s to NNLO

$$\frac{1}{\sigma_{\text{had}}} \frac{\mathrm{d}\sigma}{\mathrm{d}y}(s,\mu^2,y) = \left(\frac{\alpha_s(\mu)}{2\pi}\right) \frac{\mathrm{d}\bar{A}}{\mathrm{d}y} + \left(\frac{\alpha_s(\mu)}{2\pi}\right)^2 \left(\frac{\mathrm{d}\bar{B}}{\mathrm{d}y} + \frac{\mathrm{d}\bar{A}}{\mathrm{d}y}\beta_0\log\frac{\mu^2}{s}\right) \\ + \left(\frac{\alpha_s(\mu)}{2\pi}\right)^3 \left(\frac{\mathrm{d}\bar{C}}{\mathrm{d}y} + 2\frac{\mathrm{d}\bar{B}}{\mathrm{d}y}\beta_0\log\frac{\mu^2}{s} + \frac{\mathrm{d}\bar{A}}{\mathrm{d}y}\left(\beta_0^2\log^2\frac{\mu^2}{s} + \beta_1\log\frac{\mu^2}{s}\right)\right)$$

• dimensionless coefficients computed using parton-level event generator (A. Gehrmann-De Ridder, E.W.N. Glover, G. Heinrich, TG; S. Weinzierl)

• calculation based on antenna subtraction at NNLO (A. Gehrmann-De Ridder, E.W.N. Glover, TG)

α_sWorkshop MPI Munich 2011

$e^+e^- \rightarrow 3$ jets and event shapes

• NNLO results: thrust and M_H

- NNLO effects differ between variables
 - large corrections: T, C, B_T
 - small corrections: M_H, B_W, Y₃
- reduction of scale dependence
- better agreement with data
- two-jet limit: poor convergence of perturbative expansion: need resummation
- before comparing with data
 - include quark mass effects (P. Nason, C. Oleari; W. Bernreuther, A. Brandenburg, P. Uwer; G. Rodrigo, A. Santamaria)
 - include hadronization effects (HERWIG, PYTHIA, ARIADNE)

 α_s Workshop MPI Munich 2011

α_{s} from event shapes at NNLO

(OPAL Collaboration)

 α_s Workshop MPI Munich 2011

Resummation of event shapes

- fixed order perturbative expansion fails in two-jet limit $y \rightarrow 0$
- resummation of large logarithms on integrated distribution

 $R(y,Q,\mu) \equiv \frac{1}{\sigma_{\text{had}}} \int_0^y \frac{d\sigma(x,Q,\mu)}{dx} dx, \qquad R(y,Q,\mu) = 1 + \mathcal{A}(y)\bar{\alpha}_s(\mu) + \mathcal{B}(y,x_\mu)\bar{\alpha}_s^2(\mu) + \mathcal{C}(y,x_\mu)\bar{\alpha}_s^3(\mu)$

• structure of large logarithms: exponentiation, leading, next-to-leading,

$\bar{lpha}_{s}\mathcal{A}\left(y ight)$	$\bar{lpha}_s L$	$\bar{lpha}_s L^2$				
$\bar{\alpha}_{s}^{2}\mathcal{B}\left(y,x_{\mu}\right)$	$\bar{\alpha}_s^2 L$	$\bar{lpha}_s^2 L^2$	$\bar{lpha}_s^2 L^3$	$ar{lpha}_s^2 L^4$		
$\bar{\alpha}_{s}^{3}\mathcal{C}\left(y,x_{\mu}\right)$	$\bar{\alpha}_s^3 L$	$\bar{lpha}_s^3 L^2$	$\bar{lpha}_s^3 L^3$	$\bar{lpha}_s^3 L^4$	$\bar{lpha}_s^3 L^5$	$\bar{lpha}_s^3 L^6$

- NLLA resummation available for all event shapes (S. Catani, L. Trentadue, G. Turnock, B. Webber)
- matched onto NNLO: remove double counting (G. Luisoni, H. Stenzel, TG)

 α_s Workshop MPI Munich 2011

α_{s} from event shapes at NNLO+NLLA

• fit to six event shapes

- including NLO mass terms
- including hadronization
- enlarged fit range

 $\alpha_s = 0.1224 \pm 0.0009(stat) \pm 0.0009(exp) \pm 0.0012(had) \pm 0.0035(th)$

JADE: $\alpha_s = 0.1172 \pm 0.0006(stat) \pm 0.0040(syst) \pm 0.0030(th)$ (S. Bethke, S. Kluth, C. Pahl, C. Schieck) $OPAL: \alpha_s = 0.1189 \pm 0.0008(stat) \pm 0.0016(exp) \pm 0.0010(had) \pm 0.0036(th)$ (OPAL Collaboration)

αsWorkshop MPI Munich 2011

α_{s} from event shapes at NNLO+NLLA

- systematic uncertainty: hadronization correction
 - modeled by parton level vs. hadron level Monte Carlo generators
 - PYTHIA (default), HERWIG, ARIADNE (estimate systematic error)
- compare with modern generators
 - HERWIG++ (and MC@NLO or POWHEG)
- spread much larger

$\alpha_s(M_{\rm Z})$	T	C	M_H	B_W	B_T	$-\ln y_3$
PYTHIA	0.1266	0.1252	0.1211	0.1196	0.1268	0.1186
χ^2/N_{dof}	0.16	0.47	4.4	4.4	0.84	1.89
ARIADNE	0.1285	0.1268	0.1234	0.1212	0.1258	0.1202
χ^2/N_{dof}	0.96	0.52	2.5	3.1	2.15	1.41
HERWIG	0.1256	0.1242	0.1253	0.1203	0.1258	0.1203
χ^2/N_{dof}	0.5	0.65	4.4	2.0	2.15	0.8
HW++	0.1242	0.1228	0.1299	0.1212	0.1238	0.1168
χ^2/N_{dof}	6.6	3.2	3.3	1.33	2.65	0.56
HW++ MCNLO	0.1234	0.1220	0.1292	0.1220	0.1232	0.1175
χ^2/N_{dof}	10.7	4.2	2.2	1.1	5.7	0.69
HW++ POWHEG	0.1189	0.1179	0.1236	0.1169	0.1224	0.1142
χ^2/N_{dof}	1.46	2.55	3.8	3.9	1.54	0.56

- all generators extensively tuned to LEP data
- hadronization models may correct for other shortcomings of generators

αsWorkshop MPI Munich 2011

 α_{s} at NNLO+NLLA

Hadronization corrections

- limiting precision of studies of jet and event shape data
- possible solutions:
 - select observables insensitive to hadronization (jet rates)
 - three-jet rate at NNLO
 - (G. Dissertori, A. Gehrmann-De Ridder, E.W.N. Glover, G. Heinrich, H. Stenzel, TG)
 - postulate parton-hadron duality: no hadronization corrections
 - T and M_H at NNLO+N³LLA (T. Becher, Y.T. Chien, M. Schwartz)
 - use analytic hadronization models
 - shape function
 - T at NNLO+N³LLA (R. Abbate, M. Fickinger, A. Hoang, V. Mateu, I.W. Stewart)
 - dispersive model
 - T at NNLO+NLLA (R. Davison, B. Webber)
 - moments of event shapes at NNLO (G. Luisoni, M. Jaquier, TG)

 α_s Workshop MPI Munich 2011

α_{s} from three-jet rate at NNLO

NNLO corrections small

- stable perturbative prediction
- resummation not needed
- theory error below 2%
- hadronization corrections
 - much smaller than for event shapes
 - good agreement between all generators
- data with different jet resolution correlated
 - fit at y_{cut} = 0.02
 - consistent results with other resolution

 $\alpha_s = 0.1175 \pm 0.0020(exp) \pm 0.0015(th)$

α_sWorkshop MPI Munich 2011

α_s from T and M_H at NNLO+N³LLA

- Soft-collinear effective theory (SCET): hard, collinear and soft modes
 - provides framework for jet observables in two-jet limit
 - allows systematic resummation beyond NLLA
 - results (matched onto NNLO)
 - T at N³LLA (T. Becher, M. Schwartz; R. Abbate, M. Fickinger, A. Hoang, V. Mateu, I.W. Stewart)
 - M_H at N³LLA (Y.T. Chien, M. Schwartz)
- estimate hadronization corrections
 - from Monte Carlo generators
 - from simple shape function model
- use magnitude of corrections only as error estimate

 α_s Workshop MPI Munich 2011

 α_{s} at NNLO+NLLA

α_s from T at NNLO+N³LLA

- SCET formalism allows to ascribe soft effects to shape function
- systematic matching of perturbative and non-perturbative contribution (absent in Monte Carlo simulations): renormalon subtraction
- study includes (R. Abbate, M. Fickinger, A. Hoang, V. Mateu, I.W. Stevdart
 - resummation to N³LLA, matched onto NNLO
 - quark mass effects in resummation
 - photonic radiation in resummation
 - hadronization corrections from shape function

α_sWorkshop MPI Munich 2011

Event shape moments

- Moments sample kinematic region of event shape distribution
- power corrections additive

$$\langle y^n \rangle = \frac{1}{\sigma_{\text{had}}} \int_0^{y_{\text{max}}} y^n \frac{\mathrm{d}\sigma}{\mathrm{d}y} \mathrm{d}y \approx \int_0^{y_{\text{max}}} \mathrm{d}y (y + a_y P)^n \frac{1}{\sigma_{\text{had}}} \frac{\mathrm{d}\sigma_{\text{pt}}}{\mathrm{d}y} (y)$$

• perturbative contribution known to NNLO (A. Gehrmann-De Ridder, E.W.N. Glover, G. Heinrich, TG; S. Weinzierl)

- inclusive observable:no resummation
- dispersive model for power correction (based on renormalons)
 - replace QCD coupling by effective coupling α_0 below scale $\mu_1 = 2 \text{ GeV}$
- extend dispersive model to NNLO (M. Jaquier, G. Luisoni, TG)

$$P = \frac{4C_F}{\pi^2} \mathcal{M} \left\{ \alpha_0 - \left[\alpha_s(\mu_R) + \frac{\beta_0}{\pi} \left(1 + \ln\left(\frac{\mu_R}{\mu_I}\right) + \frac{K}{2\beta_0} \right) \alpha_s^2(\mu_R) + \left(2\beta_1 \left(1 + \ln\left(\frac{\mu_R}{\mu_I}\right) + \frac{L}{2\beta_1} \right) + 8\beta_0^2 \left(1 + \ln\left(\frac{\mu_R}{\mu_I}\right) + \frac{K}{2\beta_0} \right) \right) + 4\beta_0^2 \ln\left(\frac{\mu_R}{\mu_I}\right) \left(\ln\left(\frac{\mu_R}{\mu_I}\right) + \frac{K}{\beta_0} \right) \right) \frac{\alpha_s^3(\mu_R)}{4\pi^2} \right] \right\} \times \frac{\mu_I}{Q}$$

 α_s Workshop MPI Munich 2011

$<(1-T)^{n}>$ <p"> ^{2.6} 2.6 **NNLO** 2.4 2.4 NLO 2.2 2.2 2 2 1.8 1.8 1.6 1.6 1.4 1.4 1.2 1.2 2 -3 -5 n

₿

 $-\log_{10}(B_W)$

α_{s} from event shape moments at NNLO

- including full correlations (C. Pahl)
- exclude jet broadenings (unknown recoil corrections)
- good consistency among observables
- substantial difference to PYTHIA hadronization

• study of thrust distribution (R. Davison, B. Webber) $\alpha_s = 0.1167 \pm 0.0028$ (th) $\alpha_0 = 0.59 \pm 0.03$

 α_{s} Workshop MPI Munich 2011

Outlook: Electroweak corrections

- NLO electroweak effects potentially as large as NNLO QCD: α ≃ αs²
- strong cancellations between event shape distribution and hadronic cross section
 - initial state radiation
 - weak loop corrections
- depend on final state photon cuts
- contribution from photon fragmentation
- LEP2: radiative return not fully suppressed
- LEP data were corrected for photonic effects
 - comparison non-trivial

(A. Denner, S. Dittmaier, C. Kurz, TG)

Summary

- NNLO corrections to jet observables allow precision physics studies on LEP data
 - \bullet new determinations of α_s
 - combination with resummation
 - revisit hadronization corrections
- hadronization is currently limiting precision
 - Monte Carlo models appear inappropriate
 - analytic models under intensive development

 α_s Workshop MPI Munich 2011