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Jets and event shapes

• Jets: direct signature of quark and gluon production

• defined through jet algorithm (distance measure)

• e.g. Durham algorithm

• Event shapes: measure of event geometry

• standard set

• thrust T

• heavy jet mass MH (ρ = MH2/s)

• C-parameter

• wide and total broadening: BW, BT

• 2→3 jet transition parameter Y3 
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We compute production rates for two, three, four and five jets in electron-positron annihilation
at the third order in the QCD coupling constant. At this order, three-jet production is described to
next-to-next-to-leading order (NNLO) in perturbation theory while the two-jet rate is obtained at
next-to-next-to-next-to-leading order (N3LO). Our results yield an improved perturbative descrip-
tion of the dependence of jet multiplicity on the jet resolution parameter, ycut, particularly at small
values of ycut.

PACS numbers: 12.38.Bx, 13.66.Bc, 13.66.Jn, 13.87.-a

Jet observables in electron–positron annihilation play
an outstanding role in studying the dynamics of the
strong interactions, described by the theory of quantum
chromodynamics (QCD, [1]). The initial experimental
observation of three-jet events at PETRA [2], in agree-
ment with the theoretical prediction [3], provided first
evidence for the gluon, and thus strong initial support for
the correctness of QCD. Subsequently the three-jet rate
and related event shape observables were used for the
precise determination of the QCD coupling constant αs

(see [4, 5] for a review), and four-jet observables helped
substantially to confirm the gauge group structure of
QCD by firmly establishing the gluon self-coupling [6].

Jets are defined using a jet algorithm, which describes
how to recombine the momenta of all hadrons in an event
to form the jets. A jet algorithm consists of two ingre-
dients: a distance measure and a recombination proce-
dure. The distance measure is computed for each pair
of momenta to select the pair with the smallest separa-
tion. This pair of momenta then is combined according
to the recombination procedure into a joint momentum,
if its separation is below a pre-defined resolution parame-
ter ycut. Improving upon the JADE algorithm [7], which
uses the pair invariant mass as distance measure, several
jet algorithms have been proposed for e+e− collisions:
Durham [8], Geneva [9] and Cambridge [10]. Among
those, the Durham algorithm has been the most widely
used by experiments at LEP [11, 12, 13, 14] and SLD [15],
as well as in the reanalysis of earlier data at lower ener-
gies from JADE [16].

The Durham jet algorithm clusters particles into jets
by computing the distance measure

yij,D =
2 min(E2

i , E2
j )(1 − cos θij)

E2
vis

(1)

for each pair (i, j) of particles, Evis denotes the energy
sum of all particles in the final state. The pair with the
lowest yij,D is replaced by a pseudo-particle whose four-
momentum is given by the sum of the four-momenta of
particles i and j (’E’ recombination scheme). This pro-
cedure is repeated as long as pairs with invariant mass
below the predefined resolution parameter yij,D < ycut

are found. Once the clustering is terminated, the remain-
ing (pseudo-)particles are the jets. It is evident that a
large value of ycut will ultimately result in the clustering
all particles into only two jets, while higher jet multi-
plicities will become more and more frequent as ycut is
lowered. In experimental jet measurements, one there-
fore studies the jet rates (jet cross sections normalized
to the total hadronic cross section) as function of the jet
resolution parameter ycut.

The theoretical prediction of jet cross sections is made
within perturbative QCD, where the same jet algorithm
is applied to the momenta of final state partons. The
QCD description of jet production is either based on a
fixed-order calculation, which uses exact parton-level ma-
trix elements (including higher order corrections if avail-
able) for a given jet multiplicity, or by a parton shower,
which is based on the leading-order matrix element for
two-jet production only, and generates higher multiplic-
ities in an iterative manner, thereby accounting only for
the leading logarithmic terms from parton-level processes
with higher multiplicity. Depending on the jet multi-
plicity, higher perturbative orders correspond to different
powers of the QCD coupling constant: the leading order
prediction for n-jet production is proportional to αn−2

s .
So far, fixed-order calculations were available up to next-
to-next-to-leading order (NNLO) for two jets [17, 18, 19],
up to next-to-leading order (NLO) for three [20, 21, 22]
and four jets [23, 24, 25, 26]. For five and more jets, only
leading order calculations were available [27, 28, 29]. For
jets involving massive quarks, NLO results are available
for three-jet final states [30].

Calculations based on parton showers, incorporated
in multi-purpose event generator programs [31, 32, 33],
provide a satisfactory description of multi-jet production
rates. Since these programs contain many tunable phe-
nomenological parameters, their predictive power is how-
ever very limited.

In this letter, we present the first calculation of NNLO
corrections to three-jet production and the next-to-next-
to-next-to-leading order (N3LO) corrections to two-jet
production in e+e− annihilation. Together with the pre-
viously available NLO corrections to four-jet production
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FIG. 2: Jet rates at first, second and third order in the strong coupling constant, compared to data from ALEPH [11]. The
rates are normalized to the total hadronic cross section at that order.

By comparing the three plots, we observe that there
is systematically improved agreement for each of the jet
rates as the order of perturbation theory increases. At
each order a new multi-jet channel opens up, e.g. the
five-jet rate at O(α3

s), which is positive definite and es-
sentially monotonically increasing at small ycut. Since all
jet rates are normalized to unity, the new five-jet channel
has the effect of reducing the contribution to the two-jet,
three-jet and four-jet rates, in the region of log10(ycut)
where the five-jet rate contributes. One very clear ef-
fect is to cause the turnover in the four-jet rate (which
is not present at O(α2

s)). A second effect is to add more
structure to the shape of the two- and three-jet rates,
which lie much closer to the data for log10(ycut) < −2.5.
Of course, the effect of the higher order corrections also
extends to larger values of ycut, due to the different con-
tributions of the two-loop virtual and virtual-radiation
graphs to the three- and four-jet rates, as well as the way
that the double radiation contribution interacts with the
jet algorithm, and through the normalization to the total
hadronic cross section. This is visibly less dramatic, but
by adding more structure to the theoretical prediction,
enables a better description of the data.

Previous experimental studies of multi-jet production
rates compared only with standard leading-order parton
shower event generator programs, which yielded a good
description of the data at the expense of large hadroniza-
tion corrections [4, 11]. In the light of our new results,
this issue should be carefully reexamined within fixed-
order perturbation theory.

In this letter, we reported on the NNLO QCD correc-

tions to the three-jet production rate at parton-level in
e+e− annihilation, which is the first genuine NNLO cal-
culation of a jet production rate at particle colliders. We
observed that (hadron-level) experimental three-jet data
are described considerably better in shape and normal-
ization, and over a wider range in ycut, than at NLO.

At the same order in the strong coupling constant, α3
s,

we describe four-jet production at NLO and five-jet pro-
duction at LO, reproducing earlier results. By combining
those and normalizing to the total hadronic cross section
at this order, we obtained the two-jet rate to N3LO in
perturbation theory as a by-product. We observe that
with increasing order in the strong coupling constant,
the multi-jet rates are better described over an increas-
ing range of resolution parameters. Our results clearly
highlight how perturbative QCD successfully describes
jet production rates at the parton-level.
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These variables can be categorised into two classes, according to the minimal number of

final-state particles required for them to be non-vanishing: the most common variables

require three particles (and are thus closely related to three-jet final states), while several

other variables were constructed such that they require at least four particles (related to

four-jet final states).

Among the event shapes requiring three-particle final states, six variables were studied

in great detail: the thrust T [19], the normalised heavy jet mass M2
H/s [20], the wide

and total jet broadenings BW and BT [21], the C-parameter [22] and the transition from

three-jet to two-jet final states in the Durham jet algorithm Y3 [23].

(a) Thrust, T [19]

The thrust variable for a hadronic final state in e+e− annihilation is defined as [19]

T = max
!n

(∑

i |!pi · !n|
∑

i |!pi|

)

, (2.1)

where !pi denotes the three-momentum of particle i, with the sum running over all

particles. The unit vector !n is varied to find the thrust direction !nT which maximises

the expression in parentheses.

The maximum value of thrust, T → 1, is obtained in the limit where there are only

two particles in the event. For a three-particle event the minimum value of thrust is

T = 2/3.

(b) Heavy hemisphere mass, M2
H/s [20]

In the original definition [20] one divides the event into two hemispheres. In each

hemisphere, Hi, one also computes the hemisphere invariant mass as:

M2
i /s =

1

E2
vis





∑

k∈Hi

pk





2

, (2.2)

where Evis is the total energy visible in the event. In the original definition, the

hemisphere is chosen such that M2
1 +M2

2 is minimised. We follow the more customary

definition whereby the hemispheres are separated by the plane orthogonal to the

thrust axis.

The larger of the two hemisphere invariant masses yields the heavy jet mass:

ρ ≡ M2
H/s = max(M2

1 /s,M2
2 /s) . (2.3)

In the two-particle limit ρ → 0, while for a three-particle event ρ ≤ 1/3.

The associated light hemisphere mass,

M2
L/s = min(M2

1 /s,M2
2 /s) (2.4)

is an example of a four-jet observable and vanishes in the three-particle limit.

At lowest order, the heavy jet mass and the (1− T ) distribution are identical. How-

ever, this degeneracy is lifted at next-to-leading order.
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Figure 2: Distributions measured by ALEPH, after correction for backgrounds and detector
effects, of thrust, heavy jet mass, total and wide jet broadening at energies between 91.2 and 206
GeV together with the fitted NNLO QCD predictions. The error bars correspond to statistical
uncertainties. The fit ranges cover the central regions indicated by the solid curves, the theoretical
predictions extrapolate well outside the fit ranges, as shown by the dotted curves. The plotted
distributions are scaled by arbitrary factors for presentation.

dominated by limitations of the correction scheme for initial state radiation. Those at

LEP1 are below 1% and dominated by imperfections of the simulation of reconstructed

neutral hadronic energy deposits. As expected, the experimental uncertainties determined

when fitting the NNLO prediction are generally the same as reported by ALEPH using
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e+e-→3 jets and event shapes

• perturbative expansion in αs to NNLO

• dimensionless coefficients computed using parton-level event generator        
(A. Gehrmann-De Ridder, E.W.N. Glover, G. Heinrich, TG; S. Weinzierl)

• calculation based on antenna subtraction at NNLO                                         
(A. Gehrmann-De Ridder, E.W.N. Glover, TG)

with the MS-scheme coefficients

β0 =
11CA − 4TRNF

6
,

β1 =
17C2

A − 10CATRNF − 6CF TRNF

6
,

β2 =
1

432
(2857C3

A + 108C2
F TRNF − 1230CF CATRNF − 2830C2

ATRNF

+264CF T 2
RN2

F + 316CAT 2
RN2

F ) . (3.12)

Equation (3.11) is solved by introducing Λ as integration constant with L = log(µ2/Λ2),

yielding the running coupling constant:

αs(µ) =
2π

β0L

(

1 −
β1

β2
0

log L

L
+

1

β2
0L2

(

β2
1

β2
0

(

log2 L − log L − 1
)

+
β2

β0

))

. (3.13)

In terms of the running coupling αs(µ), the NNLO (non-singlet) expression for event

shape distributions becomes

1

σhad

dσ

dy
(s, µ2, y) =

(

αs(µ)

2π

)

dĀ

dy
+

(

αs(µ)

2π

)2 (

dB̄

dy
+

dĀ

dy
β0 log

µ2

s

)

+

(

αs(µ)

2π

)3 (

dC̄

dy
+ 2

dB̄

dy
β0 log

µ2

s
+

dĀ

dy

(

β2
0 log2 µ2

s
+ β1 log

µ2

s

))

+O(α4
s) . (3.14)

4. Calculation of NNLO corrections

Three-jet production at tree-level is induced by the decay of a virtual photon (or other

neutral gauge boson) into a quark-antiquark-gluon final state. At higher orders, this process

receives corrections from extra real or virtual particles. The individual partonic channels

that contribute through to NNLO are shown in Table 1. All of the tree-level and loop

amplitudes associated with these channels are known in the literature [13–15,27].

For a given partonic final state, the event shape observable y is computed according to

the same definition as in the experiment, which is applied to partons instead of hadrons.

At leading order, all three final state partons must be well separated from each other, such

that y differs from the trivial two-parton limit. At NLO, up to four partons can be present

in the final state, two of which can be clustered together, whereas at NNLO, the final state

can consist of up to five partons, and as many as three partons can be clustered together.

The more partons in the final state, the better one expects the matching between theory

and experiment to be [28].

The two-loop γ∗ → qq̄g matrix elements were derived in [13] by reducing all relevant

Feynman integrals to a small set of master integrals using integration-by-parts [29] and

Lorentz invariance [30] identities, solved with the Laporta algorithm [31]. The master

integrals [32] were computed from their differential equations [30] and expressed analytically

in terms of one- and two-dimensional harmonic polylogarithms [33].
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e+e-→3 jets and event shapes

• NNLO results: thrust and MH
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Figure 7: Thrust distribution at Q = MZ at LO (blue), NLO (green) and NNLO (red). The solid
lines represent the prediction for renormalisation scale µ = Q and αs(MZ) = 0.1189, while the
shaded region shows the variation due to varying the renormalisation scale between µ = Q/2 and
µ = 2Q. The data is taken from [1].

The inclusion of the NNLO corrections enhances the thrust distribution by around

(15-20)% over the range 0.04 < (1− T ) < 0.33, where −ln(1−T ) is not too large. Outside

this range, one does not expect the perturbative fixed-order prediction to yield reliable

results. For (1 − T ) → 0, the convergence of the perturbative series is spoilt by powers

of logarithms ln(1− T ) appearing in higher perturbative orders, thus necessitating an all-

order resummation of these logarithmic terms [10, 11], and a matching of fixed-order and

resummed predictions [48].

The perturbative parton-level prediction is compared with the hadron-level data from

the ALEPH collaboration [1] in Figure 7 and Figure 8. We observe that for all Q values,

the shape and normalisation of the parton level NNLO prediction agrees better with the

data than at NLO. We also see that the NNLO corrections account for approximately half

of the difference between the parton-level NLO prediction and the hadron-level data.

6.2 Heavy jet mass

The perturbative prediction for the heavy jet mass distribution is displayed in Figure 9.

The solid lines represent the prediction at the physical scale Q = MZ , while the shaded

bands represent the effect of varying the renormalisation scale upwards and downwards

by a factor of 2. We observe that the relative scale uncertainty is reduced by about 50%

between NLO and NNLO. It is noteworthy that the original motivation for introducing the

heavy jet mass distribution [20] was the hope for improved perturbative stability over the

thrust distribution. This improved stability was not evident from the existing NLO results

alone, but becomes visible at NNLO.

Compared to NLO, the inclusion of the NNLO corrections enhances the heavy jet

mass distribution by around 10% over the range 0.02 < ρ < 0.33, where ln(ρ) is not too
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The solid lines represent the prediction for renormalisation scale µ = Q and αs(MZ) = 0.1189, while
the shaded region shows the variation due to varying the renormalisation scale between µ = Q/2
and µ = 2Q. The data is taken from [1].

large. At smaller ρ values, large ln(1/ρ) corrections must be resummed to all orders [49]

and matched onto the perturbative prediction. Nevertheless, in the moderate to large ρ

region, the NNLO corrections render the fixed order prediction significantly closer to the

experimental data [1].

Figure 10 shows the prediction for a range of Q values together with the hadron-level

data from the ALEPH collaboration [1]. For this observable, the NNLO corrections are

relatively small, however, for all Q values, the shape and normalisation of the parton-level

NNLO prediction agrees slightly better with the hadron-level data than at NLO.

6.3 Jet broadenings

Predictions for the total and wide jet broadenings are displayed in Figures 11 and 12.

The solid lines represent the prediction at the physical scale Q = MZ , while the shaded

bands represent the effect of varying the renormalisation scale upwards and downwards by

a factor of 2. We observe that the relative scale uncertainty in the BT (BW ) distribution

is reduced by about 40% (50%) between NLO and NNLO.

As anticipated from the discussion in section 5.3, we observe that the perturbative

corrections are smaller for BW than for BT . In the region where perturbation theory

is expected to yield reliable results, (BT , BW ) > 0.05, we observe an enhancement of

(15-20)% in BT and of (8-12)% in BW . As with (1 − T ) and the heavy jet mass, the

two broadenings are identical at leading order, but display a largely different behaviour

in the higher perturbative corrections. At smaller values of broadening, large logarithmic

corrections occur which must be resummed [21].
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• NNLO effects differ between variables

• large corrections: T, C, BT

• small corrections: MH, BW, Y3

• reduction of scale dependence

• better agreement with data

• two-jet limit: poor convergence of 
perturbative expansion: need resummation

• before comparing with data

• include quark mass effects                         
(P. Nason, C. Oleari; W. Bernreuther, A. Brandenburg, P. Uwer; 
G. Rodrigo, A. Santamaria)

• include hadronization effects             
(HERWIG, PYTHIA, ARIADNE)
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αs from event shapes at NNLO

• fit to six event shapes

• including NLO mass terms

• including hadronization

• restrict to 3 jet region

• data: LEP and LEP2 ALEPH

• better consistency among different 
shape variables

• reduction of theory error

ALEPH data

E
cm

=91.2 GeV

fit range

NNLO, !
s
=0.1274 ±0.0003, "

2
/n

dof
=0.44

NLO, !
s
=0.1446 ±0.0003, "

2
/n

dof
=1.7

NLO + NLLA

!
s
=0.1271 ±0.0002, "

2
/n

dof
=0.62

1
/#

 d
#

/d
T

T

(d
a

ta
-f

it
)/

d
a

ta stat. $ exp. uncertainty

statistical uncertainty

10
-3

10
-2

10
-1

1

10

-0.4

-0.2

0

0.2

0.4

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

ALEPH data
E

cm
=91.2 GeV

fit range

NNLO, !
s
=0.1261 ±0.0003, "

2
/n

dof
=1.2

NLO, !
s
=0.1354 ±0.0003, "

2
/n

dof
=4.3

NLO + NLLA, !
s
=0.1198 ±0.0002, "

2
/n

dof
=7.6

1
/#

 d
#

/d
M

H

M
H

(d
a

ta
-f

it
)/

d
a

ta stat. $ exp. uncertainty

statistical uncertainty

10
-4

10
-3

10
-2

10
-1

1

10

-0.4

-0.2

0

0.2

0.4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

ALEPH data
E

cm
=91.2 GeV

fit range

NNLO, !
s
=0.1263 ±0.0002, "

2
/n

dof
=1.6

NLO, !
s
=0.1454 ±0.0002, "

2
/n

dof
=12

NLO + NLLA, !
s
=0.1269 ±0.0001, "

2
/n

dof
=2.2

1
/#

 d
#

/d
B

T

B
T

(d
a

ta
-f

it
)/

d
a

ta stat. $ exp. uncertainty

statistical uncertainty

10
-4

10
-3

10
-2

10
-1

1

10

-0.4

-0.2

0

0.2

0.4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

ALEPH data
E

cm
=91.2 GeV

fit range

NNLO, !
s
=0.1240 ±0.0003, "

2
/n

dof
=0.65

NLO, !
s
=0.1324 ±0.0002, "

2
/n

dof
=1.7

NLO + NLLA, !
s
=0.1164 ±0.0002, "

2
/n

dof
=7.6

1
/#

 d
#

/d
B

W

B
W

(d
a

ta
-f

it
)/

d
a

ta stat. $ exp. uncertainty

statistical uncertainty

10
-4

10
-3

10
-2

10
-1

1

10

-0.4

-0.2

0

0.2

0.4

0 0.05 0.1 0.15 0.2 0.25 0.3

Figure 4: Distributions measured by ALEPH at LEP1, after correction for backgrounds and
detector effects, of thrust, heavy jet mass, total and wide jet broadening. Fitted QCD predictions
at different orders of perturbation theory are overlaid. The lower insets show a relative comparison
of data and QCD fits.
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(G. Dissertori, A. Gehrmann-De Ridder, E.W.N. Glover, G. Heinrich, H. Stenzel, TG)

αs = 0.1240±0.0008(stat)±0.0010(exp)±0.0011(had)±0.0029(th)

cf. OPAL: αs = 0.1201±0.0008(stat)±0.0013(exp)±0.0010(had)±0.0024(th)
(OPAL Collaboration)
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Resummation of event shapes

• fixed order perturbative expansion fails in two-jet limit y→0

• resummation of large logarithms on integrated distribution

• structure of large logarithms: exponentiation, leading, next-to-leading, ......

• NLLA resummation available for all event shapes                                                 
(S. Catani, L. Trentadue, G. Turnock, B. Webber)

• matched onto NNLO: remove double counting                                                 
(G. Luisoni, H. Stenzel, TG)

Event shape distributions in e+e− annihilation processes are classical hadronic observables
which can be measured very accurately and provide an ideal proving ground for testing our
understanding of strong interactions. The deviation from simple two-jet configurations, which
are a limiting case in event shapes, is proportional to the strong coupling constant, so that
by comparing the measured event shape distribution with the theoretical predictions, one can
determine the strong coupling constant αs. At LEP, a standard set of event shapes was studied
in great detail [1–4]: thrust T [5] (which is substituted here by τ = 1−T ), heavy jet mass ρ [6],
wide and total jet broadening BW and BT [7], C-parameter [8] and two-to-three-jet transition
parameter in the Durham algorithm Y3 [9]. The definitions of these variables, which we denote
collectively as y in the following, are summarised in [10]. The two-jet limit of each variable is
y → 0.

The theoretical prediction is made within perturbative QCD, expanded to a finite order in
the coupling constant. This fixed order expansion is reliable only if the event shape variable is
sufficiently far away from its two-jet limit. In the approach to this limit, event shapes display
large infrared logarithms at all orders in perturbation theory, such that the expansion in the
strong coupling constant fails to converge. Resummation of these logarithms yields a description
appropriate to the two-jet limit. To explain event shape distributions over their full kinematical
range, both descriptions need to be matched onto each other. Until very recently, the theo-
retical state-of-the-art description of event shape distributions was based on the matching of
the next-to-leading-logarithmic approximation (NLLA, [11]) onto the fixed next-to-leading or-
der (NLO, [12–14]) calculation. Using the newly available results of the next-to-next-to-leading
order (NNLO) corrections for the standard set of event shapes [15–18] introduced above, we
derive here matching of the resummed NLLA onto the fixed order NNLO.

For two-particle final states, all above event shape variables have the fixed value y = 0, con-
sequently their distributions receive their first non-trivial contribution from three-particle final
states, which, at order αs, correspond to three-parton final states. Therefore, both theoretically
and experimentally, these distributions are closely related to three-jet production.

Fixed-order QCD corrections to event shape distributions were calculated long ago to next-
to-leading order (NLO, [12–14]), and most recently to next-to-next-to-leading order (NNLO, [15–
17]). At a centre-of-mass energy Q and for renormalisation scale µ, they take the form:

1

σhad

dσ

dy
(y,Q, µ) = ᾱs(µ)

dĀ

dy
(y) + ᾱ2

s(µ)
dB̄

dy
(y, xµ) + ᾱ3

s(µ)
dC̄

dy
(y, xµ) + O(ᾱ4

s) , (1)

where
ᾱs =

αs

2π
, xµ =

µ

Q
, (2)

and where Ā, B̄ and C̄ are the perturbatively calculated coefficients at LO, NLO, NNLO,
normalised to σhad, explicit relations are given in [17] (note the different convention for the βi

coefficients).
The resummation of large logarithmic corrections in the y → 0 limit starts from the inte-

grated cross section:

R (y,Q, µ) ≡
1

σhad

∫ y

0

dσ (x,Q, µ)

dx
dx, (3)

1

which has the following fixed-order expansion:

R (y,Q, µ) = 1 + A (y) ᾱs (µ) + B (y, xµ) ᾱ2
s (µ) + C (y, xµ) ᾱ3

s (µ) . (4)

The fixed-order coefficients A, B, C can be obtained by integrating the distribution (1) and using
R(ymax, Q, µ) = 1 to all orders, where ymax is the maximal kinematically allowed value for the
shape variable y.

In the limit y → 0 one observes that the perturbative αn
s –contribution to R(y) diverges like

αn
s L2n, with L = −ln y (L = −ln (y/6) for y = C). This leading logarithmic (LL) behaviour is

due to multiple soft gluon emission at higher orders, and the LL coefficients exponentiate, such
that

ln R(y) ∼ Lg1(αsL) ,

where g1(αsL) is a power series in its argument.
For the event shapes considered here, leading and next-to-leading logarithmic (NLL) correc-

tions can be resummed to all orders in the coupling constant, such that

R (y,Q, µ) = (1 + C1ᾱs) e(L g1(αsL)+g2(αsL)) , (5)

where terms beyond NLL have been consistently omitted, and µ = Q (xµ = 1) is used. In the
case of the C-parameter further large logarithms around C ≈ 0.75, produce a so-called Sudakov
shoulder in the distribution due to soft gluon divergences within the physical region [24].

By differentiating expression (5) with respect to y, one recovers the resummed differential
event shape distributions, which yield an accurate description for y → 0. The first complete cal-
culation of next-to-next-to-leading logarithmic (NNLL) corrections to event shape distributions
is available for the energy-energy correlation function [27], which is not part of the standard
set of event shape observables. The application of soft-collinear effective field theory to event
shape distributions [28] promises to yield results beyond NLL. Most recently, this formalism was
applied to compute the resummed thrust distribution beyond NLL accuracy [29].

Closed analytic forms for the LL and NLL resummation functions g1(αsL), g2(αsL) are
available for τ [19], ρ [20], BW and BT [21, 22], C [23] and Y3 [25]. For the convenience of the
reader, we collect them in uniform notation in an Appendix. They can be expanded as power
series, such that:

lnR(y,Q, µ) =
∞
∑

i=1

i+1
∑

n=1

Gi,i+2−nᾱi
sL

i+2−n , (6)

To obtain a reliable description of the event shape distributions over a wide range in y, it
is mandatory to combine fixed order and resummed predictions. To avoid the double counting
of terms common to both, the two predictions have to be matched onto each other. A number
of different matching procedures have been proposed in the literature, see for example [10] for
a review. The by-now standard procedure is the so-called lnR-matching [11]. In this particular
scheme, all matching coefficients can be extracted analytically from the resummed calculation,
while most other schemes require the numerical extraction of some of the matching coefficients
from the distributions at fixed order. Since the fixed order calculations face numerical instabil-
ities in the region y → 0, these matching coefficients can often be determined only within large
errors. We shall therefore consider only the lnR-matching here. The lnR-matching at NLO is

2

ᾱsA (y) ᾱsL ᾱsL
2

ᾱ2
sB (y, xµ) ᾱ2

sL ᾱ2
sL

2 ᾱ2
sL

3 ᾱ2
sL

4

ᾱ3
sC (y, xµ) ᾱ3

sL ᾱ3
sL

2 ᾱ3
sL

3 ᾱ3
sL

4 ᾱ3
sL

5 ᾱ3
sL

6

Table 2: Powers of the logarithms present at different orders in perturbation theory. The
color highlights the different orders in resummation: LL (red) and NLL (blue). The terms in
green are contained in the LL and NLL contributions and exponentiate trivially with them.

αn
s Ln, and so on. Notice that this can be read off the expansion (1) of the exponentiated

resummation functions.
Closed analytic forms for the functions g1(αsL) and g2(αsL) are available for τ and ρ [9],

BW and BT [10, 11], C [12] and Y3 [13], and are collected in the appendix of [16]. Recently
also g3 (αsL) and g4 (αsL) were computed for τ using effective field theory methods [15].

3 Matching of fixed order and resummed calculations

To obtain a reliable description of the event shape distributions over a wide range in y,
it is mandatory to combine fixed order and resummed predictions. The two predictions
have to be matched in a way that avoids the double counting of terms present in both.
A number of different matching procedures have been proposed in the literature, see for
example [2] for a review. In the so-called R-matching scheme, the two expressions for R (y)
are matched. We computed the matching in the so-called ln R-matching [3] since in this
particular scheme, all matching coefficients can be extracted analytically from the resummed
calculation. The ln R-matching at NLO is described in detail in [3]. In the ln R-matching
scheme, the NLLA+NNLO expression is

ln (R (y, αs)) = L g1 (αsL) + g2 (αsL) + ᾱS

(

A (y) − G11L − G12L
2
)

+

+ ᾱ2
S

(

B (y) −
1

2
A

2 (y) − G22L
2
− G23L

3

)

+ ᾱ3
S

(

C (y) −A (y)B (y) +
1

3
A3 (y) − G33L

3 − G34L
4

)

. (2)

The matching coefficients appearing in this expression can be obtained from (1) and are listed
in [16]. To ensure the vanishing of the matched expression at the kinematical boundary ymax

a further shift of the logarithm is made [2].
The renormalisation scale dependence of (2) is given by making the following replace-

ments:

αs → αs(µ) ,

B (y) → B (y, µ) = 2 β0 lnxµ A (y) + B (y) ,

C (y) → C (y, µ) = (2 β0 lnxµ)2 A (y) + 2 lnxµ [2 β0B (y) + 2 β1 A (y)] + C (y) ,

g2 (αsL) → g2

(

αsL, µ2
)

= g2 (αsL) +
β0

π
(αsL)2 g′1 (αsL) lnxµ ,

G22 → G22 (µ) = G22 + 2β0G12 lnxµ ,

G33 → G33 (µ) = G33 + 4β0G23 lnxµ .
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Figure 1: Comparison of the matched NLLA+NNLO and NLLA+NLO with fixed order NNLO
and NLO predictions for the thrustlike observables τ , ρ and C-parameter.
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and NLO predictions for the thrustlike observables τ , ρ and C-parameter.
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αs from event shapes at NNLO+NLLA

• fit to six event shapes

• including NLO mass terms

• including hadronization

• enlarged fit range

• data: LEP and LEP2 ALEPH
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Figure 2: Distributions measured by ALEPH at LEP1, after correction for detector effects, of
thrust and the two-to-three-jet transition parameter in the Durham algorithm. Fitted QCD pre-
dictions at different orders of perturbation theory are overlaid. The lower insets show a relative
comparison of data and QCD fits.

lications. The main source of arbitrariness in the predictions is the choice of the renormal-

isation scale xµ and of the logarithmic rescaling variable xL. The residual dependence of

the fitted value of αs(MZ) on the renormalisation scale is shown in Fig. 3, for the same

two variables as in the previous figures. Most notably, the matching of NLLA terms to the

NNLO prediction does not lead to a reduced scale dependence, compared to pure NNLO

only, but at least to an improvement compared to NLO+NLLA. This could be anticipated

by the discussion in section 2 on the scale dependence of the NNLO and NLLA predictions.

A further study of this particular aspect is described in section 6 below.

The systematic uncertainty related to missing higher orders is estimated with the

uncertainty-band method recommended in Ref. [22]. Briefly, this method derives the

uncertainty of αs from the uncertainty of the theoretical prediction for the event-shape

distribution and proceeds in three steps. First a reference perturbative prediction, here

NNLO+NLLA with xµ = 1 and xL = 1, is determined using the value of αs obtained from

the combination of the six variables and eight energies, as explained in section 5. Then

variants of the prediction with different choices for xµ and xL, for the kinematic constraint

ymax and the modification degree power p are calculated with the same value of αs. A

variation of the matching scheme as advocated in Ref. [22] was not included in the list

of variants, since no R-matching scheme is presently available at NNLO+NLLA. In each

– 10 –

(G. Dissertori, A. Gehrmann-De Ridder, E.W.N. 
Glover, G. Heinrich, G. Luisoni, H. Stenzel, TG)

perturbative and finally total uncertainty of the NNLO+NLLA result compared to NNLO,

as can be seen by comparing Table 5 for the combined value of αs(MZ) at different energies

at NNLO+NLLA with Table 6 at NNLO. However, compared to the NLO+NLLA fit, an

improvement of more than 20% is obtained for the perturbative error. The central values

of the fits for the different approximations turn out to be pretty similar. The fitted values

of the coupling constant as found from the various event-shape variables, combined over

all energies, are shown in Fig. 6. Besides the larger uncertainties, at NNLO+NLLA we

observe the same reduced scatter of the results compared to NLO+NLLA as already re-

ported previously [27]. However, the effect is not as strong as going from a NLO fit (where

the scatter is largest) to a pure NNLO fit.
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Figure 6: The measurements of the strong coupling constant αs for the six event shapes, at√
s = MZ, when using QCD predictions at different approximations in perturbation theory. The

shaded area corresponds to the total uncertainty, as in Fig. 5.

6. Systematic studies

6.1 lnR(µ)-matching scheme

As described in section 2, we have computed the two-loop terms proportional to the renor-

malisation scale in the resummation and matching functions (eq. 2.14) and recomputed

the theoretical error in the new matching scheme, which we call the lnR(µ)-scheme. It

is important to note that this new matching scheme does not affect the central values of

– 15 –

αs = 0.1224±0.0009(stat)±0.0009(exp)±0.0012(had)±0.0035(th)

JADE:αs = 0.1172±0.0006(stat)±0.0040(syst)±0.0030(th) (S. Bethke, S. Kluth, C. Pahl, C. Schieck)

OPAL:αs = 0.1189±0.0008(stat)±0.0016(exp)±0.0010(had)±0.0036(th) (OPAL Collaboration)
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αs from event shapes at NNLO+NLLA

• systematic uncertainty: hadronization correction

• modeled by parton level vs. hadron level Monte Carlo generators

• PYTHIA (default), HERWIG, ARIADNE (estimate systematic error)

• compare with modern generators

• HERWIG++ (and MC@NLO or POWHEG)

• spread much larger

• all generators extensively tuned to LEP data

• hadronization models may correct for other shortcomings of generators
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Figure 8: Residuals of hadron level Monte Carlo predictions with respect to the ALEPH data.
The shaded area indicates the experimental uncertainty.

structive to consider the parton-level predictions and the hadronisation corrections sepa-

rately. The parton level predictions from the generators are calculated with final state par-

tons at the end of the parton shower. These are compared to the complete NNLO+NLLA

calculation in Fig. 9. For thrust and in particular the total jet broadening a reasonable

agreement between NNLO+NLLA and HERWIG++ with POWHEG, as well as a fair

agreement with PYTHIA and ARIADNE is observed, while other HERWIG variants show

a clear deviation. For −ln(y3) and the wide jet broadening all legacy generators provide a
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data set LEP1 + LEP2 LEP2

αs(MZ) 0.1222 0.1228

stat. error 0.0003 0.0013

exp. error 0.0007 0.0010

pert. error 0.0039 0.0034

hadr. error 0.0017 0.0011

total error 0.0044 0.0040

Table 13: Weighted average of the combined measurements for αs(MZ), based on weights which
do not include the theoretical uncertainty.

T C MH BW BT −lny3 global

PYTHIA 0.55 1.05 1.9 2.5 0.57 1.31 1.30

ARIADNE 0.44 0.75 0.60 0.97 0.58 0.52 0.65

HERWIG 6.9 5.3 9.4 9.8 4.4 4.0 6.6

HW++ 17.5 16.5 18.2 13.4 9.4 5.6 13.5

HW++ MCNLO 9.6 15.9 9.2 10.5 11.8 5.5 10.4

HW++ POWHEG 3.9 11.2 8.5 6.9 3.5 2.3 6.1

Table 14: Comparison of hadron level predictions from various event generators to the ALEPH
event-shape data. The Table shows the χ2 values normalised to the number of experimental bins,
including statistical and experimental systematic uncertainties of the data.

αs(MZ) T C MH BW BT −lny3

PYTHIA 0.1266 0.1252 0.1211 0.1196 0.1268 0.1186

χ2/Ndof 0.16 0.47 4.4 4.4 0.84 1.89

ARIADNE 0.1285 0.1268 0.1234 0.1212 0.1258 0.1202

χ2/Ndof 0.96 0.52 2.5 3.1 2.15 1.41

HERWIG 0.1256 0.1242 0.1253 0.1203 0.1258 0.1203

χ2/Ndof 0.5 0.65 4.4 2.0 2.15 0.8

HW++ 0.1242 0.1228 0.1299 0.1212 0.1238 0.1168

χ2/Ndof 6.6 3.2 3.3 1.33 2.65 0.56

HW++ MCNLO 0.1234 0.1220 0.1292 0.1220 0.1232 0.1175

χ2/Ndof 10.7 4.2 2.2 1.1 5.7 0.69

HW++ POWHEG 0.1189 0.1179 0.1236 0.1169 0.1224 0.1142

χ2/Ndof 1.46 2.55 3.8 3.9 1.54 0.56

Table 15: Fit results for αs(MZ) using LEP1 data and NLLO+NLLA but different hadronisation
corrections. In all cases the same detector corrections, obtained from a full detector simulation
using PYTHIA as generator is applied. The statistical errors are essentially unaltered compared to
those in Table 3.
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Hadronization corrections

• limiting precision of studies of jet and event shape data

• possible solutions:

• select observables insensitive to hadronization (jet rates)

• three-jet rate at NNLO                                                                         
(G. Dissertori, A. Gehrmann-De Ridder, E.W.N. Glover, G. Heinrich, H. Stenzel, TG)

• postulate parton-hadron duality: no hadronization corrections

• T and MH at NNLO+N3LLA (T. Becher, Y.T. Chien, M. Schwartz)

• use analytic hadronization models

• shape function 

• T at NNLO+N3LLA (R. Abbate, M. Fickinger, A. Hoang, V. Mateu, I.W. Stewart)

• dispersive model

• T at NNLO+NLLA (R. Davison, B. Webber)

• moments of event shapes at NNLO (G. Luisoni, M. Jaquier, TG)
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αs from three-jet rate at NNLO

• NNLO corrections small

• stable perturbative prediction

• resummation not needed

• theory error below 2%

• hadronization corrections

• much smaller than for event shapes

• good agreement between all generators

• data with different jet resolution correlated

• fit at ycut = 0.02

• consistent results with other resolution
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FIG. 1: Determinations of αs(MZ) from the three-jet rate,
measured by ALEPH at the Z peak, for several values of
the jet-resolution parameter ycut. The error bars show the
statistical uncertainty, whereas the shaded band indicates the
total error, including the systematic uncertainty. The various
contributions to the latter are displayed in the lower plot.

tion scale uncertainties (cf. Table I). We also per-
formed similar measurements for the LEP2 energies be-
tween 133 and 206 GeV, where we find consistent val-
ues for αs(MZ), but with considerably larger statisti-
cal uncertainties. Combining the errors in quadrature,
yields αs(MZ) = 0.1175 ± 0.0025 which is in excellent
agreement with the latest world average value [4] of
αs(MZ) = 0.1184 ± 0.0007 that is based on a number
of measurements from τ -decay, lattice gauge theory, Up-
silon decay, DIS and e+e− data. As expected, our the-
oretical uncertainty is smaller than that obtained from
fits of event-shape distributions, and even smaller than
the experimental error, which is dominated by the model-
dependence of the detector corrections. Our result is also
more precise than the two extractions of αs from e+e−

event-shape data [40, 41] currently used in the world av-
erage [4].
In this letter we reported on the first determination

of the strong coupling constant from the three-jet rate

in e+e− annihilation at LEP, based on a NNLO per-
turbative QCD prediction. We find a precise value of
αs(MZ) with an uncertainty of 2%, consistent with the
world average. This verifies the expectations that the
three-jet rate is an excellent observable for this kind of
analysis, thanks to the good behaviour of its perturbative
and non-perturbative contributions over a sizable range
of jet-resolution parameters.
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ln(ycut) αs(MZ ) stat. det. exp. had. mass pert. total
-5.1 0.1110 0.0004 0.0013 0.0008 0.0003 0.0004 0.0020 0.0025
-4.9 0.1124 0.0004 0.0015 0.0007 0.0003 0.0003 0.0013 0.0022
-4.7 0.1147 0.0004 0.0015 0.0008 0.0004 0.0003 0.0012 0.0022
-4.5 0.1153 0.0004 0.0015 0.0008 0.0005 0.0003 0.0006 0.0019
-4.3 0.1159 0.0004 0.0016 0.0009 0.0005 0.0003 0.0010 0.0022
-4.1 0.1170 0.0004 0.0016 0.0009 0.0005 0.0003 0.0012 0.0023
-3.9 0.1175 0.0004 0.0016 0.0011 0.0006 0.0002 0.0014 0.0025
-3.7 0.1179 0.0004 0.0016 0.0011 0.0006 0.0002 0.0016 0.0026
-3.5 0.1183 0.0004 0.0015 0.0009 0.0006 0.0002 0.0018 0.0026
-3.3 0.1184 0.0004 0.0015 0.0011 0.0008 0.0002 0.0019 0.0029
-3.1 0.1179 0.0004 0.0016 0.0013 0.0010 0.0002 0.0021 0.0031
-2.9 0.1177 0.0004 0.0019 0.0013 0.0010 0.0002 0.0021 0.0033
-2.7 0.1180 0.0004 0.0020 0.0013 0.0013 0.0001 0.0020 0.0034
-2.5 0.1169 0.0005 0.0021 0.0015 0.0013 0.0001 0.0021 0.0036
-2.3 0.1166 0.0005 0.0019 0.0018 0.0014 0.0001 0.0021 0.0037
-2.1 0.1166 0.0006 0.0020 0.0020 0.0015 0.0001 0.0020 0.0038
-1.9 0.1191 0.0008 0.0021 0.0019 0.0014 0.0002 0.0016 0.0036
-1.7 0.1173 0.0010 0.0015 0.0023 0.0016 0.0001 0.0019 0.0038
-1.5 0.1175 0.0016 0.0005 0.0029 0.0014 0.0001 0.0017 0.0040
-1.3 0.1159 0.0037 0.0014 0.0029 0.0018 0.0004 0.0011 0.0054

TABLE I: Results of αs(MZ) extracted from the three-jet rate
measured by ALEPH at LEP1. The uncertainty contribu-
tions are given for the statistical error (stat.), the uncertainty
related to the choice of the generator for the simulation of
the detector response (det.), the quadratic sum of all other
experimental systematic uncertainties arising from track and
event selection cut variations (exp.), the hadronisation un-
certainty obtained by the maximum difference between either
PYTHIA, HERWIG or ARIADNE (had.), the uncertainty on
the b-quark mass correction procedure (mass) and the un-
certainty for missing higher orders (pert.) estimated by a
variation of the renormalisation scale.
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FIG. 1: Perturbative fixed-order description of the three-jet
rate at Q = MZ , compared to data obtained with the ALEPH
experiment [11]. Experimental errors are too small to be vis-
ible on the figure.

and the leading-order description of five-jet final states,
these are used for a fully consistent perturbative descrip-
tion of e+e− → jets at order α3

s in perturbative QCD.
The calculation of the α3

s corrections for three-jet pro-
duction is carried out using the newly developed parton-
level event generator program EERAD3 which contains the
relevant matrix elements with up to five external par-
tons [27, 34, 35, 36]. Besides explicit infrared divergences
from the loop integrals, the four-parton and five-parton
contributions yield infrared divergent contributions if one
or two of the final state partons become collinear or soft.
In order to extract these infrared divergences and com-
bine them with the virtual corrections, the antenna sub-
traction method [25, 37] was extended to NNLO level [38]
and implemented for e+e− → 3 jets and related event-
shape variables [39] into EERAD3. The analytical cancel-
lation of all infrared divergences serves as a very strong
check on the implementation.

Initial results obtained with EERAD3 on NNLO correc-
tions to event shape observables were reported in [40] and
applied in the extraction of the strong coupling constant
from LEP data in [41]. Since the program provides the
full kinematical information for each event, it can also
be used to simultaneously compute the production cross
sections for three, four and five jets through to O(α3

s)
for any infrared-safe jet algorithm and as function of the
jet resolution parameter. The jet rates are then defined
by normalizing the multi-jet cross sections to the total
hadronic cross section computed at the same order.

The four-jet [23, 24, 25, 26] and five-jet rates [27] were
known previously to O(α3

s). Our major new result is
the three-jet rate to this order, which corresponds to
NNLO in the perturbative expansion. Figure 1 displays
the three-jet rate at LEP1 energy Q = MZ as function
of the jet resolution ycut at LO, NLO, NNLO. At NNLO,
the denominator has been expanded, as described in [40]

to contain only terms up to O(α3
s) in the jet rate. The

theoretical uncertainty band is defined by varying the
renormalization scale µ in the coupling constant in the in-
terval MZ/2 < µ < 2 MZ, and the world average value [5]
αs(MZ) = 0.1189 is used, consistently evolved to other
scales at each order. The fixed-order theoretical predic-
tions for three-jet rate become negative for small values of
ycut, where fixed order perturbation theory is not applica-
ble due to the emergence of large logarithmic corrections
at all orders, requiring resummation [8, 43]. We therefore
restrict our comparison to ycut > 10−4, although data at
lower jet resolution parameters are available.

For large values of ycut, ycut > 10−2, the NNLO cor-
rections turn out to be very small, while they become
substantial for medium and low values of ycut. The maxi-
mum of the jet rate is shifted towards higher values of ycut

compared to NLO, and is in better agreement with the
experimental observation. The theoretical uncertainty is
lowered considerably compared to NLO. Especially in the
region 10−1 > ycut > 10−2, which is relevant for preci-
sion phenomenology, one observes a reduction by almost
a factor three, down to below two per cent relative uncer-
tainty. Since the error band in this region is barely visible
in the plot, we display the relative theoretical uncertainty

δ =
maxµ(σ(µ)) − minµ(σ(µ))

2σ(µ = MZ)

at NLO and NNLO as an inset. The relative uncertainty
on the LO calculation is constant at 10.2%.

The fixed-order NNLO description is still above the
data at low jet resolution, where the convergence of the
perturbative series is spoilt by large logarithms of ycut at
all orders, and where a resummation should be carried
out [8]. Furthermore, the theoretical parton-level predic-
tion is compared to hadron-level data, thereby neglect-
ing hadronization corrections, which may also account
for part of the discrepancy.

To compute the jet rates with different multiplicities,
it is more appropriate to normalize all jet cross sections
to the total hadronic cross section corrected to third or-
der [42] in the QCD coupling constant, O(α3

s). We con-
sistently neglect numerically small QCD singlet contri-
butions at this order, which were found to contribute at
most one per cent [42] to the total coefficient of the O(α3

s)
correction, and which are equally small in the individual
jet multiplicities [23]. The total hadronic cross section
is made up from the sum over all jet multiplicities. At
O(α3

s), this sum runs from two-jet through to five-jet fi-
nal states, such that the corresponding jet rates must add
to unity. Consequently, our calculation yields the N3LO
expression for e+e− → 2 jets as a by-product. It is in-
teresting to note that some earlier NNLO calculations of
the two-jet rate [18, 19] were essentially exploiting the
same feature at O(α2

s).
Figure 2 shows the parton-level theoretical predictions

for the jet fractions at first, second and third order in
the strong coupling constant, compared to experimental
hadron-level data from ALEPH [11].

αs  = 0.1175±0.0020(exp)±0.0015(th)

(G. Dissertori, A. Gehrmann-De Ridder, E.W.N. Glover, G. Heinrich, H. Stenzel, TG)
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αs from T and MH at NNLO+N3LLA

• Soft-collinear effective theory (SCET): hard, collinear and soft modes

• provides framework for jet observables in two-jet limit

• allows systematic resummation beyond NLLA

• results (matched onto NNLO)

• T at N3LLA (T. Becher, M. Schwartz; R. Abbate, M. Fickinger, A. Hoang, V. Mateu, I.W. Stewart)

• MH at N3LLA (Y.T. Chien, M. Schwartz)

• estimate hadronization corrections

• from Monte Carlo generators

• from simple shape function model

• use magnitude of corrections only as error estimate
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Figure 6: Convergence of resummed and fixed-order distributions. aleph data (red) and opal

data (blue) at 91.2 GeV are included for reference. All plots have αs(mZ) = 0.1168.

4 αs extraction and error analysis

In this section we now use our result for the thrust distribution to determine αs, using lep data
from aleph [42] and opal [43]. Before performing the fit, let us compare the perturbative
expansion with and without resummation. The result at Q = 91.2 GeV is shown in Figure 6
side-by-side with the fixed-order expression. We use the same value αs(mZ) = 0.1168 for both
plots and have set the scales µh, µj and µs to their canonical values (25). For reference, we
also show the aleph and opal data. The curves for the fixed-order calculation correspond to
the standard LO, NLO, NNLO series; for the effective field theory calculation, the orders are
defined in Table 1. It is quite striking how much faster the resummed distribution converges.
In fact, it is hard to even distinguish the higher order curves after resummation, except in
the region of very small τ , where the distribution peaks. The peak region is affected by non-
perturbative effects, as will be discussed in the next section, but it will not be used in the
extraction of αs. The region relevant for the αs extraction is shown in the lower two plots.
The value of αs(mZ) = 0.1168 we use in the plots corresponds to the best fit value in the range
0.1 < τ < 0.24 for the aleph data set. However, the plot makes it evident that the extracted

14

T: αs  = 0.1172±0.0010(stat)±0.0008(sys)±0.0012(had)±0.0012(th) (T. Becher, M. Schwartz)

MH: αs  = 0.1220±0.0014(stat)±0.0013(sys)±0.0022(had)±0.0012(th)  (Y.T. Chien, M. Schwartz)
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αs from T at NNLO+N3LLA

• SCET formalism allows to ascribe soft effects to shape function

• systematic matching of perturbative and non-perturbative contribution 
(absent in Monte Carlo simulations): renormalon subtraction

• study includes (R. Abbate, M. Fickinger, A. Hoang, V. Mateu, I.W. Stewart)

• resummation to N3LLA, matched onto NNLO 

• quark mass effects in resummation

• photonic radiation in resummation

• hadronization corrections from shape function
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FIG. 9: Theory scan for errors in pure QCD with massless quarks. The panels are a) fixed-order, b) resummation with no
nonperturbative function, c) resummation with a nonperturbative function using the MS scheme for Ω̄1 without renormalon
subtraction, d) resummation with a nonperturbative function using the R-gap scheme for Ω1 with renormalon subtraction.

ment illustrates the numerical impact of the O(ΛQCD)
renormalon contained in the partonic soft function and
shows the importance of eliminating the O(ΛQCD) renor-
malon.

VI. EXPERIMENTAL DATA AND FIT
PROCEDURE

Experimental data for thrust are available for various
c.m. energies Q between 14 and 207 GeV. In our analy-
sis we fit the factorization formula (4) in the tail region
to extract αs and Ω1. As our default data set we use
the thrust range 6/Q ≤ τ ≤ 0.33, and we only employ
data fromQ ≥ 35 GeV. The lower boundary 6/Q removes
data in the peak where higher order moments become im-
portant, while the upper boundary of 0.33 removes data

in the far-tail region where the αsΛQCD/Q power cor-
rections become more important. We take Q ≥ 35GeV
since a more sophisticated treatment of b quark effects
is required at lower energies. The data we use are
from TASSO with Q = {35, 44} GeV [82], AMY with
Q = 55.2 GeV [83], JADE with Q = {35, 44} GeV [84],
SLC with Q = 91.2 GeV [85], L3 with Q = {41.4, 55.3,
65.4, 75.7, 82.3, 85.1, 91.2, 130.1, 136.1, 161.3, 172.3,
182.8, 188.6, 194.4, 200.0, 206.2} GeV [72, 86], DEL-
PHI with Q = {45, 66, 76, 89.5, 91.2, 93, 133, 161,
172, 183, 189, 192, 196, 200, 202, 205, 207} GeV [87–
90], OPAL with Q = {91, 133, 161, 172, 177, 183, 189,
197} GeV [91–93] and ALEPH with Q = {91.2, 133, 161,
172, 183, 189, 200, 206} GeV [94]. (For TASSO and
AMY we have separated statistical and systematic errors
using information from the experimental papers.) All
data is given in binned form, and we therefore integrate
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FIG. 9: Theory scan for errors in pure QCD with massless quarks. The panels are a) fixed-order, b) resummation with no
nonperturbative function, c) resummation with a nonperturbative function using the MS scheme for Ω̄1 without renormalon
subtraction, d) resummation with a nonperturbative function using the R-gap scheme for Ω1 with renormalon subtraction.

ment illustrates the numerical impact of the O(ΛQCD)
renormalon contained in the partonic soft function and
shows the importance of eliminating the O(ΛQCD) renor-
malon.

VI. EXPERIMENTAL DATA AND FIT
PROCEDURE

Experimental data for thrust are available for various
c.m. energies Q between 14 and 207 GeV. In our analy-
sis we fit the factorization formula (4) in the tail region
to extract αs and Ω1. As our default data set we use
the thrust range 6/Q ≤ τ ≤ 0.33, and we only employ
data fromQ ≥ 35 GeV. The lower boundary 6/Q removes
data in the peak where higher order moments become im-
portant, while the upper boundary of 0.33 removes data

in the far-tail region where the αsΛQCD/Q power cor-
rections become more important. We take Q ≥ 35GeV
since a more sophisticated treatment of b quark effects
is required at lower energies. The data we use are
from TASSO with Q = {35, 44} GeV [82], AMY with
Q = 55.2 GeV [83], JADE with Q = {35, 44} GeV [84],
SLC with Q = 91.2 GeV [85], L3 with Q = {41.4, 55.3,
65.4, 75.7, 82.3, 85.1, 91.2, 130.1, 136.1, 161.3, 172.3,
182.8, 188.6, 194.4, 200.0, 206.2} GeV [72, 86], DEL-
PHI with Q = {45, 66, 76, 89.5, 91.2, 93, 133, 161,
172, 183, 189, 192, 196, 200, 202, 205, 207} GeV [87–
90], OPAL with Q = {91, 133, 161, 172, 177, 183, 189,
197} GeV [91–93] and ALEPH with Q = {91.2, 133, 161,
172, 183, 189, 200, 206} GeV [94]. (For TASSO and
AMY we have separated statistical and systematic errors
using information from the experimental papers.) All
data is given in binned form, and we therefore integrate

αs  = 0.1135±0.0002(exp)±0.0005(had)±0.0009(th) 
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Event shape moments

• Moments sample kinematic region of event shape distribution

• power corrections additive

• perturbative contribution known to NNLO                                                        
(A. Gehrmann-De Ridder, E.W.N. Glover, G. Heinrich, TG; S. Weinzierl)

• inclusive observable:no resummation

• dispersive model for power correction (based on renormalons)

• replace QCD coupling by effective coupling α0 below scale μI = 2 GeV

• extend dispersive model to NNLO (M. Jaquier, G. Luisoni, TG)

1 Introduction

Event shape variables measure geometrical properties of hadronic final states at high energy particle
collisions. They have been studied extensively at e+e− collider experiments, which provided a wealth
of data at a variety of centre-of-mass energies. Exploiting this large energy range, one can attempt
to disentangle perturbative and non-perturbative contributions (which scale differently with increasing
energy) to event shape observables.

Apart from distributions of these observables, one can also study mean values and higher moments.
The nth moment of an event shape observable y is defined by

〈yn〉 =
1

σhad

∫ ymax

0

yn
dσ

dy
dy , (1)

where ymax is the kinematically allowed upper limit of the observable. Moments were measured for a
variety of different event shape variables in the past. The most common observables y of three-jet type
are: thrust T [1] (where moments of y = (1 − T ) are taken), the heavy jet mass ρ = M2

H/s [2], the
C-parameter [3], the wide and total jet broadenings BW and BT [4], and the three-to-two-jet transition
parameter in the Durham algorithm Y3 [5]. Definitions for all observables are given in, for example,
Ref. [6]. Moments with n ≥ 1 have been measured by several experiments, most extensively by JADE [7,8]
and OPAL [9], but also by DELPHI [10] and L3 [11]. A combined analysis of JADE and OPAL results
has been performed in Ref. [12].

As the calculation of moments involves an integration over the full phase space, they offer a way of
comparing to data which is complementary to the use of distributions, where in general cuts on certain
kinematic regions are applied. Furthermore, the two extreme kinematic limits – two-jet-like events and
multi-jet-like events – enter with different weights in each moment: the higher the order n of the moment,
the more it becomes sensitive to the multi-jet region. Therefore it is particularly interesting to study
the NNLO corrections to higher moments of event shapes, as these corrections should offer a better
description of the multi-jet region due to the inclusion of additional radiation at parton level.

Moments are particularly attractive in view of studying non-perturbative hadronization corrections
to event shapes. In event shape distributions, one typically corrects for hadronization effects by using
generic Monte Carlo event simulation programs. A recent study, carried out in the context of a pre-
cision determination of the strong coupling constant from event shape distributions [13], revealed large
discrepancies between the standard event simulation programs used at LEP [14, 15] on one hand and
more modern generators [16], which incorporate recent theoretical advances, on the other hand. In the
event shape distributions, it is very difficult to disentangle hadronization corrections empirically, since
they typically result in a distortion of the distribution, which can not be unfolded in a straightforward
manner.

In event shape moments, one expects the hadronization corrections to be additive, such that they can
be divided into a perturbative and a non-perturbative contribution,

〈yn〉 = 〈yn〉pt + 〈yn〉np , (2)

where the non-perturbative contribution accounts for hadronization effects. Based upon the calculation of
next-to-next-to-leading order (NNLO) QCD corrections to the event shape distributions, which became
available recently [6, 17–21], the perturbative contribution to event shape moments is now known to
NNLO [22, 23]. The non-perturbative part is suppressed by powers of λp/Qp (p ≥ 1), where Q ≡

√
s is

the centre of mass energy and λ1 is of the order of ΛQCD. The functional form of λp has been discussed
quite extensively in the literature, but as this parameter is closely linked to non-perturbative effects, it
cannot be fully derived from first principles.

In this work, we use the dispersive model derived in Ref. [24–27] to compute hadronization correc-
tions to event shape moments. This model provides analytical predictions for the power corrections,

1

and introduces only a single new parameter α0, which can be interpreted as the average strong coupling
in the non-perturbative region. This model has been used extensively in combination with NLO QCD
perturbative calculations to study event shape moments [9,28–30]. To combine the dispersive model with
the perturbative prediction at NNLO QCD, we extended its analytical expressions to compensate for all
scale-dependent terms at this order. By comparing the newly derived expressions with experimental data
on event shape moments, we perform a combined determination of the perturbative strong coupling con-
stant αs and the non-perturbative parameter α0. Compared to previous results at NLO, we observe that
inclusion of NNLO effects results in a considerably improved consistency in the parameters determined
from different shape variables, and in a substantial reduction of the error on αs.

In Section 2, we outline the structure of perturbative and non-perturbative contributions to event
shape moments. The predictions of the dispersive model to power corrections are extended to NNLO
in Section 3, and used to extract αs and α0 from experimental data in Section 4. In Section 5 the
results obtained within the dispersive model are compared to those from multi-purpose event generator
programs.

2 Power corrections to event shape moments

Non-perturbative power corrections can be related to infrared renormalons in the perturbative QCD
expansion for the event shape variable [24, 25, 31–36]. The analysis of infrared renormalon ambiguities
suggests power corrections of the form λp/Qp, but cannot make unique predictions for λp: it is only the
sum of perturbative and non-perturbative contributions in (2) that becomes well-defined [37]. Different
ways to regularise the IR renormalon singularities have been worked out in the literature [38–43].

One approach is to introduce an IR cutoff µI and to replace the strong coupling constant below the
scale µI by an effective coupling such that the integral of the coupling below µI has a finite value [24–27]

1

µI

∫ µI

0

dQαeff(Q
2) = α0(µI) . (3)

This dispersive model for the strong coupling leads to a shift in the distributions

dσ

dy
(y) =

dσpt

dy
(y − ay P ) , (4)

where the numerical factor ay depends on the event shape and is listed in Table 1, while P is believed
to be universal (universality breaking terms arise from hadron mass effects [44] in the moments of ρ,
an estimate on these effects can be obtained from general-purpose event generator programs, e.g. from
PYTHIA [14]) and scales with the CMS energy like µI/Q.

By inserting (4) into the definition of the moments, one obtains:

〈yn〉 =
∫ ymax

0

dyyn
1

σhad

dσ

dy
(y) (5)

=

∫ ymax−ayP

−ayP

dy(y + ayP )n
1

σhad

dσpt

dy
(y) (6)

≈
∫ ymax

0

dy(y + ayP )n
1

σhad

dσpt

dy
(y) (7)

event shape observable 1− T C Y3 ρ BT BW

ay 2 3π 0 1 1 1
2

Table 1: The ay coefficients of the non-perturbative event shape moment prediction
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uated for different technical cut-offs δ0 on all phase space variables.

Figure 2: The ratios KNNLO (KNLO) of the NNLO (NLO) corrections relative to LO for the first
five moments of the thrust and heavy mass distributions evaluated at µ = Q with αs = 0.124.
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introducing an infrared matching scale µI ,ΛQCD ! µI ! Q and αp as a non-perturbative parameter.
One has then to subtract the perturbative part of (16) in the range from 0 to µI from the whole integral,
that is, the value of (18) with αs,IR replaced by αs.

This perturbative contribution to (16) thus acquires a dependence on the renormalisation scale µR used
in the strong coupling constant. By requiring F to be scale-independent, one can then infer logarithmic
terms in the non-perturbative contribution to (16). Applied to the event-shape power correction P (with
p = 0), this results in

P =
4CF

π2
M

{

α0 −
[

αs(µR) +
β0

π

(

1 + ln

(

µR

µI

)

+
K

2β0

)

α2
s(µR)+

(

2β1

(

1 + ln

(

µR

µI

)

+
L

2β1

)

+ 8β2
0

(

1 + ln

(

µR

µI

)

+
K

2β0

)

+ 4β2
0 ln

(

µR

µI

)(

ln

(

µR

µI

)

+
K

β0

))

α3
s(µR)

4π2

]}

×
µI

Q
. (19)

Together with (9) this gives the full expression for the event shape observable moments, including per-
turbative and non-perturbative contributions.

For BT and BW there is a further correction to (19). It arises from the kinematical mismatch between
parton direction and thrust direction used to define the hemispheres used in the broadening variables.
Retaining (8), this modification can be accounted for by a modification to the power correction. In [27],
this modification was computed to NLO for the first moment as

P〈BW 〉 = P
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(21)

with α̂s(Q) = αs(e−
3

4Q) and η0 = −0.6137. Corrections to higher moments have not been derived up
to now, and we assume that they can be approximated by using the above modifications to the power
correction in all moments. The full NNLO expression for these has not been calculated either. The
potentially dominant NNLO terms can however be approximated by including the effective coupling to
this order, resulting in
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However, further NNLO corrections to this expression will reside in the coefficient η0. Therefore, we will
treat BW and BT separately from the other variables in the numerical studies in the following section.
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4Q) and η0 = −0.6137. Corrections to higher moments have not been derived up
to now, and we assume that they can be approximated by using the above modifications to the power
correction in all moments. The full NNLO expression for these has not been calculated either. The
potentially dominant NNLO terms can however be approximated by including the effective coupling to
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However, further NNLO corrections to this expression will reside in the coefficient η0. Therefore, we will
treat BW and BT separately from the other variables in the numerical studies in the following section.
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4Q) and η0 = −0.6137. Corrections to higher moments have not been derived up
to now, and we assume that they can be approximated by using the above modifications to the power
correction in all moments. The full NNLO expression for these has not been calculated either. The
potentially dominant NNLO terms can however be approximated by including the effective coupling to
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However, further NNLO corrections to this expression will reside in the coefficient η0. Therefore, we will
treat BW and BT separately from the other variables in the numerical studies in the following section.
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αs from event shape moments at NNLO

• simultaneous fit of αs and α0 to event shape 
moments from JADE and OPAL

• including full correlations (C. Pahl)

• exclude jet broadenings (unknown recoil 
corrections)

• good consistency among observables

• substantial difference to PYTHIA hadronization

• study of thrust distribution (R. Davison, B. Webber)
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Figure 3: Error band plot of the final results. The points for αs(MZ) are C, T , Y3, MH and for α0 C, T ,
MH .

Milan factor [26]) is however still restricted to NLO accuracy, and specific corrections [27] to the jet
broadenings BW and BT are also only included to NLO.

We used this newly obtained theoretical description of the event shape moments to reanalyse data
from JADE and OPAL in view of a determination of the strong coupling constant αs(MZ) and of the non-
perturbative parameter α0. We observed that inclusion of the NNLO corrections results in a considerably
better consistency among the values extracted from different moments of the same variable, and an
improved consistency among the different variables. Averaging over the different moments and different
shapes (excluding BW and BT , where the theoretical description is incomplete, and taking proper account
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Figure 5: Perturbative and non-perturbative contributions to the moments of 1 − T at
√
s = MZ as

predicted by power corrections (left) and PYTHIA (right).

on αS(MZ) and α0 largely decouple. An improvement on α0 will only be achievable once the three-loop
corrections to the Milan factor become available.

It is noteworthy that application of the dispersive model to hadronization corrections results in a
considerably lower value of αs(MZ) from event shapes than pervious studies based on Monte Carlo
hadronization models [13], and in better agreement with measurements from other observables [59]. A
direct comparison hints to an underestimation of hadronization effects in the Monte Carlo models. This
feature has been observed previously also on the thrust distribution [47]. Revisiting the hadronization
models in multi-purpose Monte Carlo programs appears to be mandatory for meaningful precision QCD
studies at colliders.

Acknowledgements

We would like to thank Hasko Stenzel, Gudrun Heinrich and Gavin Salam for useful discussions. This
research was supported by the Swiss National Science Foundation (SNF) under contract 200020-126691.

A Tables of results

In this appendix, we collect the extractions of αs(MZ) and α0 at NLO and NNLO from individual
moments of the six event shape variables: τ , C, ρ, Y3, BT , BW .

13

αs  = 0.1153±0.0017(exp)±0.0023(th)
α0  = 0.5132±0.0115(exp)±0.0381(th)

 (M. Jaquier, G. Luisoni, TG)

αs  = 0.1167±0.0028(th)        α0  = 0.59±0.03
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Outlook: Electroweak corrections

• NLO electroweak effects potentially as large 
as NNLO QCD: α≃αs2

• strong cancellations between event shape 
distribution and hadronic cross section

• initial state radiation

• weak loop corrections

• depend on final state photon cuts

• contribution from photon fragmentation

• LEP2: radiative return not fully suppressed

• LEP data were corrected for photonic effects

• comparison non-trivial
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occurs in this region because of our choice of scut. As it is
not relevant experimentally, we did not fully resolve it in
Fig. 1. Below 60 GeV and above 120 GeV the magnitude
of the corrections is increased due to LL resummation
of ISR, whereas it is decreased in the region in between.
The virtual one-loop weak corrections (from fermionic
and massive bosonic loops) yield only a moderate cor-
rection between −5 and +5%. The increase for energies
above 1 TeV is due to electroweak Sudakov logarithms.

Using the same event-selection cuts, Fig. 2 displays the
differential thrust distribution at

√
s = MZ, including

NLO electroweak contributions. The distributions are
weighted by (1 − T ), evaluated at each bin centre. The
Born contribution is given by the A-term of (1), while the
full O(α) corrections contain the tree-level qq̄γ contribu-
tion δγ and the NLO electroweak contribution δA. Again,
we observe large negative corrections due to ISR, and
moderate weak corrections. The corrections are largely
constant for T < 0.95, where the isolated photon veto re-
jects all contributions from qq̄γ final states. For T > 0.95,
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corresponding to the two-jet limit, we find a substantial
contribution from qq̄γ final states already at LO (α3).
Moreover, it turns out that the electromagnetic correc-
tions depend non-trivially on the event-selection cuts.

In expanding the corrections according to (1), and re-
taining only terms up to LO in αs, we obtain the gen-
uine electroweak corrections to normalised event-shape
distributions, which we display for thrust at

√
s = MZ

in Fig. 3. Again, the Born contribution is given by the
A-term, while the O(α) corrections now consist of δγ and
δEW. It can be seen very clearly that the large ISR cor-
rections cancel between the event-shape distribution and
the normalisation to the hadronic cross section, resulting
in electroweak corrections of a few per cent. Moreover,
effects from ISR resummation are largely reduced as well.
The purely weak corrections are below 0.5 per mille.

As shown in Fig. 4, we observe a similar behaviour
for the three-jet rate in the region ycut ! 0.002. For
ycut " 0.002, qq̄γ final states contribute and lead to a

 (A. Denner, S. Dittmaier, C. Kurz, TG)

0
0.02
0.04
0.06
0.08
0.1

0 0.05 0.1 0.15 0.2 0.25 0.3

d
σ

i
−

d
σ
B
o
r
n

d
σ
B
o
r
n

(1 − T )

0

0.1

0.2

0.3

1

σ
h
a
d
(1

−
T

)
d
σ

d
T

Born
+Born qq̄γ
weak O(α)

full O(α)
O(α)+h.o. LL

√
s = 172 GeV

0
0.02
0.04
0.06
0.08
0.1

0 0.05 0.1 0.15 0.2 0.25 0.3

d
σ

i
−

d
σ
B
o
r
n

d
σ
B
o
r
n

ρ

0

0.1

0.2

0.3

1

σ
h
a
d
ρ

d
σ

d
ρ

Born
+Born qq̄γ
weak O(α)

full O(α)
O(α)+h.o. LL

√
s = 172 GeV

−0.08
−0.04

0
0.04
0.08
0.12
0.16
0.2

0 0.05 0.1 0.15 0.2 0.25 0.3

d
σ

i
−

d
σ
B
o
r
n

d
σ
B
o
r
n

BT

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1

σ
h
a
d
B

T
d
σ

d
B

T

Born
+Born qq̄γ
weak O(α)

full O(α)
O(α)+h.o. LL

√
s = 172 GeV

−0.06
−0.03

0
0.03
0.06
0.09

0 0.05 0.1 0.15 0.2 0.25 0.3

d
σ

i
−

d
σ
B
o
r
n

d
σ
B
o
r
n

BW

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1

σ
h
a
d
B

W
d
σ

d
B

W

Born
+Born qq̄γ
weak O(α)

full O(α)
O(α)+h.o. LL

√
s = 172 GeV

−0.09
−0.06
−0.03

0
0.03
0.06
0.09
0.12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

d
σ

i
−

d
σ
B
o
r
n

d
σ
B
o
r
n

C

0

0.1

0.2

0.3

0.4

0.5

1

σ
h
a
d
C

d
σ

d
C

Born
+Born qq̄γ
weak O(α)

full O(α)
O(α)+h.o. LL

√
s = 172 GeV

−0.06
−0.03

0
0.03
0.06
0.09

−3.5 −3 −2.5 −2 −1.5 −1 −0.5

d
σ

i
−

d
σ
B
o
r
n

d
σ
B
o
r
n

log10 Y3

0

0.1

0.2

0.3

0.4

1

σ
h
a
d

d
σ

d
Y
3

Born
+Born qq̄γ
weak O(α)

full O(α)
O(α)+h.o. LL

√
s = 172 GeV

Figure 14: The event-shape distributions normalised to σhad at
√
s = 172GeV.

34



αs Workshop MPI Munich 2011                                                               αs at NNLO+NLLA

T
U

R
IC
E
N
S
I
S

U
N
I
V
E
R
S
I
T

A
S

XXXIIIMDCCC

Summary

• NNLO corrections to jet observables 
allow precision physics studies on LEP 
data

• new determinations of αs

• combination with resummation

• revisit hadronization corrections

• hadronization is currently limiting 
precision

• Monte Carlo models appear 
inappropriate

• analytic models under intensive 
development

0.11 0.115 0.12 0.125 0.13

NNLO event shape moments, analytic power corr.
(JADE/OPAL: Gehrmann, Jaquier, Luisoni)

NNLO+N3LLA thrust, shape function
(LEP/PETRA/SLD/AMY: Abbate et al.)

NNLO+N3LLA heavy jet mass 
(ALEPH/OPAL: Chien, Schwartz)

NNLO+N3LLA thrust
(ALEPH/OPAL: Becher, Schwartz)

NNLO three-jet rate
(ALEPH: Dissertori et al.)

NNLO+NLLA event shapes
(JADE: Bethke et al.)

NNLO+NLLA event shapes
(ALEPH: Dissertori et al.)

NNLO event shapes
(ALEPH: Dissertori et al.)

exp. th.PDG 2010:
0.1184 ± 0.0007


