THE STRONG COUPLING AND LHC CROSS SECTIONS

Frank Petriello Argonne National Laboratory and Northwestern University

Workshop on Precision Measurements of α_S February 11, 2011

Outline

- Focus of talk: 'customer feeback,' what uncertainties are induced by α_S on benchmark LHC cross sections? How, and which, α_S uncertainties should be propagated through predictions?
- Emphasis on Higgs production; lively debate within community over both Tevatron results and LHC predictions
- Some further discussion of W/Z (+jets), top production

SM Higgs production

Gluon-fusion at NLO

What makes is sensitive to new physics (begins at 1-loop) also makes it tough to calculate...

Dawson; Djouadi, Graudenz, Spira, Zerwas, 1991, 1995

Effective interactions

Getting the next terms requires new techniques

Effective field theory: exploit heavy mass of virtual particles

Ingredients for the prediction

$$\sigma_{QCD}^{NNLO} = \sigma^{(0)}G_{ij}(z;\alpha_s) + \sigma_b^{(0)}G_{ij}^{(0)}(z)K_{bb} + \sigma_{t,b}^{(0)}G_{ij}^{(0)}(z)K_{tb}$$

Exact NLO top-mass dependent result + NNLO correction in the EFT Harlander, Kilgore; Anastasiou, Melnikov; Ravindran et al. 2002-2003 Bottom-quark pieces with exact mass dependence through NLO (two loops)

- Subleading 1/mt corrections 0.5% for M_H<300 GeV Harlander et al.; Pak, Rogal, Steinhauser 2009-2010
- Soft gluon resummation through NNLL Catani et al. 2003 and N³LL Moch, Vogt 2005
- ✓ Two-loop EW corrections (5% increase for M_H ≈ 160 GeV) Uglietti et al.; Degrassi, Maltoni; Actis et al. 2004-2008
- Mixed QCD-EW (few percent) Anastasiou, Boughezal, FP 2008
- EW effects on real radiation (1% effect) Keung, FP 2009

$$\sigma^{best} = \sigma^{NNLO}_{QCD} + \sigma^{NNLO}_{EW}$$

PDF+ α_s error definitions

Fevatron: MSTW 90% grids using recommended prescription (as of ICHEP 2010)

$$(\Delta F_{PDF+\alpha_S})_+ = \max_{\alpha_S} \left(\left\{ F^{\alpha_S}(S_0) + (\Delta F^{\alpha_S}_{PDF})_+ \right\} \right) - F^{\alpha_S^0}(S_0)$$
$$(\Delta F_{PDF+\alpha_S})_- = F^{\alpha_S^0}(S_0) - \min_{\alpha_S} \left(\left\{ F^{\alpha_S}(S_0) - (\Delta F^{\alpha_S}_{PDF})_- \right\} \right)$$

LHC follows the PDF4LHC recommendation: First compute MSTW 68% PDF+α_S errors at NNLO. Then take envelope of CTEQ, MSTW, NNPDF errors at NLO divided by MSTW error at NLO. Multiply NNLO error by this ratio, which is roughly 2.

Numerical results

Example Tevatron results: Anastasiou, Boughezal, FP; de Florian, Grazzini 2009

115: 1252.36 fb - 11.77%(sc) + 8.65%(sc) - 6.39%(pdf) + 5.97%(pdf) - 11.14%(pdf+as) + 11.58%(pdf+as) 120: 1102.22 fb - 11.71%(sc) + 8.53%(sc) - 6.62%(pdf) + 6.20%(pdf) - 11.29%(pdf+as) + 11.77%(pdf+as) 155: 494.26 fb - 11.75%(sc) + 8.06%(sc) - 8.22%(pdf) + 7.75%(pdf) - 12.40%(pdf+as) + 13.10%(pdf+as) 160: 442.23 fb - 11.75%(sc) + 8.01%(sc) - 8.45%(pdf) + 7.98%(pdf) - 12.56%(pdf+as) + 13.32%(pdf+as)

LHC predictions: LHC Higgs cross section working group 2010-2011

$M_{\rm H}[{\rm GeV}]$	σ [pb]	Scale [%]	PDF+ α_s [%]	PDF4LHC [%]
115	18.12	+7.4 - 8.0	+4.0 - 3.0	+7.7 - 7.0
120	16.63	+7.2 - 7.9	+4.0 - 3.0	+7.6 - 7.0
155	9.80	+6.5 - 7.3	+3.9 - 3.1	+7.5 - 7.5
160	9.08	+6.4 - 7.2	+3.9 - 3.1	+7.5 - 7.6
290	2.55	+5.8 - 6.1	+4.2 - 3.7	+8.0 - 8.3
300	2.42	+5.8 - 6.0	+4.2 - 3.8	+8.0 - 8.3

- Scale error: $M_H/4 \le \mu_{R,F} \le M_H$, central choice $\mu = M_H/2$, restriction $1/2 < \mu_R/\mu_F < 2$
- Other theory errors (EW, EFT) at the percent level

Already the dominant error are the PDF+ α_s errors

Extreme sensitivity

Additional α_s uncertainty

- Do the current uncertainties used properly account for this spread observed between the different sets?
- Low Higgs predictions (ABKM, HERAPDF with α_s=0.1145) tend to have low strong coupling constants

Process	Q [GeV]	$\alpha_s(Q)$	$\alpha_s(M_{Z^0})$	excl. mean $\alpha_s(M_{Z^0})$	std. dev.
τ -decays	1.78	0.330 ± 0.014	0.1197 ± 0.0016	0.11818 ± 0.00070	0.9
DIS $[F_2]$	2 - 170	-	0.1142 ± 0.0023	0.11876 ± 0.00123	1.7
DIS $[e-p \rightarrow jets]$	6 - 100	-	0.1198 ± 0.0032	0.11836 ± 0.00069	0.4
$Q\overline{Q}$ states	7.5	0.1923 ± 0.0024	0.1183 ± 0.0008	0.11862 ± 0.00114	0.2
Υ decays	9.46	$0.184^{+0.015}_{-0.014}$	$0.119^{+0.006}_{-0.005}$	0.11841 ± 0.00070	0.1
e ⁺ e ⁻ [jets & shps]	14 - 44	-	0.1172 ± 0.0051	0.11844 ± 0.00076	0.2
e ⁺ e ⁻ [ew prec. data]	91.2	0.1193 ± 0.0028	0.1193 ± 0.0028	0.11837 ± 0.00076	0.3
e ⁺ e ⁻ [jets & shps]	91 - 208	-	0.1224 ± 0.0039	0.11831 ± 0.00091	1.0

(Bethke, arXiv:0908.1135)

	$\alpha_s(M_Z^2)$			
BBG (2006)	$0.1134 +0.0019 \\ -0.0021$	valence analysis, NNLO	Blümlein,	
ABKM	0.1135 ± 0.0014	HQ: FFS $N_f = 3$	Munich 2011	
ABKM	0.1129 ± 0.0014	HQ: BSMN-approach		
JR (2008)	0.1124 ± 0.0020	dynamical approach		
MSTW (2008)	0.1171 ± 0.0014			
HERAPDF (2010)	0.1145	(combined H1/ZEUS	data, prelimiary)	
ABM (2010)	0.1147 ± 0.0012	(FFN, combined H1/ZEUS data in)		
A.Hoang et al.	$0.1135 \pm 0.0011 \pm 0.0006$	e^+e^- thrust		
BBG (2006) 0.1141 +0.0020 -0.0022		valence analysis, N ³ LO		
WA (2009)	0.1184 ± 0.0007			

Given large spread of values and σ sensitivity, do current prescriptions account for uncertainty?

Theory α_s uncertainty

Currently, an additional theory error on α_s not included; one suggestion for including it in cross section predictions:

Baglio, Djouadi 2009

Ş

What $\Delta^{th}\alpha_s$ be taken? ±0.002 as suggested in MSTW?

W/Z production

- Important for calibration, backgrounds; potential eventual use as a few percent-level partonic luminosity monitor Dittmar, Pauss Zurcher 1997
- ♀ Comparison of pp→(Z,γ*)→ll with different sets at NNLO using FEWZ: Melnikov, FP 2006; Gavin et al. 2010; see also Alekhin et al. 2011

 $\begin{array}{ll} \text{MSTW:} & \sigma_{inc} = 963.7^{+4.9}_{-6.8}(\text{scale})^{+16.7}_{-15.2}(\text{PDF})^{+24.3}_{-17.9}(\text{PDF} + \alpha_S) ~(\text{pb}) \\ \text{ABKM:} & \sigma_{inc} = 980.5^{+15.6}_{-15.6}(\text{PDF} + \alpha_S) & \text{ATLAS:} & \sigma_{inc} = 830^{+70}_{-70}(\text{stat.})^{+60}_{-60}(\text{syst.}) \pm 90(\text{lumi.}) ~\text{pb} \\ \text{JR:} & \sigma_{inc} = 907.3^{+17.9}_{-20.3}(\text{PDF} + \alpha_S) & \text{CMS:} & \sigma_{inc} = 882^{+77}_{-73}(\text{stat.})^{+42}_{-36}(\text{syst.}) \pm 97(\text{lumi.}) ~\text{pb} \\ \end{array}$

- Scale errors negligible; dominant uncertainty from PDFs
- MSTW errors seem to indicate little direct sensitivity to α_S (increase of <1% when adding its uncertainty to PDF one)
- Small impact of α_s remains true for most distributions: lepton η, Z rapidity, ...

W/Z+jet(s)

Ş W/Z+n jet production proportional to α_{s^n} ; can constraints on coupling be derived from these data sets?

From running MSTW 68% CL with FEWZ: Z+1 jet: $\pm 1.2\%$ (PDF); $\pm 2.5\%$ (PDF+ α_{s}) Z+2 jets: $\pm 0.6\%$ (PDF); $\pm 2.6\%$ (PDF+ α_{s})

NNLO:

 \Rightarrow at least currently, JES and other systematics too large

Top production

Ģ Dominant partonic production has $\sigma \sim \alpha_{S^2} \times f_{g^2}$; strong correlation with Higgs expected; ratio should lead to error cancellation

 $\mu =$

 $2 m_t$

761.6

 -11°

CTEQ 2008

Only correlation with Higgs at higher ĕ masses due to different contributing x_{BI} Interestingly, correlation between Higgs and Z at low $M_{\rm H}$

> Will need NNLO tt cross section for α_s constraint at LHC

Conclusions

- Significant effect of the strong coupling on the Higgs search at the Tevatron and the LHC; are the errors properly accounted for in current analysis?
- Should an additional theory uncertainty be added to the current error mix?
- W/Z benchmarks relatively insensitive to α_s; perhaps constraints from V+jet(s) when JES and other systematics are tamed
- A complete NNLO result for tt is needed to exploit this channel's potential to normalize heavy Higgs cross sections and to extract α_s