Andy Buckley (Edinburgh), Hendrik Hoeth (Durham), Heiko Lacker (HU Berlin) , <u>Holger Schulz</u> (HU Berlin), Jan Eike von Seggern (DESY HH)

February 10, 2011 Workshop on Precision Measurements of α_s

INTRODUCTION

- Extraction of α_s from eventshape data requires reliable models to correct for hadronisation effects
- However, hadronisation based on phenomenological models
 - Lund string model (Pythia)
 - Cluster models (Sherpa, Herwig)
- Lots of a priori unknown parameters
- ullet \Rightarrow "tuning" of those parameters essential to get usable predictions

TUNING THROUGH THE AGES

- Manual tunes: lots of time and manpower or tuning experience of a life-time
- Grid-scans, genetic algorithm: tough in D>2, slow, not very flexible
- systematically:
 - Bin-wise interpolation of MC generator response and χ^2 minimization (DELPHI 1995, Hamacher et al.)
 - 2nd order polynomials account for parameter correlations
- Code (fortran) not sufficiently flexible
- $\bullet\,$ Restricted to 2^{nd} order polynomial for bin-wise interpolation

Better use Professor <u>arXiv:0907.2973</u>, arXiv:0906.0075, arXiv:0902.4403

"PROCEDURE FOR ESTIMATING SYSTEMATIC ERRORS"

but:

- Pick up DELPHI idea, add much more functionality
- Python implementation (scripts and API), actively developed
- Allows for systematic checks

TUNING PROCEDURE IN PROFESSOR (1D, 1BIN)

- **1** Random sampling: *N* parameter points in *n*-dimensional space
- Q Run generator and fill histograms
- For each bin: use N points to fit interpolation (2nd or 3rd order polynomial)
- Construct overall (now trivial) $\chi^2 \approx \sum_{bins} \frac{(interpolation-data)^2}{error^2}$
- o and Numerically minimize pyMinuit, SciPy

INTERACTIVITY

Key feature of Professor:

- we are parameterising a very expensive function
- (2) input to that parameterisation can be trivially parallelised
 - Can parallelise parameterisation (for many run combinations)
 - Optimisation, too

Parameterisation produces a fast, analytic "pseudo-generator"

 → Can get a good approximation of what a generator will do when run for many hours/days with particular params, in < 1 second!
Why not make an interactive MC simulator?

Screencast online: http://www.youtube.com/watch?v=qAJb418i_Qw

Screencast online: http://www.youtube.com/watch?v=qAJb418i_Qw

Screencast online: http://www.youtube.com/watch?v=qAJb418i_Qw

PROFESSOR NEWS

- Version 1.2.0 just released
- Extensive documentation (scripts, API)
- Use cubic interpolations by default now
- Calculate "EigenTunes"
- Readily available on AFS:

source/afs/cern.ch/sw/lcg/external/MCGenerators/professor/1.2.0/ x86_64-slc5-gcc43-opt/setup.sh

Observables and Weights

- This is what Professor minimises: $\chi^2(\vec{p}) = \sum_{\mathcal{O}} \sum_{b \in \mathcal{O}} w_b \frac{(f^{(b)}(\vec{p}) \mathcal{R}_b)^2}{\Delta_b^2}$
- Slightly more art than science
- Garbage in, garbage out
- Use weights wb to:
 - emphasize certain observables, e.g. $\langle N_{\rm ch} \rangle$
 - emphasize certain bins of an observable
 - exclude bins from the fit

Selecting what data to tune phenom. parameters to a priori difficult

• Lots of thinking, reading and consultation of model authors

- Lots of thinking, reading and consultation of model authors
- $\bullet~$ Checking production (envelopes) $\rightarrow~$ helps identify problematic regions

- Lots of thinking, reading and consultation of model authors
- $\bullet\,$ Checking production (envelopes) $\rightarrow\,$ helps identify problematic regions
- Analysing sensitivity of observables to shifts in parameter space: "How much does the bin content change if I vary parameter *i*?"

- Lots of thinking, reading and consultation of model authors
- Checking production (envelopes) \rightarrow helps identify problematic regions
- Analysing sensitivity of observables to shifts in parameter space: "How much does the bin content change if I vary parameter *i*?"

- Lots of thinking, reading and consultation of model authors
- Checking production (envelopes) ightarrow helps identify problematic regions
- Analysing sensitivity of observables to shifts in parameter space: "How much does the bin content change if I vary parameter *i*?"

Selecting what data to tune phenom. parameters to a priori difficult

- Lots of thinking, reading and consultation of model authors
- Checking production (envelopes) ightarrow helps identify problematic regions
- Analysing sensitivity of observables to shifts in parameter space: "How much does the bin content change if I vary parameter *i*?"

Comparison of Professor tunes

More plots online: http://users.hepforge.org/~holsch/AlphaSWorkshop/cmp2/plots.html DELPHI data: z.Phys.C73:11-60,1996

Comparison of Professor tunes

More plots online: http://users.hepforge.org/~holsch/AlphaSWorkshop/cmp2/plots.html DELPHI data: z.Phys.C73:11-60,1996

Holger Schulz

MC tuning with Professor

\sqrt{s} DEPENDENCY

- Use Pythia 6 tuning obtained at $\sqrt{s} = 91.2 \text{GeV}$
- Compare prediction at higher energies to ALEPH data

Eur.Phys.J.C35:457-486,2004

ullet \Rightarrow similar level of agreement

Holger Schulz

MC tuning with Professor

\sqrt{s} DEPENDENCY

- Use Pythia 6 tuning obtained at $\sqrt{s} = 91.2 \text{GeV}$
- Compare prediction at higher energies to ALEPH data

Eur.Phys.J.C35:457-486,2004

ullet \Rightarrow similar level of agreement

MC tuning with Professor

\sqrt{s} DEPENDENCY

- Use Pythia 6 tuning obtained at $\sqrt{s} = 91.2 \text{GeV}$
- Compare prediction at higher energies to ALEPH data

Eur.Phys.J.C35:457-486,2004

ullet \Rightarrow similar level of agreement

EIGENTUNES

Pick the extremal points of the χ^2 contour hyper-ellipsoid as representative tunes, cf. Hessian PDF errors.

 \Rightarrow obtained Eigentunes stay consistent, respect correlations

 \Rightarrow suitable for systematic variations

MC tuning with Professor

TUNING UNCERTAINTY I

• Exploit minimiser covariance matrix, sample points from hyper-ellipsoid

- Inspired by NNPDF approach, fast parameterisation allows thousands of pseudo-MCs to be calculated at sampled parameter points
- Translate into *statistical* tuning uncertainty

Holger Schulz

MC tuning with Professor

TUNING UNCERTAINTY II

- Oversampling allows for construction of many semi-independent parameterisations
- $\bullet\,$ Tunings (with same weights) yield sligthly different results $\Rightarrow\,$ tune-spread
- Can be investigated parameterwise (projection) always used as sanity check
- But can also translate this into a "systematic" uncertainty of the method

TUNING UNCERTAINTY II

- Oversampling allows for construction of many semi-independent parameterisations
- Tunings (with same weights) yield sligthly different results \Rightarrow tune-spread
- Can be investigated parameterwise (projection) always used as sanity check
- But can also translate this into a "systematic" uncertainty of the method

SUMMARY

- Professor tunes using event-shapes available for Pythia 6, Pythia 8 and Sherpa
- In general very good agreement with e^+e^- -data
- In case of Pythia 6 different tunes for different showers needed ($Q^2, \, p_\perp)$
- No strong evidence found for \sqrt{s} -dependence
- Eigentunes and retunes for different showers allow systematic checks
- Tuning uncertainty estimates available, so far no real use-case
- What do you need?

Thank you!

Backup

Tuning of event shapes - Pythia 6

- First: tune flavour-parameters to hadron-multiplities at LEP
- Second: tune string-fragmentation parameters to eventshapes for both p_{\perp} and Q^2 ordered showers

Parameter	Tune (Q^2)	Tune (p_{\perp})	
PARJ(21)	0.325	0.313	String tension σ_q
PARJ(41)	0.5	0.49	Lund frag. param a
PARJ(42)	0.6	1.2	Lund frag. param b
PARJ(47)	0.67	1.0	Heavy quark frag.
PARJ(81)	0.29	0.257	$\Lambda_{\sf QCD}$
PARJ(82)	1.65	0.8	Shower cut-off

- Eventshapes tuned to: Thrust, Planarity, Sphericity, C-Parameter, ...
- The same strategy was applied when tuning Sherpa and Pythia 8
- Sherpa tune described here:

http://projects.hepforge.org/professor/diplomathesis_jev_seggern.pdf

Systematic checks

• Sample params from straight hyperline through χ^2 valley

 Calculate and compare χ² of parameterisation with "true" MC response

Systematic checks

• Sample params from straight hyperline through χ^2 valley

 Calculate and compare χ² of parameterisation with "true" MC response

PARAMETER CORRELATIONS

Pythia 6

2nd order polynomial includes lowest-order correlations between parameters

$$MC_{b}(\vec{p}) \approx f^{(b)}(\vec{p}) = \alpha_{0}^{(b)} + \sum_{i} \beta_{i}^{(b)} p_{i}' + \sum_{i \leq j} \gamma_{ij}^{(b)} p_{i}' p_{j}'$$

Now use N generator runs, i.e. N different parameter sets x,y:

$$\vec{c}_b = \tilde{\mathcal{I}}[\mathbf{\tilde{P}}]\vec{v}$$

- Use Singular Value Decomposition (SVD), a general diagonalisation for all normal matrices $M:M = U\Sigma V^*$
- Method available in SciPy.linalg
- Minimal number of runs = number of coefficients in \vec{c}_b : $N_{\min}^{(n)} = 1 + n + n(n+1)/2 + \underbrace{(n+1)(n+2)/6}_{\text{cubic only}}$

$$\vec{c}_b = \tilde{\mathcal{I}}[\mathbf{\tilde{P}}]\vec{v}$$

- Use Singular Value Decomposition (SVD), a general diagonalisation for all normal matrices $M:M = U\Sigma V^*$
- Method available in SciPy.linalg
- Minimal number of runs = number of coefficients in \vec{c}_b : $N_{\min}^{(n)} = 1 + n + n(n+1)/2 + \underbrace{(n+1)(n+2)/6}_{\text{cubic only}}$
- Oversampling by a factor of three has proven to be much better

Num params, P	$N_2^{(P)}$ (2nd order)	$N_3^{(P)}$ (3rd order)
1	3	4
2	6	10
4	15	35
6	28	84
8	45	165
9	55	220
10	66	286

Observable	Weight (Q^2)	Weight (p_{\perp})
p_{\perp}^{in} w.r.t. Thrust axes	1	2
p ^{out} w.r.t. Thrust axes	1	1
p ⁱⁿ w.r.t. Sphericity axes	1	2
p_{i}^{out} w.r.t. Sphericity axes	1	1
Scaled momentum, $x_p = p / p_{\text{heam}} $	1	3
Log of scaled momentum, $\log 1/x_p$	1	3
Mean p_{\perp}^{out} vs x_p		1
Mean p_{\perp}^{+} vs x_{p}		1
1 - Thrust, 1 - T	1	6
Thrust major, <i>M</i>	1	4
Thrust minor, <i>m</i>	1	4
Oblateness = M - m	1	1
Sphericity, <i>S</i>	1	1
Aplanarity, A	1	1
Planarity, P	1	1
C parameter	1	1
D parameter	1	4
Energy-energy correlation, EEC	160	1
Mean charged multiplicity	160	181
b quark frag. function $f(x_B^{weak})$	1	2
Mean of b quark frag. function $f(x_{B}^{weak})$	1	4
uds events mean charged multiplicity	20	10
c events mean charged multiplicity	20	10
b events mean charged multiplicity	20	10
uds events scaled momentum, $x_p = p / p_{beam} $		1
c events scaled momentum, $x_p = p / p_{beam} $		1
b events scaled momentum, $x_p = p / p_{beam} $		1
uds events log of scaled momentum, $x_p = p / p_{beam} $		1
c events log of scaled momentum, $x_p = p / p_{beam} $		1
b events log of scaled momentum, $x_p = p / p_{\text{beam}} $		1

WEIGHTS USED FOR PYTHIA 6 FRAG. TUNE

b events log of scaled momentum, $x_p = |p|/|p_{beam}|$