

Workshop on Precision Measurements of α_{s}

Jet and Event Shape Observables at LHC

Klaus Rabbertz Institut für Experimentelle Kernphysik

Klaus Rabbertz

Munich, Germany, 10.02.2011

The Menu

- **Experimental Uncertainties**
- **Absolute Measurements**
- **Shape Measurements**
- **Ratio Measurements**
- **Discussion**

QCD at work ...

Experiment Pages for public Results: ATLAS public results: https://twiki.cern.ch/twiki/bin/view/AtlasPublic **CMS public results:** https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults ALICE publications: http://aliweb.cern.ch/Documents/generalpublications LHCb publications: https://lhcb-doc.web.cern.ch/lhcb-doc/Published Papers/default.htm

No extractions of α_{s} from LHC yet, good time for this workshop ...

Klaus Rabbertz

Munich, Germany, 10.02.2011

α_-Workshop 2011

Jet Analysis Uncertainties

- Experimental Uncertainties (~ in order of importance):
 - Jet Energy Scale (JES)
 - Noise Treatment
 - Pile-Up Treatment
 - Luminosity
 - Jet Energy Resolution (JER)
 - Trigger Efficiencies
 - Resolution in Rapidity
 - Resolution in Azimuth
 - Non-Collision Background

- Theoretical Uncertainties:
 - PDF Uncertainty
 - pQCD (Scale) Dependence
 - Non-perturbative Corrections
 - PDF Parameterization
 - NLO-NLL matching schemes
 - Electroweak Corrections
 - Knowledge of α_s(M_z)

This is what we want to improve on here

Munich, Germany, 10.02.2011

© www.freefoto.com

Luminosity

Common to all cross section measurements: Initial Uncertainty: **11%**

ATLAS arXiv:1101.2185v1, CMS-PAS-EWK-10-004

From van-der-Meer Scans: Uncertainty dominated (10%) by beam intensity measurement

S.White: CERN-THESIS-2010-139

HERA-Proton, DESY

Klaus Rabbertz

Munich, Germany, 10.02.2011

α₋Workshop 2011

Jet Energy Scale

Pre-Data Assumptions: ~ 10% \rightarrow up to 60% uncertainty on cross sections This year at ICHEP and later: 5 - 10% Very good detector performances observed, MC modelling works better than anticipated. Can expect further improved results from both experiments ... Enormous progress, took years at Tevatron.

Absolute Measurements

Affected directly by large systematic uncertainties: JES, Luminosity, JER Need to be careful to avoid circular reasoning when also used in PDFs Not an easy way to go ...

Available Results

Contrasting Uncertainties

Dominant: JES Luminosity: 11%, not shown

Dominant at low pT: NP Corrections at high pT: PDF

Scale and PDF revisited

Asymmetric scale variations:

Independent variation of μ_r and μ_f by factors of $\frac{1}{2}$ and 2 avoiding rel. factors of 4 (6-point: (1/2,1/2), (1/2,1), (1,1/2), (1,2), (2,1), (2,2) Compared to symmetric variation (2-point)

A la PDF4LHC:

Envelope of predictions of CTEQ, MSTW and NNPDF at CL68 Compared to CTEQ6.6 (CL90)

NP revisited and α_s

Shape Measurements

- Reduction strategy 1: Normalized distributions
 - No luminosity uncertainty
 - Reduced sensitivity to jet energy scale (JES) or resolution (JER)
- Jet angular measurements
 - Dijet chi distribution: Nice for new physics, not for α_s...
 - Dijet azimuthal decorrelation: Sensitive to QCD radiation, $\rightarrow \alpha_s$?

NLO available, resummation in progress: A. Banfi, arXiv:0906.4958

- Event shapes
 - Long tradition of QCD measurements e.g. α_s, in particular in e+e-
 - Good description of data requires NLO + resummation
- from NNLO+NLLA: G. Dissertori et al., JHEP08 2009
- Transverse thrust, transverse thrust minor, y₂₃...
- NLO like above, resummation requires the "global" versions, see

Klaus Rabbertz

Munich, Germany, 10.02.2011

 A. Banfi et al., JHEP06 2010

 α_-Workshop 2011
 1

Azimuthal Decorrelation

Born limit has dijets with $|\Delta \Phi| = \pi$ With increasing number of partons smaller separation angles become possible Depends on α_s ...

ΔΦ: Available Data

 $\Delta\sigma_{\mu fr}/\sigma$

Klaus Rabbertz

ΔΦ: Scale and PDF

Sensitivity to $\Delta \alpha_s = \pm 0.003$: ~3 % (Plot in backup slides) Look into average $\Delta \Phi$ (event shape mean) ?

Munich, Germany, 10.02.2011

α₋-Workshop 2011

14

Low pT bin: 80 < pT / GeV < 110

Event Shapes

Definition: Transverse global Thrust

Similar as Event Shapes in e⁺e⁻ and ep

- → In praxis, need to restrict rapidity range: $|\eta| < 1.3 \rightarrow$
- Transverse central thrustLess sensitive to JES & JER
 - uncertainty
- No luminosity uncertainty
- Useful for MC tuning

Redefine to get $\tau_{\perp,g} \equiv 1 - T_{\perp,g} \longrightarrow 0$ in LO dijet case

Klaus Rabbertz

Munich, Germany, 10.02.2011

Central Thrust: Available Data

Good description by standard MC like Pythia or Herwig++ (NLO not yet checked) Less so by multi-jet improved MadGraph or Alpgen ... but improves when looking into multi-jet events (not shown) Thrust Minor also available Experimental Uncertainties of order ~ 5 %

Ratio Measurements

- Reduction strategy 2: Jet cross section ratios
 - Dijet centrality ratio: Nice for new physics, not sensitive to α_s .
 - Jet cross-section ratio R=0.7 / R=0.5 or kT / SISCone: Interesting, but for α_s?
 - 3+-jet to 2+-jet cross-section ratio: Directly sensitive to α_s !
 - Will not discuss ratios within jets (jet shapes, subjet multiplicity)
- Many uncertainties cancelled (luminosity) or reduced (JES, ...)

Inclusive 3+/2+ Jet Ratio

3+/2+: NLO Prediction & ΔPDF

CMS like selection

PDF uncertainty reduced (ATLAS not very different) by a factor ~ 10 in ratio LO > 1 ?! **K** factors ~ 0.67 dR_{32}/dH_T / 1/GeV $dR_{32}/dH_{T-}PDF / dR_{32}/dH_{T-}CTEQ6.6$ 1.5 NLOJet++/fastNLO, △PDF 1.04 3-Jet Cross Section normalized Anti-k_T, R=0.5 $0.25 \leq H_{\tau}/TeV < 2.9$ 1.25 1.02 1 **3-Jet Cross Section Ratio** fastNLO/NLOJet++ NLO 0.75 0.98 E_{cms} = 7 TeV PDF4LHC Anti-k_T, R=0.5 CTEQ6.6 (CL90) CT10 **APDF** CT10 (CL90)/1.65 LO MSTW2008 (CL68) 0.96 NLO 0.5 **NNPDF2.0 (CL68)** 3000 1000 2000 1000 2000 H_T/GeV H_T/GeV Klaus Rabbertz α₋-Workshop 2011 19 Munich, Germany, 10.02.2011

3+/2+: Scale Dependence

Simultaneous variation in numerator and denominator No large difference between symmetric and add. asymm. scale variations No real improvement when going to NLO ... ATLAS quotes 5 % from Alpgen

3+/2+ Revisited

3+/2+: Sensitivity to α_{s}

α_{s} Sensitivity

22

Summary/Discussion

- Detector performances and MC modelling better than anticipated
- Improving rapidly on experimental systematics
- Can do much better jet measurements than originally hoped for
- Are there other (jet) observables to measure α_s at LHC?
- Comments/suggestions are welcome

Thank you for your attention

3+/2+: PDF Uncertainty

Only 3-jet part (numerator)

Central Thrust and Multi-Jets

- Dijet case:
 - Good description by Pythia, Herwig++
 - Alpgen & MadGraph off

Multijet case:

- Pythia, Herwig++ ok
- Alpgen & MadGraph better

ΔΦ: Sensitivity to a_s

Low pT bin: 80 < pT / GeV < 110

High pT bin: 200 < pT / GeV < 300

ΔΦ: Comparison to MC

Sensitivity to alpha_s

Inclusive Jet pT

Compatible within uncertainties!

- Comparison of jet data from
 - STAR at RHIC
 - H1 and ZEUS at HERA
 - CDF and D0 at Tevatron
- Compatible with NLO pQCD

Jet Cross Section Decomposition

Tevatron, 1.96 TeV

LHC, 7 TeV

Jet Algorithms at LHC

Particle Flow Concept

Associate particle types to all measurements, apply type-dependent corrections

Klaus Rabbertz

Munich, Germany, 10.02.2011

Jet Calibration and Uncertainty

Jet calibration:

Simple $P_{T,iet}$ and y dependent correction applied to measured jets at the electro-magnetic scale. Using particle level (truth) from Monte Carlo simulation as reference.

Jet energy scale uncertainty:

Evaluated using MC using various detector configurations, hadronic shower and physics models Based on large test-beam experience.

In-situ measurements:

- 1) Using Di-jet balance to transport uncertainty central -> forward
- 2) Additional uncertainty for pile-up from average tower energy per vertex

3) Cross-checked with single isolated hadron response measurement (E_{calo}/p_{track}) Uncertainty via: deconvolution of jets

in individual particles

Example:

Absolute Correction (Simulation Result)

CMS detector simulation, calorimeter towers, $E_{CMS} = 10 \text{ TeV}$

Relative Jet Corrections

- Response rapidity dependence is extracted from dijet asymmetry M. Voutilainen, ICHEP2010
- Residual correction is applied for inclusive jets, other studies are covered by the systematic uncertainty band of 2% times unit of rapidity

Jet correction = Absolute(p_) [MC] × Relative(n) [MC+data]

Jet Energy Resolution

Klaus Rabbertz

Munich, Germany, 10.02.2011

The ATLAS Detector

Inner Detector (ID) tracker:

- Si pixel and strip + transition rad. tracker
- σ(d₀) = 15μm@20GeV
- σ/p_T≈ 0.05%p_T ⊕ 1%

Calorimeter

- Liquid Ar EM Cal, Tile Had.Cal
- EM: σ_E/E = 10%/√E ⊕ 0.7%
- Had: σ_E/E = 50%/√E ⊕ 3%

Muon spectrometer

- Drift tubes, cathode strips: precision tracking +
- RPC, TGC: triggering
- σ/p_T ≈ 2-7%

Magnets

- Solenoid (ID) \rightarrow 2T
- Air toroids (muon) \rightarrow up to 4T

Full coverage for $|\eta|$ <2.5, calorimeter up to $|\eta|$ <5

Klaus Rabbertz

Munich, Germany, 10.02.2011

See also JINST 3 2008 S08003

α₋-Workshop 2011

The CMS Detector

Electromagnetic Calorimeter

Hadronic Calorimeter

- Forward (HF): $2.9 < |\eta| < 5.0$ (not shown) $\rightarrow 2 \times 864$ towers (Brass,quartz fibers, $\approx 10 \lambda_{_N}$) $\rightarrow \Delta \eta \times \Delta \phi \approx 0.111 \times 0.175 \rightarrow 0.302 \times 0.350$

<u>CASTOR calorimeter</u> (not shown): - 5.1 < $|\eta|$ < 6.5, \approx 22 X₀, \approx 10 λ_{N}

