TEP Seminar

Optimal Renormalization Scales and Schemes for QCD

Stan Brodsky, SLAC

$\boldsymbol{U C L A}$
February I3, 2007

PHYSICAL REVIEW D 74, 054016 (2006)

Form factors of the gauge-invariant three-gluon vertex
Michael Binger* and Stanley J. Brodsky ${ }^{\dagger}$

Heavy Quark Hadroproduction

Renormalization Scale Setting

The Renormalization Scale Problem

$\rho\left(Q^{2}\right)=C_{0}+C_{1} \alpha_{s}\left(\mu_{R}\right)+C_{2} \alpha_{s}^{2}\left(\mu_{R}\right)+\cdots$

$$
\mu_{R}^{2}=C Q^{2}
$$

Is there a way to set the renormalizationscale μ_{R} ?

[^0]M easurement of the strong coupling α_{S} from the four-jet rate in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation using J ADE data
J. Schieck ${ }^{1, \mathrm{a}}$, S. Bethke ${ }^{1}$, O. Biebel ${ }^{2}$, S. Kluth ${ }^{1}$, P.A.M. Fernández ${ }^{3}$, C. Pahl ${ }^{1}$, The JADE Collaboration ${ }^{\text {b }}$

Eur. Phys. J. C 48, 3-13 (2006)

Thetheoretical uncertainty, associated with missing higher order terms in the theoretical prediction, is assessed by varying the renormalization scale factor x_{μ}. The predictions of a complete QCD calculation would be independent of x_{μ}, but a finite-order calculation such as that used here retains some dependence on x_{μ}. The renormalization scale factor x_{μ} is set to 0.5 and two. The larger deviation from the default value of α_{s} is taken as systematic uncertainty.
$\alpha_{\mathrm{S}}{ }^{-}\left(M_{\mathrm{Z}^{0}}\right)$ and the $\chi^{2} /$ d.o.f. of the fit to the four-jet rate as a function of the renormalization scale x_{μ} for $\sqrt{s}=14 \mathrm{GeV}$ to 43.8 GeV . The arrows indicate the variation of the renormalization scale factor used for the determination of the systematic uncertainties

Conventional wisdom concerning scale setting

- Renormalization scale can be set to any value; e.g. $\mu_{R}=Q$
- Sensitivity to renormalization scale disappears at high order (only true if mass thresholds are incorporated)
- No optimal scale
- Ignore problem of multiple physical scales
- Accuracy of PQCD prediction can be judged by taking a range

$$
Q / 2<\mu_{R}<2 Q
$$

- Factorization scale should be taken equal to renormalization scale

$$
\mu_{F}=\mu_{R}
$$

All of these assumptions are fallacious

Uncertainties in P-wave Bc Production due to factorization energy scale

The summed P_{t} distribution and y distribution of all the P-wave states for different factorization scale μ^{2} and renormalization scale μ^{2} at LHC

The upper edge of the band corresponds to $\mu^{2}{ }_{F}=4 \mathbf{M}_{\mathrm{Pt}}{ }^{2} ; \mu^{2}=\mathrm{M}_{\mathrm{Pt}^{2}}{ }^{2} 4$; and the lower edge corresponds to that of $\mu_{\mathrm{F}}{ }_{\mathrm{F}}=\mathrm{M}_{\mathrm{Pt}}{ }^{2} / 4 ; \mu^{2}=4 \mathbf{M}_{\mathrm{Pt}}{ }^{2}$. The solid line, the dotted line and the dashed line corresponds to that of $\mu_{{ }_{\mathbf{F}}}=\mu^{2}=\mathbf{M}_{\mathbf{P t}}{ }^{2} ; \mu_{\mathbf{F}}^{2}=\mu^{2}=\mathbf{4} \mathbf{M}_{\mathbf{P t}}{ }^{2} ; \mu_{\mathbf{F}}^{2}=\mu^{2}=\mathbf{M}_{\mathbf{P t}}{ }^{2} / 4$.

Electron-Electron Scattering in QED

$$
\begin{gathered}
\mathcal{M}_{e e \rightarrow e e}(++;++)=\frac{8 \pi s}{t} \alpha(t)+\frac{8 \pi s}{u} \alpha(u) \\
\alpha(t)=\frac{\alpha(0)}{1-\Pi(t)}
\end{gathered}
$$

Gell Mann-Low Effective Charge

QED Effective Charge

$$
\alpha(t)=\frac{\alpha(0)}{1-\Pi(t)}
$$

All-orders leptonic loop corrections to dressed photon propagator

$$
\begin{aligned}
& \text {.. + } \\
& \alpha(t)=\frac{\alpha\left(t_{0}\right)}{1-\Pi\left(t, t_{0}\right)} \\
& \Pi\left(t, t_{0}\right)=\frac{\Pi(t)-\Pi\left(t_{0}\right)}{1-\Pi\left(t_{0}\right)}
\end{aligned}
$$

QED One-Loop Vacuum Polarization

$t=-Q^{2}<0$
(t spacelike)
$\Pi\left(Q^{2}\right)=\frac{\alpha(0)}{3 \pi}\left[\frac{5}{3}-\frac{4 m^{2}}{Q^{2}}-\left(1-\frac{2 m^{2}}{Q^{2}}\right) \sqrt{1+\frac{4 m^{2}}{Q^{2}}} \log \frac{1+\sqrt{1+\frac{4 m^{2}}{Q^{2}}}}{\left\lvert\, 1-\sqrt{1+\frac{4 m^{2}}{Q^{2}}}\right.}\right]$
Analytically continue to timelike t: Complex

$$
\begin{aligned}
& \Pi\left(Q^{2}\right)=\frac{\alpha(0)}{15 \pi} \frac{Q^{2}}{m^{2}} \\
& Q^{2} \ll 4 M^{2} \\
& \Pi\left(Q^{2}\right)=\frac{\alpha(0)}{3 \pi} \frac{\log Q^{2}}{m^{2}} \\
& \text { Serber-Uehling } \\
& \beta=\frac{d\left(\frac{\alpha}{4 \pi}\right)}{d \log Q^{2}}=\frac{4}{3}\left(\frac{\alpha}{4 \pi}\right)^{2} n_{\ell}>0 \\
& \text { Renormalization Scale Setting } \quad \text { Lo }
\end{aligned}
$$

Electron-Electron Scattering in QED

$$
\mathcal{M}_{e e \rightarrow e e}(++;++)=\frac{8 \pi s}{t} \alpha(t)+\frac{8 \pi s}{u} \alpha(u)
$$

- Two separate physical scales.
- Gauge Invariant. Dressed photon propagator

- Sums all vacuum polarization, non-zero beta terms into running coupling.
- If one chooses a different scale, one must sum an infinite number of graphs -- but then recover same result!
- Number of active leptons correctly set
- Analytic: reproduces correct behavior at lepton mass thresholds

No renormalization scale ambiguity!

$$
\begin{aligned}
& \beta_{\mathrm{MS}}(\alpha)=\sum_{i=1}^{4} \beta_{i}\left(\frac{\alpha}{4 \pi}\right)^{i+1} \\
& \quad=\frac{4}{3} N\left(\frac{\alpha}{4 \pi}\right)^{2}+4 N\left(\frac{\alpha}{4 \pi}\right)^{3}-\left(2 N+\frac{44}{9} N^{2}\right)\left(\frac{\alpha}{4 \pi}\right)^{4} \\
& \quad-\left\{46 N+\left[-\frac{760}{27}+\frac{832}{9} \zeta(3)\right] N^{2}+\frac{1232}{243} N^{3}\right\}\left(\frac{\alpha}{4 \pi}\right)^{5}
\end{aligned}
$$

The analytic four-loop corrections to the QED β-function in the MS scheme and to the QED ψ-function.
Total reevaluation
S.G. Gorishny ${ }^{1}$, A.L. Kataev, S.A. Larin and L.R. Surguladze ${ }^{2}$

Institute of Nuclear Research, Academy of Sciences of the USSR, SU-117 312 Moscow, USSR

Phys.Lett.B256:81-86,1991

$e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$

$$
\mu_{R}^{2}=s
$$

Scale of $\alpha\left(\mu_{r}\right)$ unique!

$$
M \propto \alpha(s)
$$

The QED Effective Charge

- Complex
- Analytic through mass thresholds
- Distinguishes between timelike and spacelike momenta

Analyticity essential!

$$
M\left(e^{+} e^{-} \rightarrow e^{+} e^{-}\right) \propto \alpha(s)
$$

Has correct analytic / unitarity thresholds for $\operatorname{Im} M$ at $s=4 m_{\ell^{+} \ell^{-}}^{2}$

No other scale correct. If one chooses another scale, e.g.,

$$
\mu_{R}^{2}=0.9 s
$$

then must resum infinite number of vacuum polarization diagrams.

Recover $\alpha(s)$.

Lessons from QED : Summary

- Effective couplings are complex analytic functions with the correct threshold structure expected from unitarity
- Multiple "renormalization" scales appear
- The scales are unambiguous since they are physical kinematic invariants
- Optimal improvement of perturbation theory

The Renormalization Scale Problem

- No renormalization scale ambiguity in QED
- Gell Mann-Low QED Coupling can be defined from physical observable
- Sums all Vacuum Polarization Contributions
- Recover conformal series
- Renormalization Scale in QED scheme: Identical to Photon Virtuality
- Analytic: Reproduces lepton-pair thresholds
- Examples: muonic atoms, $g-2$, Lamb Shift Gyulassy: Higher Order VP verified to 0.1% precision in $\mu \mathrm{Pb}$
- Time-like and Space-like QED Coupling related by analyticity
- Uses Dressed Skeleton Expansion

Example in QED: MuonicAtoms

Scale is unique: Tested to ppm

QCD Lagrangian

Yang Mills Gauge Principle: Color Rotation and Phase Invariance at Every Point of Space and Time

Scale-Invariant Coupling
Renormalizable
Conformal Template Asymptotic Freedom Color Confinement

Only quarks and gluons involve basic vertices: Quark-gluon vertex

Similar to QED

More exactly

Gluon vertices

 distances or high momentum transfer

Renormalization Scale Setting

Verification of Asymptotic Freedom

$$
\alpha\left(Q^{2}\right) \simeq \frac{4 \pi}{\beta_{0}} \frac{1}{\log Q^{2} / \Lambda_{Q C D}^{2}}
$$

Ratio of rate for $e^{+} e^{-} \rightarrow q \bar{q} g$ to $e^{+} e^{-} \rightarrow q \bar{q} \quad$ at $Q=E_{C M}=E_{e^{-}}+E_{e^{+}}$

QCD Lagrangian

$\lim N_{C} \rightarrow 0$ at fixed $\alpha=C_{F} \alpha_{s}, n_{\ell}=n_{F} / C_{F} \quad\left[C_{F}=\frac{N_{C}^{2}-1}{2 N_{C}}\right]$

Analytic limit of QCD: Abelian Gauge Theory

P. Huet, sjb

$\lim N_{C} \rightarrow 0$ at fixed $\alpha=C_{F} \alpha_{s}, n_{\ell}=n_{F} / C_{F}$

QCD \rightarrow Abelian Gauge Theory

A nalytic Feature of SU(NC) Gauge Theory
Scale-Setting procedure for QCD must be applicable to QED

IR Fixed Point for QCD?

- Dyson-Schwinger Analysis: QCD coupling (mom scheme) has IR Fixed point! Alkofer, Fischer, von smekal et al.
- Lattice Gauge Theory
- Define coupling from observable, indications of IR fixed point for QCD effective charges
- Confined gluons and quarks: Decoupling of QCD vacuum polarization at small Q^{2}
- Justifies application of AdS/CFT in strong-coupling conformal window

Infrared-Finite QCD Coupling?

Lattice simulation (MILC)

Furui, Nakajima

DSE: Alkofer, Fischer, von Smekal et al.

Define QCD Coupling from observable

$$
\begin{gathered}
R_{e^{+} e^{-} \rightarrow X}(s) \equiv 3 \Sigma_{q} e_{q}^{2}\left[1+\frac{\alpha_{R}(s)}{\pi}\right] \\
\Gamma(\tau \rightarrow X e \nu)\left(m_{\tau}^{2}\right) \equiv \Gamma_{0}(\tau \rightarrow u \bar{d} e \nu) \times\left[1+\frac{\alpha_{\tau}\left(m_{\tau}^{2}\right)}{\pi}\right]
\end{gathered}
$$

Commensurate scale relations:
Relate observable to observable at commensurate scales
Effective Charges: analytic at quark mass thresholds, finite at small momenta
Pinch scheme: Cornwall, et al
H.Lu, Rathsman, sjb

QCD Effective Coupling from

Conformal symmetry: Template for QCD

- Take conformal symmetry as initial approximation; then correct for non-zero beta function and quark masses
- Eigensolutions of ERBL evolution equation for distribution amplitudes
V. Braun et al;

Frishman, Lepage, Sachrajda, sjb

- Commensurate scale relations: relate observables at corresponding scales: Generalized Crewther Relation
- Use AdS/CFT

New Perspectives for QCD from $A d S / C F T$

- LFWFs: Fundamental description of hadrons at amplitude level
- Holographic Model from AdS/CFT : Confinement at large distances and conformal behavior at short distances
- Model for LFWFs, meson and baryon spectra: many applications!
- New basis for diagonalizing Light-Front Hamiltonian
- Physics similar to MIT bag model, but covariant. No problem with support $\mathrm{o}<\mathrm{x}<\mathrm{I}$.
- Quark Interchange dominant force at short distances

On the elimination of scale ambiguities in perturbative quantum chromodynamics

Stanley J. Brodsky
Institute for Advanced Study, Princeton, New Jersey 08540
and Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305*
G. Peter Lepage
Institute for Advanced Study, Princeton, New Jersey 08540
and Laboratory of Nuclear Studies, Cornell University, Ithaca, New York 14853*

Paul B. Mackenzie
Fermilab, Batavia, Illinois 60510

(Received 23 November 1982)
We present a new method for resolving the scheme-scale ambiguity that has plagued perturbative analyses in quantum chromodynamics (QCD) and other gauge theories. For Abelian theories the method reduces to the standard criterion that only vacuum-polarization insertions contribute to the effective coupling constant. Given a scheme, our procedure automatically determines the couplingconstant scale appropriate to a particular process. This leads to a new criterion for the convergence of perturbative expansions in QCD. We examine a number of well known reactions in QCD, and find that perturbation theory converges well for all processes other than the gluonic width of the Υ. Our analysis calls into question recent determinations of the QCD coupling constant based upon Υ decay.

BLM Scale Setting

$$
\begin{aligned}
& \rho=C_{0} \alpha_{\overline{\mathrm{MS}}}(Q)[1+\frac{\alpha_{\overline{\mathrm{MS}}}(Q)}{\pi}\left(-\frac{3}{2} \beta_{0} A_{\mathrm{VP}}+\frac{33}{2} A_{\mathrm{VP}}+B\right) \\
&+\cdots] \quad \\
& n_{q} \text { dependent } \\
& \text { coefficient identifies }
\end{aligned}
$$

by

$$
\rho=C_{0} \alpha_{\overline{\mathrm{MS}}}\left(Q^{*}\right)\left[1+\frac{\alpha_{\overline{\mathrm{MS}}}\left(Q^{*}\right)}{\pi} C_{1}^{*}+\cdots\right)
$$

quark loop VP contribution
where
Conformal coefficient - independent of β

$$
\begin{aligned}
& Q^{*}=Q \exp \left(3 A_{\mathrm{VP}}\right), \\
& C_{1}^{*}=\frac{33}{2} A_{\mathrm{VP}}+B
\end{aligned}
$$

The term $33 A_{\mathrm{Vp}} / 2$ in C_{1}^{*} serves to remove that part of the constant B which renormalizes the leading-order coupling. The ratio of these gluonic corrections to the light-quark corrections is fixed by $\beta_{0}=11-\frac{2}{3} n_{f}$.

$$
\begin{aligned}
& R_{e^{+} e^{-}}\left(Q^{2}\right) \equiv 3 \sum_{\text {flavors }} e_{q}^{2}\left[1+\frac{\alpha_{R}(Q)}{\pi}\right) . \\
& R_{e^{+} e^{-}}\left(Q^{2}\right)=3 \sum_{q} e_{q}{ }^{2} \left\lvert\, 1+\frac{\alpha_{\overline{\mathrm{MS}}}(Q)}{\pi}+\frac{\alpha_{\overline{\mathrm{MS}}}{ }^{2}}{\pi^{2}}\left(1.98-0.115 n_{f}\right)\right. \\
& +\cdots \\
& n_{F} \text { dependent coefficient } \\
& \text { identifies quark loop VP } \\
& \text { contribution } \\
& \rightarrow 3 \sum_{q} e_{q}{ }^{2}\left[1+\frac{\alpha_{\overline{\mathrm{MS}}}\left(Q^{*}\right)}{\pi}+\frac{\alpha_{\overline{\mathrm{MS}}}{ }^{2}\left(Q^{*}\right)}{\pi^{2} \mathrm{~K}} 0.08\right. \\
& +\cdots \mid, \text { conformal coefficient-independent of } \beta \\
& Q^{*}=0.710 Q . \text { Notice that } \alpha_{R}(Q) \\
& \text { differs from } \alpha_{\overline{\mathrm{MS}}}\left(Q^{*}\right) \text { by only } 0.08 \alpha_{\overline{\mathrm{MS}}} / \pi \text {, so that } \\
& \alpha_{R}(Q) \text { and } \alpha_{\overline{\mathrm{MS}}}(0.71 Q) \text { are effectively interchangeable (for } \\
& \text { any value of } n_{f} \text {). }
\end{aligned}
$$

Deep-inelastic scattering. The moments of the nonsinglet structure function $F_{2}\left(x, Q^{2}\right)$ obey the evolution equation
$Q^{2} \frac{d}{d Q^{2}} \ln M_{n}\left(Q^{2}\right)$

$$
\begin{aligned}
& =-\frac{\gamma_{n}^{(0)}}{8 \pi} \alpha_{\overline{\mathrm{MS}}}(Q)\left[1+\frac{\alpha_{\overline{\mathrm{MS}}}}{4 \pi} \frac{2 \beta_{0} \beta_{n}+\gamma_{n}^{(1)}}{\gamma_{n}^{(0)}}+\cdots\right) \\
& \rightarrow-\frac{\gamma_{n}^{(0)}}{8 \pi} \alpha_{\overline{\mathrm{MS}}}\left(Q_{n}^{*}\right)\left[1-\frac{\alpha_{\overline{\mathrm{MS}}}\left(Q_{n}^{*}\right)}{\pi} C_{n}+\cdots\right)
\end{aligned}
$$

where, for example,

$$
\begin{array}{ll}
Q_{2}^{*}=0.48 Q, & C_{2}=0.27 \\
Q_{10}^{*}=0.21 Q, & C_{10}=1.1
\end{array}
$$

For n very large, the effective scale here becomes $Q_{n}^{*} \sim Q / \sqrt{n}$

BLM scales for DIS moments

$$
\begin{aligned}
V\left(Q^{2}\right) & =-\frac{C_{F} 4 \pi \alpha_{\overline{\mathrm{MS}}}(Q)}{Q^{2}}\left(1+\frac{\alpha_{\overline{\mathrm{MS}}}}{\pi}\left(\frac{5}{12} \beta_{0}-2\right)+\cdots\right) \\
& \rightarrow-\frac{C_{F} 4 \pi \alpha_{\overline{\mathrm{MS}}}\left(Q^{*}\right)}{Q^{2}}\left|1-\frac{\alpha_{\overline{\mathrm{MS}}}\left(Q^{*}\right)}{\pi} 2+\cdots\right|
\end{aligned}
$$

where $Q^{*}=e^{-5 / 6} Q \cong 0.43 Q$. This result shows that the effective scale of the $\overline{\mathrm{MS}}$ scheme should generally be about half of the true momentum transfer occurring in the interaction. In parallel to QED, the effective potential $V\left(Q^{2}\right)$ gives a particularly intuitive scheme for defining the QCD coupling constant

$$
V\left(Q^{2}\right) \equiv-\frac{4 \pi C_{F} \alpha_{v}(Q)}{Q^{2}}
$$

Similar to PT scheme

Features of BLM Scale Setting

On The Elimination Of Scale Ambiguities In Perturbative Quantum Chromodynamics.

- All terms associated with nonzero beta function summed into running coupling
- Identical procedure in QED
- Resulting series identical to conformal series
- Renormalon n! growth of PQCD coefficients from beta function eliminated!
- In general, BLM scale depends on all invariants

Three-Jet Rate

Kramer \& Lampe

The scale μ / \sqrt{s} according to the BLM (dashed-dotted), PMS (dashed), FAC (full), and \sqrt{y} (dotted) procedures for the three-jet rate in $e^{+} e^{-}$annihilation, as computed by Kramer and Lampe [10]. Notice the strikingly different behavior of the BLM scale from the PMS and FAC scales at low y. In particular, the latter two methods predict increasing values of μ as the jet invariant mass $\mathcal{M}<\sqrt{(y s)}$ decreases.

Other Jet Observables:

$$
\begin{aligned}
F_{1}+F_{2} & =1+\frac{\alpha\left(s \beta^{2}\right) \pi}{4 \beta}-2 \frac{\alpha\left(s e^{3 / 4} / 4\right)}{\pi} \\
& \cong\left(1-2 \frac{\alpha\left(s e^{3 / 4} / 4\right)}{\pi}\right)\left(1+\frac{\alpha\left(s \beta^{2}\right) \pi}{4 \beta}\right)
\end{aligned}
$$

Example of Multiple BLM Scales

Angular distributions of massive quarks and leptons close to threshold.

Example of Multiple BLM Scales

Angular distributions of massive quarks and leptons close to threshold.

S.J. Brodsky (SLAC) , A.H. Hoang (Karlsruhe U., TTP) , Johann H. Kuhn (SLAC \& Karlsruhe U., TTP), I. Teubner (Karlsruhe U., TTP) . SLAC-PUB-6955, SLAC-PUB-95-6955, TTP-95-26, Jul 1995. 13pp. Published in Phys.Lett.B359:355-361,1995.
e-Print Archive: hep-ph/9508274

$$
\begin{gathered}
A=\frac{\left|G_{m}\right|^{2}-\left(1-\beta^{2}\right)\left|G_{e}\right|^{2}}{\left|G_{m}\right|^{2}+\left(1-\beta^{2}\right)\left|G_{e}\right|^{2}} \quad A=\frac{\tilde{A}}{1-\tilde{A}} \\
\frac{\mathrm{~d} \sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{f}\right)}{\mathrm{d} \Omega}=\frac{\alpha^{2} Q_{f}^{2} \beta}{4 s}\left[\frac{4 m^{2}}{s}\left|G_{e}\right|^{2} \sin ^{2} \theta+\left|G_{m}\right|^{2}\left(1+\cos ^{2} \theta\right)\right] \\
\tilde{A}=\frac{\beta^{2}}{2} \frac{\left(1-4 \frac{\alpha_{\mathrm{V}}\left(m^{2} e^{7 / 6}\right)}{\pi}\right)}{\left(1-\frac{16}{3} \frac{\alpha_{\mathrm{V}}\left(m^{2} e^{3 / 4}\right)}{\pi}\right)} \frac{1-e^{-x_{s}}}{1-e^{-x_{s}^{\prime}}} \frac{\alpha_{\mathrm{V}}\left(4 m^{2} \beta^{2} / e\right)}{\alpha_{\mathrm{V}}\left(4 m^{2} \beta^{2}\right)} \\
x_{s}=\frac{4 \pi}{3} \frac{\alpha_{\mathrm{V}}\left(4 m^{2} \beta^{2}\right)}{\beta}, \quad x_{s}^{\prime}=\frac{4 \pi}{3} \frac{\alpha_{\mathrm{V}}\left(4 m^{2} \beta^{2} / e\right)}{\beta}
\end{gathered}
$$

Relate Observables to Each Other

- Eliminate intermediate scheme
- No scale ambiguity
- Transitive!
- Commensurate Scale Relations
- Example: Generalized Crewther Relation

$$
\begin{aligned}
\frac{\alpha_{R}(Q)}{\pi}= & \frac{\alpha_{\overline{\mathrm{MS}}}(Q)}{\pi}+\left(\frac{\alpha_{\overline{\mathrm{MS}}}(Q)}{\pi}\right)^{2}\left[\left(\frac{41}{8}-\frac{11}{3} \zeta_{3}\right) C_{A}-\frac{1}{8} C_{F}+\left(-\frac{11}{12}+\frac{2}{3} \zeta_{3}\right) f\right] \\
& +\left(\frac{\alpha_{\overline{\mathrm{MS}}}(Q)}{\pi}\right)^{3}\left\{\left(\frac{90445}{2592}-\frac{2737}{108} \zeta_{3}-\frac{55}{18} \zeta_{5}-\frac{121}{432} \pi^{2}\right) C_{A}^{2}+\left(-\frac{127}{48}-\frac{143}{12} \zeta_{3}+\frac{55}{3} \zeta_{5}\right) C_{A} C_{F}-\frac{23}{32} C_{F}^{2}\right. \\
& +\left[\left(-\frac{970}{81}+\frac{224}{27} \zeta_{3}+\frac{5}{9} \zeta_{5}+\frac{11}{108} \pi^{2}\right) C_{A}+\left(-\frac{29}{96}+\frac{19}{6} \zeta_{3}-\frac{10}{3} \zeta_{5}\right) C_{F}\right] f \\
& \left.+\left(\frac{151}{162}-\frac{19}{27} \zeta_{3}-\frac{1}{108} \pi^{2}\right) f^{2}+\left(\frac{11}{144}-\frac{1}{6} \zeta_{3}\right) \frac{d^{a b c} d^{a b c}}{C_{F} d(R)} \frac{\left(\sum_{f} Q_{f}\right)^{2}}{\sum_{f} Q_{f}^{2}}\right\} .
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\alpha_{g_{1}}(Q)}{\pi}= \frac{\alpha_{\overline{\mathrm{MS}}}(Q)}{\pi}+\left(\frac{\alpha_{\overline{\mathrm{MS}}}(Q)}{\pi}\right)^{2}\left[\frac{23}{12} C_{A}-\frac{7}{8} C_{F}-\frac{1}{3} f\right] \\
&+\left(\frac{\alpha_{\overline{\mathrm{MS}}}(Q)}{\pi}\right)^{3}\left\{\left(\frac{5437}{648}-\frac{55}{18} \zeta_{5}\right) C_{A}^{2}+\left(-\frac{1241}{432}+\frac{11}{9} \zeta_{3}\right) C_{A} C_{F}+\frac{1}{32} C_{F}^{2}\right. \\
&\left.+\left[\left(-\frac{3535}{1296}-\frac{1}{2} \zeta_{3}+\frac{5}{9} \zeta_{5}\right) C_{A}+\left(\frac{133}{864}+\frac{5}{18} \zeta_{3}\right) C_{F}\right] f+\frac{115}{648} f^{2}\right\}
\end{aligned}
$$

Eliminate MSbar, Find Amazing Simplification

$$
\begin{gathered}
R_{e^{+} e^{-}}\left(Q^{2}\right) \equiv 3 \sum_{\text {flavors }} e_{q}^{2}\left(1+\frac{\alpha_{R}(Q)}{\pi}\right) \\
\int_{0}^{1} d x\left[g_{1}^{e p}\left(x, Q^{2}\right)-g_{1}^{e n}\left(x, Q^{2}\right)\right] \equiv \frac{1}{3}\left|\frac{g_{A}}{g_{V}}\right|\left[1-\frac{\alpha_{g_{1}}(Q)}{\pi}\right] \\
\frac{\alpha_{g_{1}}(Q)}{\pi}=\frac{\alpha_{R}\left(Q^{*}\right)}{\pi}-\left(\frac{\alpha_{R}\left(Q^{* *}\right)}{\pi}\right)^{2}+\left(\frac{\alpha_{R}\left(Q^{* * *}\right)}{\pi}\right)^{3} \\
\text { Geometric Series in Conformal QCD }
\end{gathered}
$$

Generalized Crewther Relation

Generalized Crewther Relation

$$
\begin{gathered}
{\left[1+\frac{\alpha_{R}\left(s^{*}\right)}{\pi}\right]\left[1-\frac{\alpha_{g_{1}}\left(q^{2}\right)}{\pi}\right]=1} \\
\sqrt{s^{*}} \simeq 0.52 Q
\end{gathered}
$$

Conformal relation true to all orders in perturbation theory
No radiative corrections to axial anomaly
Nonconformal terms set relative scales (BLM)
Analytic matching at quark thresholds
No renormalization scale ambiguity!

* U'hy is the relation between
α_{R} und α_{g}, so simple?.

$$
\left\{\begin{array}{l}
\text { Gabalagre } \\
\text { ketaer } \\
\text { H.2.L.1 } \\
\text { sin }
\end{array}\right.
$$

Consise conformal limit $\quad \beta_{0} \Rightarrow 0, \beta_{1} \Rightarrow 0$

$$
\operatorname{CSR} \Rightarrow\left(1+\hat{\alpha}_{R}\right)\left(1-\hat{\alpha}_{3}\right)=1
$$

* Follous from Crewthen relation!
$\beta=0$
chival

$$
\begin{aligned}
& 3 S=k R^{\prime}=k\left(\frac{4}{3} R\right)
\end{aligned}
$$

Deviatais from Creasthe Relator progntain to 7

Kataer
Brocthout

Transitivity Property of Renormalization Group

$A \rightarrow C \quad C \rightarrow B \quad$ identical to $A \rightarrow B$

Relation of observables independent of intermediate scheme C

Commensurak Bede Relation:

$$
\begin{aligned}
* \quad \alpha_{B}\left(Q_{B}\right) & =\alpha_{A}\left(Q_{A}\right)\left[1+\underset{\hat{A}}{C_{A / B}^{(1)} \frac{\alpha_{A}}{\pi}}+\cdots\right] \\
Q_{B} / Q_{A} & =\lambda_{B / A}
\end{aligned}
$$

Transitivity of the renormalization group implies predictions for a physical observable \mathcal{O} cannot depend on choice of intermediate renormalization scheme,
e.g., choice of $\alpha_{\overline{M S}}$ or $\alpha_{\text {mom }}$.

$$
\frac{d \mathcal{O}}{d \mu_{\text {scheme }}}=0
$$

not

$$
\frac{d \mathcal{O}}{d \mu_{\text {renormalization }}}=0
$$

Leading Order Commensurate Scales

Translation between schemes at $L O$

Use Physical Scheme to Characterize QCD Coupling

- Use Observable to define QCD coupling or Pinch Scheme
- Analytic: Smooth behavior as one crosses new quark threshold
- New perspective on grand unification

Conformal symmetry: Template for QCD

- Initial approximation to PQCD; then correct for non-zero beta function and quark masses
- Commensurate scale relations: relate observables at corresponding scales: Generalized Crewther Relation
- Arguments for Infrared fixed-point for α_{S}
- Effective Charges: analytic at quark mass thresholds, finite at small momenta
- Eigensolutions of Evolution Equation of distribution amplitudes

Analyticity and Mass Thresholds

$\overline{M S}$ does not have automatic decoupling of heavy particles
\square Must define a set of schemes in each desert region and match

$$
\alpha_{s}^{(f)}\left(M_{Q}\right)=\alpha_{s}^{(f+1)}\left(M_{Q}\right)
$$

- The coupling has discontinuous derivative at the matching point
- At higher orders the coupling itself becomes discontinuous!
- Does not distinguish between spacelike and timelike momenta

```
"AN ANALYTIC EXTENSION OF THE MS-BAR RENORMALIZATION SCHEME"
S. Brodsky, M. Gill, M. Melles, J. Rathsman. Phys.Rev.D58:116006,1998
```


Unification in Physical Schemes

- Smooth analytic threshold behavior with automatic decoupling
- More directly reflects the unification of the forces
- Higher "unification" scale than usual

General Structure of the Three-Gluon Vertex

3 index tensor $\hat{\Gamma}_{\mu_{1} \mu_{2} \mu_{3}}$ built out of $g_{\mu \nu}$ and p_{1}, p_{2}, p_{3} with $p_{1}+p_{2}+p_{3}=0$

14 basis tensors and form factors

The Pinch Technique

(Cornwall, Papavassiliou)
Natural generalization of QED charge

$$
<0\left|G^{\mu \nu}(x) G^{\sigma \tau}(0)\right| 0>\quad G^{\mu \nu}=\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}+i g\left[A^{\mu}, A^{\nu}\right]
$$

Pinch Scheme (PT)

- J. M. Cornwall, Phys. Rev. D 26, 345 (1982)
- Equivalent to Background Field Method in Feynman guage
- Effective Lagrangian Scheme of Kennedy \& Lynn
- Rearrange Feynman diagrams to satisfy Ward Identities
- Longitudinal momenta from triple-gluon coupling, etc. hit vertices which cancel ("pinch") propagators
- Two-point function: Uniqueness, analyticity, unitarity, optical theorem
- Defines analytic coupling with smooth threshold behavior

Pinch Scheme - Effective Charge

$$
<0\left|G^{\mu \nu}(x) G^{\sigma \tau}(0)\right| 0>\quad G^{\mu \nu}=\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}+i g\left[A^{\mu}, A^{\nu}\right]
$$

3 Gluon Vertex In Scattering Amplitudes

Pinch-Technique approach:

fully dress with gauge-invariant Green's functions

The Gauge Invariant Three Gluon Vertex

Cornwall and Papavassiliou performed the PT construction :

The "pinched" parts are added to the "regular" 3 gluon vertex

Renormalization Scale Setting

Multi-scale Renormalization of the Three-Gluon Vertex

General Structure of the Three-Gluon Vertex

Simple (QED-like) Ward ID

$$
\begin{aligned}
p_{3}^{\mu_{3}} \hat{\Gamma}_{\mu_{1} \mu_{2} \mu_{3}}\left(p_{1}, p_{2}, p_{3}\right)= & t_{\mu_{1} \mu_{2}}\left(p_{2}\right)\left[1+\hat{\Pi}\left(p_{2}\right)\right]-t_{\mu_{1} \mu_{2}}\left(p_{1}\right)\left[1+\hat{\Pi}\left(p_{1}\right)\right] \\
& \text { where } t_{\mu \nu}(p)=p^{2} g_{\mu \nu}-p_{\mu} p_{v}
\end{aligned}
$$

3 Gluon Vertex In Scattering Amplitudes

Amplitude $=$ color \times vertices $\times g(a) g(b) g(c)$

Other tensors and form factors

Tree level tensor structure :

$$
\hat{t}_{0}=\left(p_{1}-p_{2}\right)^{\mu_{3}} g^{\mu_{1} \mu_{2}}+\left(p_{2}-p_{3}\right)^{\mu_{1}} g^{\mu_{2} \mu_{3}}+\left(p_{3}-p_{1}\right)^{\mu_{2}} g^{\mu_{3} \mu_{1}}
$$

Form factors A_{0}, A_{+}, A_{-}, H depend on these $\left\{\begin{array}{l}a=p_{1}^{2} \\ b=p_{2}^{2} \\ c=p_{3}^{2}\end{array}\right.$

Convenient Tensor Bases

Physical 士 Basis

- Written in terms of linear combinations of momenta called "+" and "-" momenta such that $p_{+} \cdot V_{e x t}=0$ by elementary Ward IDs
- Maximum \# of FF's vanish when in a physical matrix element
- Good for real scattering problems

LT Basis

- Longitudinal (L) FF's :

$$
p_{3}^{\mu_{3}} \cdot \hat{\Gamma}_{\mu_{1} \mu_{2} \mu_{3}}^{(L)}\left(p_{1}, p_{2}, p_{3}\right) \neq 0
$$

- Transverse (T) FF's :

$$
p_{3}^{\mu_{3}} \cdot \hat{\Gamma}_{\mu_{1} \mu_{2} \mu_{3}}^{(T)}\left(p_{1}, p_{2}, p_{3}\right)=0
$$

- Good for theoretical work and solving Ward ID

Complementary in their relation to current conservation (Ward ID's)

Form Factors : Supersymmetric Relations

- Any form factor can be decomposed :

$$
F=C_{A} F_{G}+2 \sum_{f} T_{f} F_{Q}+2 \sum_{s} T_{s} F_{S}
$$

$\mathrm{G}=$ gluons
Q = quarks
C_{A}, T_{f}, T_{s} are color factors S = scalars

- Individually, F_{G}, F_{Q}, F_{S} are complicated...

Form Factors : Supersymmetric Relations (Massless)

....but certain linear sums are simple :

$$
\Sigma_{Q G}(F) \equiv \frac{d-2}{2} F_{Q}+F_{G} \longrightarrow \begin{aligned}
& 0 \begin{array}{l}
\text { for } 7 \text { of the } 13 \mathrm{FF} \text { 's } \\
\text { (in physical basis) } \\
\pm
\end{array}
\end{aligned}
$$

Simple $\mathrm{N}=1$ SUSY contribution in $\mathrm{d}=4$

$$
F_{G}+4 F_{Q}+(10-d) F_{S}=0 \quad \text { For all FF's !! }
$$

These are off-shell generalizations of relations found in SUSY scattering amplitudes by
Z. Bern, L.J. Dixon, D.C. Dunbar, and D.A. Kosower (NPB 425,435)

Vanishing contribution of the $N=4$ supermutiplet in $d=4$ dimensions

Form Factors : Consequences of Supersymmetric Relations

For any SUSY each of the 13 FF's are $\propto \beta_{0}$ even though only one FF is directly related to coupling renormalization

$$
\begin{aligned}
\beta_{0}(d) & =\frac{7 d-6}{2(d-1)} C_{A}-\frac{2(d-2)}{d-1} \sum_{f} T_{f}-\frac{1}{d-1} \sum_{f} T_{s} \\
\xrightarrow{d}=4 & \frac{11}{3} C_{A}-\frac{4}{3} T_{f}-\frac{1}{3} T_{s}
\end{aligned}
$$

 scalars have same functional form

Form Factors Without Supersymmetry (in d=4)

Seven FF's have

$$
\Sigma_{Q G}(F)=0 \longmapsto F=\left(N_{c}-N_{f}+\frac{1}{2} N_{s}\right) F_{G}
$$

FF of tree level tensor

$$
\begin{aligned}
& A_{0} \propto\left(\frac{11}{3} N_{c}-\frac{2(3 d-8)}{3(d-2)} \sum_{f} T_{f}-\frac{2}{3(d-2)} \sum_{s} T_{s}\right) \\
& \xrightarrow{d=4}\left(\frac{11}{3} N_{c}-\frac{4}{3} T_{f}-\frac{1}{3} T_{s}\right)=\beta_{0}
\end{aligned}
$$

Another FF has $B_{0} \propto\left(4 N_{c}-N_{f}\right) \quad B_{0}(S)=0$

Form Factors : Supersymmetric Relations (Massive)

Equal masses for massive gauge bosons (MG), quarks (MQ), and scalars (MS)

$$
F_{M G}+4 F_{M Q}+(9-d) F_{M S}=0
$$

1 d.o.f. "eaten" by MG

Massive gauge boson (MG) inside of loop might be the X and Y gauge bosons of $\operatorname{SU}(5)$, for example

External gluons remain unbroken and massless

$$
\Sigma_{M Q G}(F) \equiv \frac{d-1}{2} F_{M Q}+F_{M G} \quad \text { is simple }
$$

Summary of Supersymmetric Relations

Massless	Massive
$F_{G}+4 F_{Q}+(10-d) F_{S}=0$	$F_{M G}+4 F_{M Q}+(9-d) F_{M S}=0$
$\Sigma_{Q G}(F) \equiv \frac{d-2}{2} F_{Q}+F_{G}$	$\Sigma_{M Q G}(F) \equiv \frac{d-1}{2} F_{M Q}+F_{M G}$
$=$ simple	$=$ simple

3 Scale Effective Charge

$$
\begin{aligned}
& \widetilde{\alpha}(a, b, c) \equiv \frac{\widetilde{g}^{2}(a, b, c)}{4 \pi} \\
& \frac{1}{\widetilde{\alpha}(a, b, c)}=\frac{1}{\alpha_{\text {bare }}}+\frac{1}{4 \pi} \beta_{0}\left(L(a, b, c)-\frac{1}{\varepsilon}+\cdots\right) \\
& \frac{1}{\widetilde{\alpha}(a, b, c)}=\frac{1}{\widetilde{\alpha}\left(a_{0}, b_{0}, c_{0}\right)}+\frac{1}{4 \pi} \beta_{0}\left[L(a, b, c)-L\left(a_{0}, b_{0}, c_{0}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& L(a, b, c)=3 \text {-scale "log-like" function } \\
& L(a, a, a)=\log (a)
\end{aligned}
$$

3 Scale Log-Like Function

$$
\begin{aligned}
& L(a, b, c)=\frac{1}{\mathrm{~K}}(\alpha \gamma \log a+\alpha \beta \log b+\beta \gamma \log c-a b c \bar{J}(a, b, c))+\Omega \\
& \mathrm{K}=\alpha \beta+\beta \gamma+\gamma \alpha \\
& \alpha=p_{1} \cdot p_{2}=\frac{1}{2}(c-a-b) \\
& \begin{array}{c}
\text { Master triangle integral can be } \\
\text { written in terms of Clausen functions }
\end{array} \\
& \beta=p_{2} \cdot p_{3}=\frac{1}{2}(a-b-c) \\
& \gamma=p_{2}(\theta)=\operatorname{Im} L i_{2}\left(e^{i \theta}\right)
\end{aligned} \quad \begin{aligned}
& a=p_{1}^{2} \\
& b=\frac{1}{2}(b-c-a)
\end{aligned} \begin{aligned}
& b=p_{2}^{2}
\end{aligned} \quad \Omega \approx 3.125
$$

3 Scale Effective Scale

$$
L(a, b, c) \equiv \log \left(Q_{e f f}^{2}(a, b, c)\right)+i \operatorname{Im} L(a, b, c)
$$

Governs strength of the three-gluon vertex

$$
\begin{aligned}
\frac{1}{\widetilde{\alpha}(a, b, c)}= & \frac{1}{\widetilde{\alpha}\left(a_{0}, b_{0}, c_{0}\right)}+\frac{1}{4 \pi} \beta_{0}\left[L(a, b, c)-L\left(a_{0}, b_{0}, c_{0}\right)\right] \\
& \hat{\Gamma}_{\mu_{1} \mu_{2} \mu_{3}} \propto \sqrt{\tilde{\alpha}(a, b, c)}
\end{aligned}
$$

Generalization of BLM Scale to 3-Glwon Vertex

Properties of the Effective Scale

$$
\begin{aligned}
& Q_{e f f}^{2}(a, b, c)=Q_{e f f}^{2}(-a,-b,-c) \\
& Q_{e f f}^{2}(\lambda a, \lambda b, \lambda c)=|\lambda| Q_{e f f}^{2}(a, b, c) \\
& Q_{e f f}^{2}(a, a, a)=|a| \\
& Q_{e f f}^{2}(a,-a,-a) \approx 5.54|a| \\
& Q_{e f f}^{2}(a, a, c) \approx 3.08|c| \text { for }|a| \gg|c| \\
& Q_{e f f}^{2}(a,-a, c) \approx 22.8|c| \text { for }|a| \gg|c| \\
& Q_{e f f}^{2}(a, b, c) \approx 22.8 \frac{|b c|}{|a|} \text { for }|a| \gg|b|,|c|
\end{aligned}
$$

Surprising dependence on Invariants

$$
\begin{aligned}
& \mu_{R}^{2} \simeq \frac{p_{\min }^{2} p_{m e d}^{2}}{p_{\max }^{2}}
\end{aligned}
$$

H. J. Lu

The Effective Scale

$Q_{e f f}^{2}\left(10 \mathrm{GeV}^{2}, 10 \mathrm{GeV}^{2}, p^{2}\right) \quad Q_{e f f}^{2}\left(-10 \mathrm{GeV}^{2},-10 \mathrm{GeV}^{2}, p^{2}\right)$

The Effective Scale

The Effective Scale

Mass Effects

Calculated for all form factors
SUSY relations $F_{M G}+4 F_{M Q}+(9-d) F_{M S}=0$

FF of tree level tensor structure
 Effective Charge

Massive "log-like" function : $\quad L_{M Q}\left(\frac{a}{M^{2}}, \frac{b}{M^{2}}, \frac{c}{M^{2}}\right)$

$$
\begin{aligned}
& L_{M Q}\left(\frac{a}{M^{2}}, \frac{b}{M^{2}}, \frac{c}{M^{2}}\right) \approx 5.125 \text { for } M^{2} \gg|a|,|b|,|c| \\
& L_{M Q}\left(\frac{a}{M^{2}}, \frac{b}{M^{2}}, \frac{c}{M^{2}}\right) \approx L(a, b, c)-\log M^{2} \text { for } M^{2} \ll|a|,|b|,|c|
\end{aligned}
$$

Massive Log-Like Function

$$
\begin{gathered}
L_{M Q}\left(\frac{a}{M^{2}}, \frac{b}{M^{2}}, \frac{c}{M^{2}}\right)=\frac{1}{\mathrm{~K}}\left(\alpha \gamma \Lambda(a)+\alpha \beta \Lambda(b)+\beta \gamma \Lambda(c)-a b c \overline{J_{M}}(a, b, c)\right)+\Omega \\
+2 M^{2}\left(\frac{\Lambda(a)-2}{a}+\frac{\Lambda(b)-2}{b}+\frac{\Lambda(c)-2}{c}-\overline{J_{M}}(a, b, c)\right) \\
\left.\begin{array}{l}
\Lambda(a)=\left\{\begin{array}{l}
2 v \tanh ^{-1}\left(v^{-1}\right) \\
2 \bar{v} \tan ^{-1}\left(\bar{v}^{-1}\right) \\
2 v \tanh ^{-1}(v)-i v \pi
\end{array}\right\} \text { for }\left\{\begin{array}{l}
a<0 \\
0<a<4 M^{2} \\
a>4 M^{2}
\end{array}\right\}
\end{array}\right] \\
v=\sqrt{1-\frac{4 M^{2}}{a}} \quad \bar{v}=\sqrt{\frac{4 M^{2}}{a}-1} \quad \begin{array}{l}
\text { Massive Master } \\
\text { Triangle Integral } \\
\text { (very complicated) }
\end{array}
\end{gathered}
$$

Symmetric Spacelike

Renormalization Scale Setting

Effective Number of Flavors

$$
N_{F}\left(\frac{a}{M^{2}}, \frac{b}{M^{2}}, \frac{c}{M^{2}}\right)=-\frac{d}{d \log M^{2}} L_{M Q}\left(\frac{a}{M^{2}}, \frac{b}{M^{2}}, \frac{c}{M^{2}}\right)
$$

$n_{f}\left(\frac{Q^{2}}{M^{2}}\right)=-\frac{d}{d \log M^{2}} L_{1 / 2}\left(\frac{Q^{2}}{M^{2}}\right)$

$$
\approx \frac{1}{1+\frac{M^{2}}{Q^{2}} e^{5 / 3}}
$$

Symmetric Timelike

$$
L_{M Q}\left(\frac{a}{M^{2}}, \frac{a}{M^{2}}, \frac{a}{M^{2}}\right)
$$

Renormalization Scale Setting
Stan Brodsky, SLAC

Symmetric Mixed Signature

$$
L_{M Q}\left(\frac{a}{M^{2}}, \frac{a}{M^{2}},-\frac{a}{M^{2}}\right)
$$

Heavy Quark Hadro-production

where

- Preliminary calculation using (massless) results for tree level form factor
- Very low effective scale \longrightarrow much larger cross section than $M S$ with scale $\mu_{R}=M_{Q \bar{Q}}$ or M_{Q}
- Future : repeat analysis using the full massdependent results and include all form factors

Expect that this approach accounts for most of the one-loop corrections

Use Physical Scheme to Characterize QCD Coupling

- Use Observable to define QCD coupling or Pinch Scheme
- Analytic: Smooth behavior as one crosses new quark threshold
- New perspective on grand unification

Binger, Sjb

Unification in Physical Schemes

"PHYSICAL RENORMALIZATION SCHEMES AND GRAND UNIFICATION"

 M.B. and Stanley J. Brodsky. Phys.Rev.D69:095007,2004$$
\begin{aligned}
\alpha_{i}(Q) & =\frac{\alpha_{i}\left(Q_{0}\right)}{1+\hat{\Pi}_{i}(Q)-\hat{\Pi}_{i}\left(Q_{0}\right)} \quad \mathrm{i}=1,2,3 \\
\hat{\Pi}_{i}(Q) & =\frac{\alpha_{i}}{4 \pi} \sum_{p} \beta_{i}^{(p)}\left(L_{s(p)}\left(Q^{2} / m_{p}^{2}\right)+\cdots\right)
\end{aligned}
$$

"log-like" function:

$$
\eta_{p}=8 / 3,5 / 3,40 / 21
$$

$$
L_{s(p)} \approx \log \left(e^{\eta_{p}}+Q^{2} / m_{p}^{2}\right)
$$

For spin $s(p)=0,1 / 2$, and 1

Elegant and natural formalism for all threshold effects

Asymptotic Unification

Asymptotic Unification

Binger, sjb

- - Asymptotic Unification. The solid lines are the analytic $\overline{P T}$ effective couplings, while the dashed lines are the $\overline{D R}$ couplings. For illustrative purposes, $\alpha_{3}\left(M_{Z}\right)$ has been chosen so that unification occurs at a finite scale for $\overline{D R}$ and asymptotically for the $\overline{P T}$ couplings. Here $M_{S U S Y}=200 \mathrm{GeV}$ is the mass of all light superpartners except the wino and gluino which have values $\frac{1}{2} m_{\tilde{g}}=M_{S U S Y}=2 m_{\widetilde{w}}$. For illustrative purposes, we use $S U(5)$.

Production of four heavy-quark jets

time-like values not same as space-like coupling similar to "pinch" scheme complex for time-like argument

Future Directions

Gauge-invariant four gluon vertex

$$
\begin{aligned}
& L_{4}\left(p_{1}, p_{2}, p_{3}, p_{4}\right) \\
& Q_{4 e f f}^{2}\left(p_{1}, p_{2}, p_{3}, p_{4}\right)
\end{aligned}
$$

Hundreds of form factors!

The Gauge-Invariant Family of Green's Functions

Etc...

PT Self-Energy at Two-Loops

- Finite terms give relation between

$$
\alpha_{P T}\left(Q^{2}\right) \text { and } \alpha_{\overline{M S}}\left(Q^{2}\right)
$$

-3-loop beta function

- 2-loop longitudinal form factors of the three-gluon vertex (via the Ward ID)
- N=4 Supersymmetry gives a non-zero but UV finite contribution

PT Self-Energy at Two-Loops

Papavassiliou showed:

Future Directions

- Implement in Monte Carlo generator
- Gauge-invariant Standard Model triple gauge boson vertices
- Schwinger-Dyson Equations

Summary and Future

- Multi-scale analytic renormalization based on physical, gauge-invariant Green's functions
- Optimal improvement of perturbation theory with no scale-ambiguity since physical kinematic invariants are the arguments of the (multi-scale) couplings

Conventional renormalization scale-setting method:

- Guess arbitrary renormalization scale and take arbitrary range. Wrong for QED and Precision Electroweak.
- Prediction depends on choice of renormalization scheme
- Variation of result with respect to renormalization scale only sensitive to nonconformal terms; no information on genuine (conformal) higher order terms
- FAC and PMS give unphysical results.
- Renormalization scale not arbitrary: Analytic constraint from flavor thresholds

Features of BLM Scale Setting

On The Elimination Of Scale Ambiguities In Perturbative Quantum Chromodynamics.
Lepage, Mackenzie, sjb
Phys.Rev.D28:228,1983

- All terms associated with nonzero beta function summed into running coupling
- BLM Scale Q^{*} sets the number of active flavors
- Only n_{f} dependence required to determine renormalization scale at NLO
- Result is scheme independent: Q* has exactly the correct dependence to compensate for change of scheme
- Correct Abelian limit
- Resulting series identical to conformal series!
- Renormalon n! growth of PQCD coefficients from beta function eliminated!
- In general, BLM scale depends on all invariants

Use BLM!

- Satisfies Transitivity, all aspects of Renormalization Group; scheme independent
- Analytic at Flavor Thresholds
- Preserves Underlying Conformal Template
- Physical Interpretation of Scales; Multiple Scales
- Correct Abelian Limit $\left(\mathrm{N}_{\mathrm{C}}=0\right)$
- Eliminates unnecessary source of imprecision of PQCD predictions
- Commensurate Scale Relations: Fundamental Tests of QCD free of renormalization scale and scheme ambiguities
- BLM used in many applications, QED, LGTH, BFKL, ...

On Renormalons and the Structure of Perturbation Theory

Investigate the relation between :

1. Renormalons
2. BLM Scale Fixing
3. Effective Charges Running Inside of Loops

Laboratory : Higher order corrections to the quark propagator

(Gray, Broadhurst, Grafe, Schilcher and Chetyrkin, Steinhauser)

Relation between quark pole mass $\overline{M S}$ mass

On Renormalons and the Structure of Perturbation Theory

BLM Methods

- Predicts 3-loop term with an accuracy of 3-4\%
- Conformal term is very small

Not associated with running coupling

Expect that almost all of the loop corrections are "associated with" the running coupling

Seems to be very much in contrast to what we found using the RIA

Perhaps the success of BLM is not tied to a hypothetical skeleton expansion with running charges inside of loops

Factorization scale

$\mu_{\text {factorization }} \neq \mu_{\text {renormalization }}$

- Arbitrary separation of soft and hard physics
- Dependence on factorization scale not associated with beta function - present even in conformal theory
- Keep factorization scale separate from renormalization scale

$$
\frac{d \mathcal{O}}{d \mu_{\text {factorization }}}=0
$$

- Residual dependence when one works in fixed order in perturbation theory.

[^0]: M easurement of the strong coupling α_{S} from the four-jet rate in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation using J ADE data
 J. Schieck ${ }^{1, a}$, S. Bethke ${ }^{1}$, O. Biebel 2, S. Kluth ${ }^{1}$, P.A.M. Fernández ${ }^{3}$, C. Pahl ${ }^{1}$, Eur. Phys. J. C 48, 3-13 (2006) The JADE Collaboration ${ }^{\text {b }}$

