TEP Seminar

Optimal Renormalization Scales and Schemes for QCD

Stan Brodsky, SLAC

UCLA February 13, 2007

PHYSICAL REVIEW D 74, 054016 (2006)

Form factors of the gauge-invariant three-gluon vertex

Michael Binger* and Stanley J. Brodsky[†]

Heavy Quark Hadroproduction

3-gluon coupling depends on 3 physical scales

Renormalization Scale Setting

Stan Brodsky, SLAC

The Renormalization Scale Problem

 $\rho(Q^2) = C_0 + C_1 \alpha_s(\mu_R) + C_2 \alpha_s^2(\mu_R) + \cdots$

 $\mu_R^2 = CQ^2$

Is there a way to set the renormalization scale μ_R ?

What happens if there are multiple physical scales ?

Renormalization Scale Setting

Measurement of the strong coupling α_{S} from the four-jet rate in e^+e^- annihilation using JADE data

J. Schieck^{1,a}, S. Bethke¹, O. Biebel², S. Kluth¹, P.A.M. Fernández³, C. Pahl¹, The JADE Collaboration^b

Eur. Phys. J. C 48, 3–13 (2006)

Renormalization Scale Setting

Stan Brodsky, SLAC

Measurement of the strong coupling α_s from the four-jet rate in e⁺e⁻ annihilation using JADE data

J. Schieck^{1,a}, S. Bethke¹, O. Biebel², S. Kluth¹, P.A.M. Fernández³, C. Pahl¹, The JADE Collaboration^b

Eur. Phys. J. C 48, 3-13 (2006)

The theoretical uncertainty, associated with missing higher order terms in the theoretical prediction, is assessed by varying the renormalization scale factor x_{μ} . The predictions of a complete QCD calculation would be independent of x_{μ} , but a finite-order calculation such as that used here retains some dependence on x_{μ} . The renormalization scale factor x_{μ} is set to 0.5 and two. The larger deviation from the default value of $\alpha_{\rm S}$ is taken as systematic uncertainty.

> $\alpha_{\rm S}$ ($M_{\rm Z^0}$) and the χ^2 /d.o.f. of the fit to the four-jet rate as a function of the renormalization scale x_{μ} for $\sqrt{s} = 14$ GeV to 43.8 GeV. The arrows indicate the variation of the renormalization scale factor used for the determination of the systematic uncertainties

UCLA February 13, 2007

Renormalization Scale Setting

Conventional wisdom concerning scale setting

- Renormalization scale can be set to any value; e.g. $\mu_R = Q$
- Sensitivity to renormalization scale disappears at high order (only true if mass thresholds are incorporated)
- No optimal scale
- Ignore problem of multiple physical scales
- Accuracy of PQCD prediction can be judged by taking a range $Q/2 < \mu_R < 2Q$
- Factorization scale should be taken equal to renormalization scale $\mu_F = \mu_R$

All of these assumptions are fallacious

HEP in the LHC Era Valparaiso, Chile **QCD in the LHC Era**

Chao-Hsi Chang

Uncertainties in P-wave Bc Production due to factorization energy scale

The summed P_t distribution and y distribution of all the P-wave states for different factorization scale μ^2_F and renormalization scale μ^2 at LHC

The upper edge of the band corresponds to $\mu_F^2 = 4M_{Pt}^2$; $\mu^2 = M_{Pt}^2/4$; and the lower edge corresponds to that of $\mu_F^2 = M_{Pt}^2/4$; $\mu^2 = 4M_{Pt}^2$. The solid line, the dotted line and the dashed line corresponds to that of $\mu_F^2 = \mu^2 = M_{Pt}^2$; $\mu_F^2 = \mu^2 = 4M_{Pt}^2$; $\mu_F^2 = \mu^2 = M_{Pt}^2/4$.

Sept. 22, 2006

Sino-German workshop

Electron-Electron Scattering in QED

$$\mathcal{M}_{ee \to ee}(++;++) = \frac{8\pi s}{t} \alpha(t) + \frac{8\pi s}{u} \alpha(u)$$

Gell Mann-Low Effective Charge

Renormalization Scale Setting

UCLA February 13, 2007

QED Effective Charge $\alpha(t) = \frac{\alpha(0)}{1 - \Pi(t)}$

All-orders leptonic loop corrections to dressed photon propagator

 $\alpha(t) = \frac{\alpha(t_0)}{1 - \Pi(t, t_0)}$

Stan Brodsky, SLAC

UCLA February 13, 2007

9

Renormalization Scale Setting

QED One-Loop Vacuum Polarization

Renormalization Scale Setting

Stan Brodsky, SLAC

Electron-Electron Scattering in QED

$$\mathcal{M}_{ee \to ee}(++;++) = \frac{8\pi s}{t} \alpha(t) + \frac{8\pi s}{u} \alpha(u)$$

t

- Two separate physical scales.
- Gauge Invariant. Dressed photon propagator
- Sums all vacuum polarization, non-zero beta terms into running coupling.
- If one chooses a different scale, one must sum an infinite number of graphs -- but then recover same result!
- Number of active leptons correctly set
- Analytic: reproduces correct behavior at lepton mass thresholds

No renormalization scale ambiguity!

UCLA February 13, 2007

Stan Brodsky, SLAC

u

$$\beta_{\rm MS}(\alpha) = \sum_{i=1}^{4} \beta_i \left(\frac{\alpha}{4\pi}\right)^{i+1}$$

= $\frac{4}{3}N\left(\frac{\alpha}{4\pi}\right)^2 + 4N\left(\frac{\alpha}{4\pi}\right)^3 - (2N + \frac{44}{9}N^2)\left(\frac{\alpha}{4\pi}\right)^4$
- $\left\{46N + \left[-\frac{760}{27} + \frac{832}{9}\zeta(3)\right]N^2 + \frac{1232}{243}N^3\right\}\left(\frac{\alpha}{4\pi}\right)^5$

The analytic four-loop corrections to the QED β -function in the MS scheme and to the QED ψ -function. Total reevaluation

S.G. Gorishny¹, A.L. Kataev, S.A. Larin and L.R. Surguladze² Institute of Nuclear Research, Academy of Sciences of the USSR, SU-117 312 Moscow, USSR

Phys.Lett.B256:81-86,1991

Renormalization Scale Setting

Stan Brodsky, SLAC

Scale of $\alpha(\mu_r)$ unique !

 $M \propto \alpha(s)$

The QED Effective Charge

- Complex
- Analytic through mass thresholds
- Distinguishes between timelike and spacelike momenta

Analyticity essential!

Renormalization Scale Setting

$$M(e^+e^- \to e^+e^-) \propto \alpha(s)$$

Has correct analytic / unitarity thresholds for ${\rm Im}M$ at $s=4m_{\ell^+\ell^-}^2$

No other scale correct. If one chooses another scale, e.g.,

$$\mu_R^2 = 0.9s,$$

then must resum infinite number of vacuum polarization diagrams.

Recover $\alpha(s)$.

Renormalization Scale Setting

Lessons from QED : Summary

- Effective couplings are complex analytic functions with the correct threshold structure expected from unitarity
- Multiple "renormalization" scales appear
- The scales are unambiguous since they are physical kinematic invariants
- Optimal improvement of perturbation theory

The Renormalization Scale Problem

- No renormalization scale ambiguity in QED
- Gell Mann-Low QED Coupling can be defined from physical observable
- Sums all Vacuum Polarization Contributions
- Recover conformal series
- Renormalization Scale in QED scheme: Identical to Photon Virtuality
- Analytic: Reproduces lepton-pair thresholds
- Examples: muonic atoms, g-2, Lamb Shift Gyulassy: Higher Order VP verified to 0.1% precision in μ Pb
- Time-like and Space-like QED Coupling related by analyticity
- Uses Dressed Skeleton Expansion

Renormalization Scale Setting 16

Stan Brodsky, SLAC

Example in QED: Muonic Atoms

Scale is unique: Tested to ppm

HEP in the LHC Era Valparaiso, Chile **QCD in the LHC Era**

Stan Brodsky, SLAC

17

Quantum Chromodynamics

QCD Lagrangían

Yang Mills Gauge Principle: Color Rotation and Phase Invariance at Every Point of Space and Time Scale-Invariant Coupling Renormalizable Conformal Template Asymptotic Freedom Color Confinement

Fundamental Couplings

Only quarks and gluons involve basic vertices: Quark-gluon vertex

QCD

Renormalization Scale Setting

Stan Brodsky, SLAC

Verification of Asymptotic Freedom

Ratio of rate for $e^+e^- \rightarrow q\bar{q}g$ to $e^+e^- \rightarrow q\bar{q}$ at $Q = E_{CM} = E_{e^-} + E_{e^+}$

UCLA February 13, 2007

Renormalization Scale Setting

Renormalization Scale Setting

Stan Brodsky, SLAC

QCD Lagrangían

$$\lim N_C \to 0 \text{ at fixed } \alpha = C_F \alpha_s, n_\ell = n_F / C_F \qquad [C_F = \frac{N_C^2 - 1}{2N_C}]$$

Analytic limit of QCD: Abelian Gauge Theory

P. Huet, sjb

Renormalization Scale Setting

Stan Brodsky, SLAC

$\lim N_C \to 0$ at fixed $\alpha = C_F \alpha_s, n_\ell = n_F/C_F$

QCD → Abelian Gauge Theory

Analytic Feature of SU(Nc) Gauge Theory

Scale-Setting procedure for QCD must be applicable to QED

Renormalization Scale Setting

Stan Brodsky, SLAC

IR Fixed Point for QCD?

- Dyson-Schwinger Analysis: QCD coupling (mom scheme) has IR Fixed point! Alkofer, Fischer, von Smekal et al.
- Lattice Gauge Theory
- Define coupling from observable, indications of IR fixed point for QCD effective charges
- Confined gluons and quarks: Decoupling of QCD vacuum polarization at small Q²
- Justifies application of AdS/CFT in strong-coupling conformal window

Renormalization Scale Setting

Infrared-Finite QCD Coupling?

Lattice simulation (MILC)

Furui, Nakajima DSE: Alkofer, Físcher, von Smekal et al.

Renormalization Scale Setting

Stan Brodsky, SLAC

UCLA February 13, 2007

26

Define QCD Coupling from Observable Grunberg

$$R_{e^+e^- \to X}(s) \equiv 3\Sigma_q e_q^2 \left[1 + \frac{\alpha_R(s)}{\pi}\right]$$

$$\Gamma(\tau \to X e \nu)(m_{\tau}^2) \equiv \Gamma_0(\tau \to u \bar{d} e \nu) \times [1 + \frac{\alpha_{\tau}(m_{\tau}^2)}{\pi}]$$

Commensurate scale relations: Relate observable to observable at commensurate scales

Effective Charges: analytic at quark mass thresholds, finite at small momenta H.Lu, Rathsman, sjb

Renormalization Scale Setting

UCLA February 13, 2007

Renormalization Scale Setting

Stan Brodsky, SLAC

Conformal symmetry: Template for QCD

- Take conformal symmetry as initial approximation; then correct for non-zero beta function and quark masses
- Eigensolutions of ERBL evolution equation for distribution amplitudes
 V. Braun et al; Frishman, Lepage, Sachrajda, sjb
- Commensurate scale relations: relate observables at corresponding scales: Generalized Crewther Relation
- Use AdS/CFT

Renormalization Scale Setting

UCLA February 13, 2007

29

New Perspectives for QCD from AdS/CFT

- LFWFs: Fundamental description of hadrons at amplitude level
- Holographic Model from AdS/CFT : Confinement at large distances and conformal behavior at short distances
- Model for LFWFs, meson and baryon spectra: many applications!
- New basis for diagonalizing Light-Front Hamiltonian
- Physics similar to MIT bag model, but covariant. No problem with support 0 < x < 1.
- Quark Interchange dominant force at short distances

Renormalization Scale Setting

On the elimination of scale ambiguities in perturbative quantum chromodynamics

Stanley J. Brodsky

Institute for Advanced Study, Princeton, New Jersey 08540 and Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305*

G. Peter Lepage

Institute for Advanced Study, Princeton, New Jersey 08540 and Laboratory of Nuclear Studies, Cornell University, Ithaca, New York 14853*

> Paul B. Mackenzie Fermilab, Batavia, Illinois 60510 (Received 23 November 1982)

We present a new method for resolving the scheme-scale ambiguity that has plagued perturbative analyses in quantum chromodynamics (QCD) and other gauge theories. For Abelian theories the method reduces to the standard criterion that only vacuum-polarization insertions contribute to the effective coupling constant. Given a scheme, our procedure automatically determines the couplingconstant scale appropriate to a particular process. This leads to a new criterion for the convergence of perturbative expansions in QCD. We examine a number of well known reactions in QCD, and find that perturbation theory converges well for all processes other than the gluonic width of the Υ . Our analysis calls into question recent determinations of the QCD coupling constant based upon Υ decay.

Renormalization Scale Setting

Stan Brodsky, SLAC

UCLA February 13, 2007

31

BLM Scale Setting

$$\begin{split} \rho = C_0 \alpha_{\overline{\mathrm{MS}}}(Q) \left[1 + \frac{\alpha_{\overline{\mathrm{MS}}}(Q)}{\pi} (-\frac{3}{2}\beta_0 A_{\mathrm{VP}} + \frac{33}{2}A_{\mathrm{VP}} + B) \\ + \cdots \right] & n_{\mathrm{f}} \text{ dependent} \\ \mathrm{coefficient} \text{ identifies} \\ \mathrm{opert} \text{ operation} \text{$$

where

Conformal coefficient - independent of β

$$Q^* = Q \exp(3A_{VP})$$
,
 $C_1^* = \frac{33}{2}A_{VP} + B$.

The term $33A_{VP}/2$ in C_1^* serves to remove that part of the constant *B* which renormalizes the leading-order coupling. The ratio of these gluonic corrections to the light-quark corrections is fixed by $\beta_0 = 11 - \frac{2}{3}n_f$. Use skeleton expansion: Gardi, Grunberg, Rathsman, sjb

Renormalization Scale Setting

Stan Brodsky, SLAC

Renormalization Scale Setting

Stan Brodsky, SLAC

Deep-inelastic scattering. The moments of the nonsinglet structure function $F_2(x,Q^2)$ obey the evolution equation

$$Q^{2} \frac{d}{dQ^{2}} \ln M_{n}(Q^{2})$$

$$= -\frac{\gamma_{n}^{(0)}}{8\pi} \alpha_{\overline{\mathrm{MS}}}(Q) \left[1 + \frac{\alpha_{\overline{\mathrm{MS}}}}{4\pi} \frac{2\beta_{0}\beta_{n} + \gamma_{n}^{(1)}}{\gamma_{n}^{(0)}} + \cdots \right]$$

$$\to -\frac{\gamma_{n}^{(0)}}{8\pi} \alpha_{\overline{\mathrm{MS}}}(Q_{n}^{*}) \left[1 - \frac{\alpha_{\overline{\mathrm{MS}}}(Q_{n}^{*})}{\pi} C_{n} + \cdots \right],$$

where, for example,

$$Q_2^* = 0.48Q, \quad C_2 = 0.27,$$

 $Q_{10}^* = 0.21Q, \quad C_{10} = 1.1.$

For *n* very large, the effective scale here becomes $Q_n^* \sim Q/\sqrt{n}$

BLM scales for DIS moments

Renormalization Scale Setting

Stan Brodsky, SLAC

$$V(Q^{2}) = -\frac{C_{F}4\pi\alpha_{\overline{\mathrm{MS}}}(Q)}{Q^{2}} \left[1 + \frac{\alpha_{\overline{\mathrm{MS}}}}{\pi} (\frac{5}{12}\beta_{0} - 2) + \cdots \right]$$
$$\rightarrow -\frac{C_{F}4\pi\alpha_{\overline{\mathrm{MS}}}(Q^{*})}{Q^{2}} \left[1 - \frac{\alpha_{\overline{\mathrm{MS}}}(Q^{*})}{\pi} 2 + \cdots \right],$$

where $Q^* = e^{-5/6}$ $Q \cong 0.43Q$. This result shows that the effective scale of the $\overline{\text{MS}}$ scheme should generally be about half of the true momentum transfer occurring in the interaction. In parallel to QED, the effective potential $V(Q^2)$ gives a particularly intuitive scheme for defining the QCD coupling constant

$$V(Q^2) \equiv -\frac{4\pi C_F \alpha_v(Q)}{Q^2}$$

Similar to PT scheme

Renormalization Scale Setting

Features of BLM Scale Setting

On The Elimination Of Scale Ambiguities In Perturbative Quantum Chromodynamics. Lepage, Mackenzie, sjb Phys.Rev.D28:228,1983

- All terms associated with nonzero beta function summed into running coupling
- Identical procedure in QED
- Resulting series identical to conformal series
- Renormalon n! growth of PQCD coefficients from beta function eliminated!
- In general, BLM scale depends on all invariants

Three-Jet Rate

Kramer & Lampe

The scale μ/\sqrt{s} according to the BLM (dashed-dotted), PMS (dashed), FAC (full), and \sqrt{y} (dotted) procedures for the three-jet rate in e^+e^- annihilation, as computed by Kramer and Lampe [10]. Notice the strikingly different behavior of the BLM scale from the PMS and FAC scales at low y. In particular, the latter two methods predict increasing values of μ as the jet invariant mass $\mathcal{M} < \sqrt{(ys)}$ decreases.

Rathsman

Other Jet Observables:

Renormalization Scale Setting Stan 1

UCLA February 13, 2007

37

Example of Multiple BLM Scales

Angular distributions of massive quarks and leptons close to threshold.

Renormalization Scale Setting

38

Stan Brodsky, SLAC

Example of Multiple BLM Scales

Angular distributions of massive quarks and leptons close to threshold.

S.J. Brodsky (SLAC), A.H. Hoang (Karlsruhe U., TTP), Johann H. Kuhn (SLAC & Karlsruhe U., TTP), T. Teubner (Karlsruhe U., TTP). SLAC-PUB-6955, SLAC-PUB-95-6955, TTP-95-26, Jul 1995. 13pp. Published in Phys.Lett.B359:355-361,1995.

e-Print Archive: hep-ph/9508274

$$A = \frac{|G_m|^2 - (1 - \beta^2)|G_e|^2}{|G_m|^2 + (1 - \beta^2)|G_e|^2} \qquad A = \frac{\tilde{A}}{1 - \tilde{A}}$$

$$\frac{\mathrm{d}\,\sigma(\mathrm{e}^+\mathrm{e}^-\to\mathrm{f}\overline{\mathrm{f}})}{\mathrm{d}\,\Omega} = \frac{\alpha^2\,Q_f^2\,\beta}{4\,s} \left[\frac{4\,m^2}{s}\,|G_e|^2\,\sin^2\theta + |G_m|^2\,(1+\cos^2\theta)\right]$$

$$\widetilde{A} = \frac{\beta^2}{2} \frac{\left(1 - 4 \frac{\alpha_{\rm V}(m^2 e^{7/6})}{\pi}\right)}{\left(1 - \frac{16}{3} \frac{\alpha_{\rm V}(m^2 e^{3/4})}{\pi}\right)} \frac{1 - e^{-x_s}}{1 - e^{-x'_s}} \frac{\alpha_{\rm V}(4 m^2 \beta^2/e)}{\alpha_{\rm V}(4 m^2 \beta^2)}$$

$$x_s = \frac{4\pi}{3} \frac{\alpha_V(4m^2\beta^2)}{\beta}, \qquad x'_s = \frac{4\pi}{3} \frac{\alpha_V(4m^2\beta^2/e)}{\beta}.$$

Renormalization Scale Setting

Stan Brodsky, SLAC

UCLA February 13, 2007

Relate Observables to Each Other

- Eliminate intermediate scheme
- No scale ambiguity
- Transitive!
- Commensurate Scale Relations
- Example: Generalized Crewther Relation

Renormalization Scale Setting

UCLA February 13, 2007

40

$$\begin{split} \frac{\alpha_R(Q)}{\pi} &= \frac{\alpha_{\overline{\mathrm{MS}}}(Q)}{\pi} + \left(\frac{\alpha_{\overline{\mathrm{MS}}}(Q)}{\pi}\right)^2 \left[\left(\frac{41}{8} - \frac{11}{3}\zeta_3\right) C_A - \frac{1}{8}C_F + \left(-\frac{11}{12} + \frac{2}{3}\zeta_3\right) f \right] \\ &\quad + \left(\frac{\alpha_{\overline{\mathrm{MS}}}(Q)}{\pi}\right)^3 \left\{ \left(\frac{90445}{2592} - \frac{2737}{108}\zeta_3 - \frac{55}{18}\zeta_5 - \frac{121}{432}\pi^2\right) C_A^2 + \left(-\frac{127}{48} - \frac{143}{12}\zeta_3 + \frac{55}{3}\zeta_5\right) C_A C_F - \frac{23}{32}C_F^2 \right. \\ &\quad + \left[\left(-\frac{970}{81} + \frac{224}{27}\zeta_3 + \frac{5}{9}\zeta_5 + \frac{11}{108}\pi^2\right) C_A + \left(-\frac{29}{96} + \frac{19}{6}\zeta_3 - \frac{10}{3}\zeta_5\right) C_F \right] f \\ &\quad + \left(\frac{151}{162} - \frac{19}{27}\zeta_3 - \frac{1}{108}\pi^2\right) f^2 + \left(\frac{11}{144} - \frac{1}{6}\zeta_3\right) \frac{d^{abc}d^{abc}}{C_F d(R)} \frac{\left(\sum_f Q_f\right)^2}{\sum_f Q_f^2} \right\}. \end{split}$$

$$\begin{split} \frac{\alpha_{g_1}(Q)}{\pi} &= \frac{\alpha_{\overline{\mathrm{MS}}}(Q)}{\pi} + \left(\frac{\alpha_{\overline{\mathrm{MS}}}(Q)}{\pi}\right)^2 \left[\frac{23}{12}C_A - \frac{7}{8}C_F - \frac{1}{3}f\right] \\ &+ \left(\frac{\alpha_{\overline{\mathrm{MS}}}(Q)}{\pi}\right)^3 \left\{ \left(\frac{5437}{648} - \frac{55}{18}\zeta_5\right)C_A^2 + \left(-\frac{1241}{432} + \frac{11}{9}\zeta_3\right)C_A C_F + \frac{1}{32}C_F^2 \right. \\ &+ \left[\left(-\frac{3535}{1296} - \frac{1}{2}\zeta_3 + \frac{5}{9}\zeta_5\right)C_A + \left(\frac{133}{864} + \frac{5}{18}\zeta_3\right)C_F \right]f + \frac{115}{648}f^2 \right\}. \end{split}$$

Eliminate MSbar, Find Amazing Simplification

Renormalization Scale Setting

Stan Brodsky, SLAC

$$R_{e^+e^-}(Q^2) \equiv 3 \sum_{\text{flavors}} e_q^2 \left[1 + \frac{\alpha_R(Q)}{\pi} \right].$$
$$\int_0^1 dx \left[g_1^{ep}(x, Q^2) - g_1^{en}(x, Q^2) \right] \equiv \frac{1}{3} \left| \frac{g_A}{g_V} \right| \left[1 - \frac{\alpha_{g_1}(Q)}{\pi} \right]$$
$$\frac{\alpha_{g_1}(Q)}{\pi} = \frac{\alpha_R(Q^*)}{\pi} - \left(\frac{\alpha_R(Q^{**})}{\pi} \right)^2 + \left(\frac{\alpha_R(Q^{***})}{\pi} \right)^3$$

Geometric Series in Conformal QCD

Generalized Crewther Relation

add Light-by-Light

Lu, Kataev, Gabadadze, Sjb

Renormalization Scale Setting

Stan Brodsky, SLAC

UCLA February 13, 2007

Lu, Kataev, Gabadadze, Sjb

Generalized Crewther Relation. $[1 + \frac{\alpha_R(s^*)}{\pi}][1 - \frac{\alpha_{g_1}(q^2)}{\pi}] = 1$ $\sqrt{s^*} \simeq 0.52Q$

Conformal relation true to all orders in perturbation theory No radiative corrections to axial anomaly Nonconformal terms set relative scales (BLM) Analytic matching at quark thresholds No renormalization scale ambiguity!

Renormalization Scale Setting

Stan Brodsky, SLAC

UCLA February 13, 2007

kenormalization scale setting

Transitivity Property of Renormalization Group

 $A \rightarrow C$ $C \rightarrow B$ identical to $A \rightarrow B$

Relation of observables independent of intermediate scheme C

Renormalization Scale Setting

Stan Brodsky, SLAC

stan Brodsky, SLAC

UCLA February 13, 2007

Transitivity of the renormalization group implies predictions for a physical observable \mathcal{O} cannot depend on choice of intermediate renormalization scheme,

e.g., choice of
$$lpha_{\overline{MS}}$$
 or $lpha_{mom}.$

$$\frac{d\mathcal{O}}{d\mu_{\rm scheme}} = 0$$

not

$$\frac{d\mathcal{O}}{d\mu_{\text{renormalization}}} = 0$$

Renormalization Scale Setting

Stan Brodsky, SLAC

UCLA February 13, 2007

Leading Order Commensurate Scales

Translation between schemes at LO

UCLA February 13, 2007

Renormalization Scale Setting

Stan Brodsky, SLAC

Use Physical Scheme to Characterize QCD Coupling

- Use Observable to define QCD coupling or Pinch Scheme
- Analytic: Smooth behavior as one crosses new quark threshold
- New perspective on grand unification

Renormalization Scale Setting

Conformal symmetry: Template for QCD

- Initial approximation to PQCD; then correct for non-zero beta function and quark masses
- Commensurate scale relations: relate observables at corresponding scales: Generalized Crewther Relation
- Arguments for Infrared fixed-point for α_{s}

Alhofer, et al.

- Effective Charges: analytic at quark mass thresholds, finite at small momenta
- Eigensolutions of Evolution Equation of distribution amplitudes

Renormalization Scale Setting

UCLA February 13, 2007

Analyticity and Mass Thresholds

 $M\!S$ does not have automatic decoupling of heavy particles

Must define a set of schemes in each desert region and match $\alpha_s^{(f)}(M_O) = \alpha_s^{(f+1)}(M_O)$

- The coupling has discontinuous derivative at the matching point
- At higher orders the coupling itself becomes discontinuous!
- Does not distinguish between spacelike and timelike momenta

"AN ANALYTIC EXTENSION OF THE MS-BAR RENORMALIZATION SCHEME" S. Brodsky, M. Gill, M. Melles, J. Rathsman. **Phys.Rev.D58:116006,1998**

Renormalization Scale Setting

Unification in Physical Schemes

- Smooth analytic threshold behavior with automatic decoupling
- More directly reflects the unification of the forces
- Higher "unification" scale than usual

Renormalization Scale Setting

Binger, sjb

General Structure of the Three-Gluon Vertex

3 index tensor $\hat{\Gamma}_{\mu_1\mu_2\mu_3}$ built out of $\mathcal{G}_{\mu\nu}$ and p_1, p_2, p_3 with $p_1 + p_2 + p_3 = 0$

14 basis tensors and form factors

Renormalization Scale Setting

The Pinch Technique

UCLA February 13, 2007

Renormalization Scale Setting

Pinch Scheme (PT)

- J. M. Cornwall, Phys. Rev. D 26, 345 (1982)
- Equivalent to Background Field Method in Feynman guage
- Effective Lagrangian Scheme of Kennedy & Lynn
- Rearrange Feynman diagrams to satisfy Ward Identities
- Longitudinal momenta from triple-gluon coupling, etc. hit vertices which cancel ("pinch") propagators
- Two-point function: Uniqueness, analyticity, unitarity, optical theorem
- Defines analytic coupling with smooth threshold behavior

Pínch Scheme -- Effective Charge

Renormalization Scale Setting 56

Stan Brodsky, SLAC

3 Gluon Vertex In Scattering Amplitudes

Pinch-Technique approach :

fully dress with gauge-invariant Green's functions

UCLA February 13, 2007

Renormalization Scale Setting

The Gauge Invariant Three Gluon Vertex

UCLA February 13, 2007

Renormalization Scale Setting

58

Multi-scale Renormalization of the Three-Gluon Vertex

Renormalization Scale Setting

Stan Brodsky, SLAC

UCLA February 13, 2007

General Structure of the Three-Gluon Vertex

Simple (QED-like) Ward ID

$$p_{3}^{\mu_{3}}\hat{\Gamma}_{\mu_{1}\mu_{2}\mu_{3}}(p_{1},p_{2},p_{3}) = t_{\mu_{1}\mu_{2}}(p_{2})\left[1+\hat{\Pi}(p_{2})\right] - t_{\mu_{1}\mu_{2}}(p_{1})\left[1+\hat{\Pi}(p_{1})\right]$$

where $t_{\mu\nu}(p) = p^{2}g_{\mu\nu} - p_{\mu}p_{\nu}$

One form factor always = 0 13 nonzero form factors (not obvious)

Stan Brodsky, SLAC

Renormalization Scale Setting

3 Gluon Vertex In Scattering Amplitudes

Amplitude = $color \times vertices \times g(a)g(b)g(c)$ $\times g_{bare} \left[(1 + A_0)\hat{t}_0 + A_+\hat{t}_+ + A_-\hat{t}_- + H\hat{h} \right]$ $\widetilde{g}(a,b,c)$ Other tensors and form factors Tree level tensor structure : $\hat{t}_0 = (p_1 - p_2)^{\mu_3} g^{\mu_1 \mu_2} + (p_2 - p_3)^{\mu_1} g^{\mu_2 \mu_3} + (p_3 - p_1)^{\mu_2} g^{\mu_3 \mu_1}$ Form factors A_0, A_+, A_-, H depend on these $\begin{cases} a = p_1^2 \\ b = p_2^2 \\ c = p_3^2 \end{cases}$ 37

Stan Brodsky, SLAC

UCLA February 13, 2007

Renormalization Scale Setting 61

Convenient Tensor Bases

Physical + Basis

• Written in terms of linear combinations of momenta called "+" and "-" momenta such that $p_+ \cdot V_{ext} = 0$

by elementary Ward IDs

- Maximum # of FF's vanish when in a physical matrix element
- Good for real scattering
 problems

LT Basis

• Longitudinal (L) FF's :

$$p_{3}^{\mu_{3}} \cdot \hat{\Gamma}_{\mu_{1}\mu_{2}\mu_{3}}^{(L)}(p_{1},p_{2},p_{3}) \neq 0$$

• Transverse (T) FF's :

$$p_{3}^{\mu_{3}} \cdot \hat{\Gamma}_{\mu_{1}\mu_{2}\mu_{3}}^{(T)}(p_{1}, p_{2}, p_{3}) = 0$$

 Good for theoretical work and solving Ward ID

Complementary in their relation to current conservation (Ward ID's) 24

Renormalization Scale Setting

Stan Brodsky, SLAC

Form Factors : Supersymmetric Relations

• Any form factor can be decomposed :

$$F = C_A F_G + 2\sum_f T_f F_Q + 2\sum_s T_s F_s$$

- G = gluons Q = quarks S = scalars C_A, T_f, T_s are color factors
- Individually, F_G, F_Q, F_S are complicated...

Renormalization Scale Setting

Stan Brodsky, SLAC

UCLA February 13, 2007

Form Factors : Supersymmetric Relations (Massless)

....but certain linear sums are simple :

$$\Sigma_{QG}(F) \equiv \frac{d-2}{2}F_Q + F_G \longrightarrow 0 \quad \text{for 7 of the 13 FF's} \\ (\text{in physical basis}) \\ \pm$$

Simple N=1 SUSY contribution in d=4

$$F_G + 4F_O + (10 - d)F_S = 0$$
 For all FF's !!

N=4 SUSY in d=4 gives 0

These are off-shell generalizations of relations found in SUSY scattering amplitudes by Z. Bern, L.J. Dixon, D.C. Dunbar, and D.A. Kosower (NPB 425,435)

Vanishing contribution of the N=4 supermutiplet in d=4 dimensions

Renormalization Scale Setting

Stan Brodsky, SLAC

Form Factors : Consequences of Supersymmetric Relations

For any SUSY each of the 13 FF's are $\propto \beta_0$ even though only one FF is directly related to coupling renormalization

$$\beta_0(d) = \frac{7d - 6}{2(d - 1)} C_A - \frac{2(d - 2)}{d - 1} \sum_f T_f - \frac{1}{d - 1} \sum_f T_s$$

$$\xrightarrow{d = 4} \frac{11}{3} C_A - \frac{4}{3} T_f - \frac{1}{3} T_s$$

Contributions of gluons, quarks, and scalars have same functional form ³³

Renormalization Scale Setting

65

Form Factors Without Supersymmetry (in d=4)

Seven FF's have $\Sigma_{QG}(F) = 0 \implies F = \left(N_c - N_f + \frac{1}{2}N_s\right)F_G$

FF of tree level tensor

 $A_{0} \propto \left(\frac{11}{3}N_{c} - \frac{2(3d-8)}{3(d-2)}\sum_{f}T_{f} - \frac{2}{3(d-2)}\sum_{s}T_{s}\right)$ $\xrightarrow{d=4} \left(\frac{11}{3}N_{c} - \frac{4}{3}T_{f} - \frac{1}{3}T_{s}\right) = \beta_{0}$

Another FF has $B_0 \propto (4N_c - N_f)$ $B_0(S) = 0$

Renormalization Scale Setting 66

Stan Brodsky, SLAC

Form Factors : Supersymmetric Relations (Massive)

Equal masses for massive gauge bosons (MG), quarks (MQ), and scalars (MS)

$$F_{MG} + 4F_{MQ} + (9 - d)F_{MS} = 0$$

$$1 \text{ d.o.f. "eaten" by MG}$$

Massive gauge boson (MG) inside of loop might be the X and Y gauge bosons of SU(5), for example

External gluons remain unbroken and massless

$$\Sigma_{MQG}(F) \equiv \frac{d-1}{2} F_{MQ} + F_{MG} \quad \text{ is simple}$$

Renormalization Scale Setting 67

Stan Brodsky, SLAC

Summary of Supersymmetric Relations

Massless	Massive
$F_G + 4F_Q + (10 - d)F_S = 0$	$F_{MG} + 4F_{MQ} + (9 - d)F_{MS} = 0$
$\Sigma_{QG}(F) \equiv \frac{d-2}{2}F_Q + F_G$	$\Sigma_{MQG}(F) \equiv \frac{d-1}{2} F_{MQ} + F_{MG}$
= simple	= simple

Stan Brodsky, SLAC

Renormalization Scale Setting 68

3 Scale Effective Charge

$$\widetilde{\alpha}(a,b,c) \equiv \frac{\widetilde{g}^2(a,b,c)}{4\pi}$$

(First suggested by H.J. Lu)

$$\frac{1}{\widetilde{\alpha}(a,b,c)} = \frac{1}{\alpha_{bare}} + \frac{1}{4\pi} \beta_0 \left(L(a,b,c) - \frac{1}{\varepsilon} + \cdots \right)$$
$$\frac{1}{\widetilde{\alpha}(a,b,c)} = \frac{1}{\widetilde{\alpha}(a_0,b_0,c_0)} + \frac{1}{4\pi} \beta_0 \left[L(a,b,c) - L(a_0,b_0,c_0) \right]$$

L(a,b,c) = 3-scale "log-like" function L(a,a,a) = log(a)

69

Renormalization Scale Setting

Stan Brodsky, SLAC

3 Scale Log-Like Function

$$L(a,b,c) = \frac{1}{K} \left(\alpha \gamma \log a + \alpha \beta \log b + \beta \gamma \log c - abc \overline{J}(a,b,c) \right) + \Omega$$

$$\mathbf{K} = \alpha \beta + \beta \gamma + \gamma \alpha$$

$$\alpha = p_1 \cdot p_2 = \frac{1}{2}(c - a - b)$$

$$\beta = p_2 \cdot p_3 = \frac{1}{2}(a - b - c)$$

 $\gamma = p_3 \cdot p_1 = \frac{1}{2}(b - c - a)$

Master triangle integral can be written in terms of Clausen functions

$$Cl_2(\theta) = \mathrm{Im}Li_2(e^{i\theta})$$

 $a = p_1^2$

 $b = p_2^2$

 $c = p_3^2$

 $\Omega \approx 3.125$

Renormalization Scale Setting

Stan Brodsky, SLAC

UCLA February 13, 2007

3 Scale Effective Scale

$$L(a,b,c) \equiv \log(Q_{eff}^2(a,b,c)) + i \operatorname{Im} L(a,b,c)$$

Governs strength of the three-gluon vertex

$$\frac{1}{\widetilde{\alpha}(a,b,c)} = \frac{1}{\widetilde{\alpha}(a_0,b_0,c_0)} + \frac{1}{4\pi} \beta_0 [L(a,b,c) - L(a_0,b_0,c_0)]$$
$$\hat{\Gamma}_{\mu_1\mu_2\mu_3} \propto \sqrt{\widetilde{\alpha}(a,b,c)}$$

Generalization of BLM Scale to 3-Gluon Vertex

Renormalization Scale Setting

Stan Brodsky, SLAC

Properties of the Effective Scale

$$\begin{aligned} Q_{eff}^{2}(a,b,c) &= Q_{eff}^{2}(-a,-b,-c) \\ Q_{eff}^{2}(\lambda a,\lambda b,\lambda c) &= |\lambda| Q_{eff}^{2}(a,b,c) \\ Q_{eff}^{2}(a,a,a) &= |a| \\ Q_{eff}^{2}(a,-a,-a) &\approx 5.54 |a| \\ Q_{eff}^{2}(a,-a,-a) &\approx 5.54 |a| \\ Q_{eff}^{2}(a,-a,c) &\approx 3.08 |c| \quad \text{for } |a| >> |c| \\ Q_{eff}^{2}(a,-a,c) &\approx 22.8 |c| \quad \text{for } |a| >> |c| \\ Q_{eff}^{2}(a,b,c) &\approx 22.8 \frac{|bc|}{|a|} \quad \text{for } |a| >> |b|, |c| \end{aligned}$$

Surprising dependence on Invariants

Renormalization Scale Setting

H.J.Lu

 $\mu_R^2 \simeq \frac{p_{min}^2 p_{med}^2}{p_{max}^2}$

Renormalization Scale Setting

Stan Brodsky, SLAC

UCLA February 13, 2007

UCLA February 13, 2007

Renormalization Scale Setting

75

Stan Brodsky, SLAC

The Effective Scale

UCLA February 13, 2007

Renormalization Scale Setting

76

Mass Effects

Calculated for all form factors

SUSY relations $F_{MG} + 4F_{MQ} + (9-d)F_{MS} = 0$

FF of tree level tensor structure

Massive "log-like" function : $L_{MQ}\left(\frac{a}{M^2}, \frac{b}{M^2}, \frac{c}{M^2}\right)$

$$L_{MQ}\left(\frac{a}{M^{2}}, \frac{b}{M^{2}}, \frac{c}{M^{2}}\right) \approx 5.125 \text{ for } M^{2} >> |a|, |b|, |c|$$
$$L_{MQ}\left(\frac{a}{M^{2}}, \frac{b}{M^{2}}, \frac{c}{M^{2}}\right) \approx L(a, b, c) - \log M^{2} \text{ for } M^{2} << |a|, |b|, |c|$$
46

Renormalization Scale Setting

Stan Brodsky, SLAC

Massive Log-Like Function

$$L_{MQ}\left(\frac{a}{M^{2}}, \frac{b}{M^{2}}, \frac{c}{M^{2}}\right) = \frac{1}{K}\left(\alpha\gamma\Lambda(a) + \alpha\beta\Lambda(b) + \beta\gamma\Lambda(c) - abc\overline{J_{M}}(a, b, c)\right) + \Omega$$
$$+ 2M^{2}\left(\frac{\Lambda(a) - 2}{a} + \frac{\Lambda(b) - 2}{b} + \frac{\Lambda(c) - 2}{c} - \overline{J_{M}}(a, b, c)\right)$$
$$\Lambda(a) = \begin{cases} 2\nu \tanh^{-1}\left(\nu^{-1}\right) \\ 2\overline{\nu} \tan^{-1}\left(\overline{\nu^{-1}}\right) \\ 2\nu \tanh^{-1}(\nu) - i\nu\pi \end{cases} \quad \text{for } \begin{cases} a < 0 \\ 0 < a < 4M^{2} \\ a > 4M^{2} \end{cases}$$
$$\underset{V = \sqrt{1 - \frac{4M^{2}}{a}} \qquad \overline{\nu} = \sqrt{\frac{4M^{2}}{a} - 1} \end{cases}$$
$$\overset{\text{Massive Master Triangle Integral (very complicated)}$$

UCLA February 13, 2007

Renormalization Scale Setting 78

Symmetric Spacelike

Renormalization Scale Setting

Stan Brodsky, SLAC

UCLA February 13, 2007

Effective Number of Flavors

$$N_F\left(\frac{a}{M^2}, \frac{b}{M^2}, \frac{c}{M^2}\right) = -\frac{d}{d\log M^2} L_{MQ}\left(\frac{a}{M^2}, \frac{b}{M^2}, \frac{c}{M^2}\right)$$

Renormalization Scale Setting 80 Stan Brodsky, SLAC

Symmetric Timelike

$$L_{MQ}\left(\frac{a}{M^{2}}, \frac{a}{M^{2}}, \frac{a}{M^{2}}\right)$$
Singularities: anometers

Renormalization Scale Setting 81 Stan Brodsky, SLAC

UCLA February 13, 2007

25

Singularities: anomalous thresholds

Symmetric Mixed Signature

UCLA February 13, 2007

Renormalization Scale Setting 82

Heavy Quark Hadro-production

- Preliminary calculation using (massless) results for tree level form factor
- Very low effective scale

much larger cross section than \overline{MS} with scale $\mu_R = M_{Q\overline{Q}}$ or M_Q

• Future : repeat analysis using the full massdependent results and include all form factors

Expect that this approach accounts for most of the one-loop corrections

Renormalization Scale Setting

Stan Brodsky, SLAC

UCLA February 13, 2007

Use Physical Scheme to Characterize QCD Coupling

- Use Observable to define QCD coupling or Pinch Scheme
- Analytic: Smooth behavior as one crosses new quark threshold
- New perspective on grand unification

Binger, Sjb

Unification in Physical Schemes

"PHYSICAL RENORMALIZATION SCHEMES AND GRAND UNIFICATION" M.B. and Stanley J. Brodsky. **Phys.Rev.D69:095007,2004**

$$\alpha_{i}(Q) = \frac{\alpha_{i}(Q_{0})}{1 + \hat{\Pi}_{i}(Q) - \hat{\Pi}_{i}(Q_{0})}$$
 i=1,2,3
$$\hat{\Pi}_{i}(Q) = \frac{\alpha_{i}}{4\pi} \sum_{p} \beta_{i}^{(p)} \left(L_{s(p)}(Q^{2} / m_{p}^{2}) + \cdots \right)$$

"log-like" function:

 $L_{s(p)} \approx \log(e^{\eta_p} + Q^2 / m_p^2)$

$$\eta_p = 8/3, 5/3, 40/21$$

For spin s(p) = 0, ½, and 1

Elegant and natural formalism for all threshold effects

85

Binger, sjb

UCLA February 13, 2007

Renormalization Scale Setting 86

Binger, sjb

Asymptotic Unification. The solid lines are the analytic \overline{PT} effective couplings, while the dashed lines are the \overline{DR} couplings. For illustrative purposes, $\alpha_3(M_Z)$ has been chosen so that unification occurs at a finite scale for \overline{DR} and asymptotically for the \overline{PT} couplings. Here $M_{SUSY} = 200$ GeV is the mass of all light superpartners except the wino and gluino which have values $\frac{1}{2}m_{\tilde{g}} = M_{SUSY} = 2m_{\tilde{w}}$. For illustrative purposes, we use SU(5).

> Renormalization Scale Setting 87

Stan Brodsky, SLAC

Production of four heavy-quark jets

Renormalization Scale Setting

Future Directions

Gauge-invariant four gluon vertex

 $L_4(p_1, p_2, p_3, p_4)$

 $Q_{4\,eff}^2(p_1, p_2, p_3, p_4)$

Hundreds of form factors!

UCLA February 13, 2007

Renormalization Scale Setting

Stan Brodsky, SLAC

The Gauge-Invariant Family of Green's Functions

Renormalization Scale Setting

Stan Brodsky, SLAC

PT Self-Energy at Two-Loops

- Finite terms give relation between $\alpha_{\rm PT}(Q^2) \ {\rm and} \ \alpha_{\rm \overline{MS}}(Q^2)$
- 3-loop beta function
- 2-loop longitudinal form factors of the three-gluon vertex (via the Ward ID)
- N=4 Supersymmetry gives a non-zero but UV finite contribution

PT Self-Energy at Two-Loops

UCLA February 13, 2007

92

Future Directions

- Implement in Monte Carlo generator
- Gauge-invariant Standard Model triple gauge boson vertices
- Schwinger-Dyson Equations

Renormalization Scale Setting

Summary and Future

 Multi-scale analytic renormalization based on physical, gauge-invariant Green's functions

 Optimal improvement of perturbation theory with no scale-ambiguity since physical kinematic invariants are the arguments of the (multi-scale) couplings

Conventional renormalization scale-setting method:

- Guess arbitrary renormalization scale and take arbitrary range. Wrong for QED and Precision Electroweak.
- Prediction depends on choice of renormalization scheme
- Variation of result with respect to renormalization scale only sensitive to nonconformal terms; no information on genuine (conformal) higher order terms
- FAC and PMS give unphysical results.
- Renormalization scale not arbitrary: Analytic constraint from flavor thresholds

95

Features of BLM Scale Setting

On The Elimination Of Scale Ambiguities In Perturbative Quantum Chromodynamics.

Lepage, Mackenzie, sjb

Phys.Rev.D28:228,1983

- All terms associated with nonzero beta function summed into running coupling
- BLM Scale Q* sets the number of active flavors
- Only n_f dependence required to determine renormalization scale at NLO
- Result is scheme independent: Q* has exactly the correct dependence to compensate for change of scheme
- Correct Abelian limit
- Resulting series identical to conformal series!
- Renormalon n! growth of PQCD coefficients from beta function eliminated!
- In general, BLM scale depends on all invariants

96

UCLA February 13, 2007

Use BLM!

- Satisfies Transitivity, all aspects of Renormalization Group; scheme independent
- Analytic at Flavor Thresholds
- Preserves Underlying Conformal Template
- Physical Interpretation of Scales; Multiple Scales
- Correct Abelian Limit (N_C =0)
- Eliminates unnecessary source of imprecision of PQCD predictions
- Commensurate Scale Relations: Fundamental Tests of QCD free of renormalization scale and scheme ambiguities
- BLM used in many applications, QED, LGTH, BFKL, ...

Renormalization Scale Setting

UCLA February 13, 2007

On Renormalons and the Structure of Perturbation Theory

Investigate the relation between :

- 1. Renormalons
- 2. BLM Scale Fixing
- 3. Effective Charges Running Inside of Loops

Laboratory : Higher order corrections to the quark propagator

(Gray, Broadhurst, Grafe, Schilcher and Chetyrkin, Steinhauser)

Relation between quark pole mass \overline{MS} mass

69

UCLA February 13, 2007

Renormalization Scale Setting

98

On Renormalons and the Structure of Perturbation Theory

BLM Methods

- Predicts 3-loop term with an accuracy of 3-4%
- Conformal term is very small

Not associated with running coupling

Expect that almost all of the loop corrections are "associated with" the running coupling

Seems to be very much in contrast to what we found using the RIA

Perhaps the success of BLM is not tied to a hypothetical skeleton expansion with running charges inside of loops 71

Renormalization Scale Setting

Stan Brodsky, SLAC

UCLA February 13, 2007

Factorization scale

 $\mu_{\rm factorization} \neq \mu_{\rm renormalization}$

- Arbitrary separation of soft and hard physics
- Dependence on factorization scale not associated with beta function - present even in conformal theory
- Keep factorization scale separate from renormalization scale $\frac{d\mathcal{O}}{d\mathcal{O}} = 0$
- $d\mu_{factorization}$ Residual dependence when one works in fixed order in perturbation theory.

100

UCLA February 13, 2007