
 
1

Stan Brodsky, SLAC
UCLA

  February 13, 2007

Optimal Renormalization Scales and Schemes for QCD
General Structure of the 

Three-Gluon Vertex

3 index tensor            built out of          and          

with 
321

ˆ
!!!" !#g 321

,, ppp

0
321
$%% ppp

“THE FORM-FACTORS OF THE GAUGE-INVARIANT THREE-GLUON VERTEX”

M.B. and Stanley J. Brodsky.  hep-ph/0602199. Submitted to PRD

1
p

3
p2

p
3

!
2

!

1
!

$"
321

ˆ
!!!

14 basis tensors and form factors
22

TEP Seminar 



 
 Stan Brodsky,  SLAC

UCLA  February 13, 2007
 Renormalization Scale Setting

2

Heavy Quark Hadroproduction

52

• Preliminary calculation 
using (massless) results 
for tree level form factor

• Very low effective scale         

much larger cross 
section than         with 
scale 

• Future : repeat analysis 
using the full mass-
dependent results and 
include all form factors
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Expect that this approach accounts for most of the one-loop corrections
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Is there a way to set the 
renormalization scale       ?

The Renormalization Scale Problem

µR

ρ = C1 αs(µR)+C2 α2
s(µR)+C3 α3

s(µR)+ · · ·

ρ(Q2) = C0 + C1αs(µR) + C2α2
s(µR) + · · ·

σ = 1
2x−P+

γp→ µ+µ−p

Oberwölz

σ(pp→ cX) ∼ 1µb

√
s ∼ 5 GeV

σ(pp→ sX) ∼ 1mb

What happens if there are 
multiple physical scales ?

µ2
R = CQ2

ρ(Q2) = C0 + C1αs(µR) + C2α2
s(µR) + · · ·

σ = 1
2x−P+

γp→ µ+µ−p

Oberwölz

σ(pp→ cX) ∼ 1µb

√
s ∼ 5 GeV
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Abstract. Data from e+e− annihilation into hadrons collected by the JADE experiment at centre-of-mass
energies between 14 GeV and 44 GeV are used to study the four-jet event production rate as a function
of the Durham jet algorithm’s resolution parameter ycut. The four-jet rate is compared to QCD next-to-
leading order calculations including resummation of large logarithms in the next-to-leading logarithmic
approximation. The strong coupling measured from the four-jet rate is

αS (MZ0) = 0.1159 ± 0.0004(stat.) ± 0.0012(exp.) ± 0.0024(had.) ± 0.0007(theo.)

in agreement with the world average.

1 Introduction

The annihilation of electrons and positrons into hadrons
allows precise tests of Quantum Chromodynamics (QCD).
Many observables have been devised which provide a con-
venient way of characterizing the main features of such
events. Multijet event rates are predicted in perturbation
theory as functions of the jet-resolution parameter, with
one free parameter, the strong coupling αS. Events with
four quarks in the final state, qq̄qq̄, or two quarks and two
gluons, qq̄gg, may lead to events with four-jet structure.
In leading order perturbation theory, the rate of four-jet
events in e+e−annihilation is predicted to be proportional
to α2S. The strong coupling can be measured by determin-
ing the four-jet event production rate and fitting the theor-
etical prediction to the data.
Calculations beyond leading order are made possible

by theoretical progress achieved during the last few years.
For multi-jet rates as well as numerous event-shape distri-
butions with perturbative expansions starting at O(αS),
matched next-to-leading order (NLO) and next-to-leading
logarithmic approximations (NLLA) provide a satisfactory
description of the data over large kinematically allowed re-
gions at many centre-of-mass energies [2–5].
First evidence for four-jet structure has been reported

earlier by the JADE collaboration [6]. In addition multi-
jet event production rates were measured and the three-jet
rate was used to determine the the strong coupling αS [7–

a e-mail: schieck@mppmu.mpg.de
b See [1] for the full list of authors

9]. The ALEPH, DELPHI and OPAL collaborations pub-
lished measurements of αS based on the four-jet rate in the
energy range between 91 and 209GeV [10–12]. The same
theoretical predictions as used here were employed to de-
termine the strong coupling αS.
In this analysis we use data collected by the JADE

experiment in the years 1979 to 1986 at the PETRA
e+e−collider at DESY at six centre-of-mass energies span-
ning the range of 14–44 GeV.

2 Observable

Jet algorithms are applied to cluster the large number of
particles of a hadronic event into a small number of jets,
reflecting the parton structure of the event. For this analy-
sis we use the Durham scheme [2]. Defining each particle
initially to be a proto-jet, a resolution variable yij is calcu-
lated for each pair of proto-jets i and j:

yij =
2min

(
E2i , E

2
j

)
E2vis

(1− cosθij) , (1)

where Ei and Ej are the energies of jets i and j, cos θij is
the cosine of the angle between them and Evis is the sum
of the energies of the detected particles in the event (or the
partons in a theoretical calculation). If the smallest value
of yij is less than a predefined value ycut, the pair is re-
placed by a new proto-jet with four-momentum pµk = p

µ
i +

pµj , and the clustering starts again. Clustering ends when
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Fig. 4. The result of
αS (MZ0 )and the χ2/d.o.f. of
the fit to the four-jet rate as
a function of the renormaliza-
tion scale xµ for

√
s= 14 GeV

to 43.8 GeV. The arrows in-
dicate the variation of the
renormalization scale factor
used for the determination of
the systematic uncertainties

χ2 fit is then determined using the statistical error σi of
the data sample at data point i and the correlation matrix
ρij : Vij(R4) = ρijσiσj .
The χ2 value is minimized with respect to αS for each

centre-of-mass energy point separately. The renormaliza-
tion scale factor xµ, as discussed in Sect. 2, is set to one.
The fit ranges are determined by requiring that the

hadronization corrections be less than 50% and the de-
tector corrections be less than 50% in the fit range. In

order to exclude the non-perturbative region we require√
s ·ycut to be larger than 2 GeV. In the Durham scheme
this value corresponds to the minimal transverse momen-
tum of the pair of proto-jets with respect to each other.
The fit range is 0.0209< ycut < 0.0495 for data taken at
14GeV, 0.0088< ycut < 0.0495 for data taken at 22 GeV,
0.0037< ycut < 0.0279 for data taken at 34.6 and 35 GeV,
0.0028 < ycut < 0.0279 for data taken at 38.3 GeV and
0.0021< ycut < 0.0279 for data taken at 43.8GeV. In Fig. 2
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to α2S. The strong coupling can be measured by determin-
ing the four-jet event production rate and fitting the theor-
etical prediction to the data.
Calculations beyond leading order are made possible

by theoretical progress achieved during the last few years.
For multi-jet rates as well as numerous event-shape distri-
butions with perturbative expansions starting at O(αS),
matched next-to-leading order (NLO) and next-to-leading
logarithmic approximations (NLLA) provide a satisfactory
description of the data over large kinematically allowed re-
gions at many centre-of-mass energies [2–5].
First evidence for four-jet structure has been reported

earlier by the JADE collaboration [6]. In addition multi-
jet event production rates were measured and the three-jet
rate was used to determine the the strong coupling αS [7–
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9]. The ALEPH, DELPHI and OPAL collaborations pub-
lished measurements of αS based on the four-jet rate in the
energy range between 91 and 209GeV [10–12]. The same
theoretical predictions as used here were employed to de-
termine the strong coupling αS.
In this analysis we use data collected by the JADE

experiment in the years 1979 to 1986 at the PETRA
e+e−collider at DESY at six centre-of-mass energies span-
ning the range of 14–44 GeV.

2 Observable

Jet algorithms are applied to cluster the large number of
particles of a hadronic event into a small number of jets,
reflecting the parton structure of the event. For this analy-
sis we use the Durham scheme [2]. Defining each particle
initially to be a proto-jet, a resolution variable yij is calcu-
lated for each pair of proto-jets i and j:

yij =
2min

(
E2i , E

2
j

)
E2vis

(1− cosθij) , (1)

where Ei and Ej are the energies of jets i and j, cos θij is
the cosine of the angle between them and Evis is the sum
of the energies of the detected particles in the event (or the
partons in a theoretical calculation). If the smallest value
of yij is less than a predefined value ycut, the pair is re-
placed by a new proto-jet with four-momentum pµk = p

µ
i +

pµj , and the clustering starts again. Clustering ends when
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the regions chosen for comparison with the theory predic-
tions. The difference in detector corrections is evaluated
as an experimental systematic uncertainty. The numerical
results of the four-jet rate at hadron-level at the different
energy points are summarized in Tables 5 and 6.

4 Systematic uncertainties

Several sources of possible systematic uncertainties are
studied. Uncertainties originating from massless quark cal-
culations are not considered, since contributions to the
four-jet rate from B hadrons are subtracted at detector-
level. For each variation of parameters the difference of the
resulting value of αS with respect to the default value is
taken as a systematic uncertainty. The default value of αS

is determined with the standard event selection and the
correction procedure using PYTHIA. The systematic un-
certainty is taken to be symmetric around the default value
of αS.

4.1 Experimental uncertainties

Contributions to the experimental uncertainties are esti-
mated by repeating the analysis with varied cuts or pro-
cedures. For each systematic variation the value of αS is
determined and then compared to the result of the stan-
dard analysis (default value).

1. In the standard analysis the reconstruction software
from 5/88 is used. As a variation a different reconstruc-
tion software from 9/87 is used.

2. In the default method the estimated minimum ioniz-
ing energy from tracks associated with electromagnetic
calorimeter clusters is subtracted from the cluster en-
ergies. As a variation all accepted tracks and all uncor-
rected electromagnetic clusters are used.

3. The thrust axis is required to satisfy | cos(θT)| < 0.7.
With this more stringent cut events are restricted to
the barrel region of the detector, which provides better
measurements of tracks and clusters compared to the
endcap regions.

4. Instead of using PYTHIA for the correction of detector
effects as described in Sect. 3.5, events generated with
HERWIG are used.

5. The requirement on missing momentum is dropped or
tightened to pmiss/

√
s < 0.25. The larger deviation from

the default value is taken as a systematic uncertainty.
6. The requirement on the momentum balance is dropped

or tightened to pbal < 0.3. The larger deviation from the
default value is taken as a systematic uncertainty.

7. The requirement on the number of long tracks is tight-
ened to Nlong ≥ 4.

8. The requirement on the visible energy is varied to
Evis/

√
s > 0.45 and Evis/

√
s > 0.55. The larger devi-

ation from the default value is taken as a systematic
uncertainty.

9. The fit range is changed. Two different cases are con-
sidered. First the fit range is reduced by one data point

at each edge of the standard fit range. Second the fit
range is extended by one data point at each edge of the
standard fit range. The larger deviation from the de-
fault fit is taken as a systematic uncertainty. In order to
take statistical fluctuations into account, the deviation
is calculated using the average deviation of a fit applied
to 50 Monte Carlo samples.

10.The amount of subtracted bb̄ background is varied by
±5% of its nominal value of about 1/11 to cover uncer-
tainties in the estimation of the background fraction in
the data. The larger deviation from the default value is
taken as the systematic uncertainty.

All contributions listed above are added in quadrature and
the result is quoted as the experimental systematic uncer-
tainty. The dominating effects are the use of the differ-
ent data versions and the different correction for detector
effects.

4.2 Hadronization

The uncertainties associated with the hadronization cor-
rection (see Sect. 5.2) are assessed by using HERWIG and
ARIADNE instead of the default hadronization correc-
tion using PYTHIA. The larger change in αS resulting
from these alternatives is taken to define the symmetric
hadronization systematic uncertainty.

4.3 Theoretical uncertainties

The theoretical uncertainty, associated with missing higher
order terms in the theoretical prediction, is assessed by
varying the renormalization scale factor xµ. The predic-
tions of a complete QCD calculation would be independent
of xµ, but a finite-order calculation such as that used here
retains some dependence on xµ. The renormalization scale
factor xµ is set to 0.5 and two. The larger deviation from
the default value of αS is taken as systematic uncertainty.

5 Results

5.1 Four-Jet rate distributions

The four-jet rates for the six centre-of-mass energy points
after subtraction of bb̄ background and correction for de-
tector effects are shown in Fig. 1. Superimposed are the
distributions predicted by the PYTHIA, HERWIG and
ARIADNE Monte Carlo models. Towards large ycut values
(right to the maximum of the distribution) the decrease of
the four-jet rate corresponds to the migration and classi-
fication to three- and two-jet events. Towards smaller ycut

values (left to the maximum of the distribution) the de-
crease corresponds to the migration and classification to
five or more jet events, i.e. towards the higher order QCD
and non-perturbative or hadronization region. In order to
make a more clear comparison between data and models,
the inserts in the upper right corner show the differences
between data and each model, divided by the combined
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Fig. 4. The result of
αS (MZ0 )and the χ2/d.o.f. of
the fit to the four-jet rate as
a function of the renormaliza-
tion scale xµ for

√
s= 14 GeV

to 43.8 GeV. The arrows in-
dicate the variation of the
renormalization scale factor
used for the determination of
the systematic uncertainties

χ2 fit is then determined using the statistical error σi of
the data sample at data point i and the correlation matrix
ρij : Vij(R4) = ρijσiσj .
The χ2 value is minimized with respect to αS for each

centre-of-mass energy point separately. The renormaliza-
tion scale factor xµ, as discussed in Sect. 2, is set to one.
The fit ranges are determined by requiring that the

hadronization corrections be less than 50% and the de-
tector corrections be less than 50% in the fit range. In

order to exclude the non-perturbative region we require√
s ·ycut to be larger than 2 GeV. In the Durham scheme
this value corresponds to the minimal transverse momen-
tum of the pair of proto-jets with respect to each other.
The fit range is 0.0209< ycut < 0.0495 for data taken at
14GeV, 0.0088< ycut < 0.0495 for data taken at 22 GeV,
0.0037< ycut < 0.0279 for data taken at 34.6 and 35 GeV,
0.0028 < ycut < 0.0279 for data taken at 38.3 GeV and
0.0021< ycut < 0.0279 for data taken at 43.8GeV. In Fig. 2

µ2
R !

Q2
minQ2

med
Q2

max

µ2
R !

p2
minp2

med
p2
max

xµ = µR√
s

!+

!−

< 0|Gµν(x)Gστ(0)|0 >

No PMS 
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Conventional wisdom concerning scale setting

• Renormalization scale can be set to any value; e.g.

• Sensitivity to renormalization scale disappears at high order

• No optimal scale

• Ignore problem of multiple physical scales

• Accuracy of PQCD prediction can be judged by taking a range  

• Factorization scale should be taken equal to renormalization 
scale

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

ψH(x,"k⊥, λi)

pH

x,"k⊥

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

ψH(x,"k⊥, λi)

pH

x,"k⊥

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

ψH(x,"k⊥, λi)

pH

x,"k⊥

All of these assumptions are fallacious

(only true if mass thresholds are incorporated)



Sept. 22, 2006 Sino-German workshop 7

Chao-Hsi Chang 
Uncertainties in P-wave Bc Production 

due to factorization energy scale 
The summed Pt distribution and y distribution of all the P-wave states 
for different factorization scale µ2

F and renormalization scale µ2 at LHC

The upper edge of the band corresponds to µ2
F=4MPt

2; µ 2=MPt
2/4; 

and the lower edge corresponds to that of µ2
F=MPt

2/4; µ 2=4MPt
2. The 

solid line, the dotted line and the dashed line corresponds to that of 
µ2

F=µ2 =MPt
2;  µ2

F= µ 2= 4MPt
2 ; µ2

F= µ 2= MPt
2/4.
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Electron-Electron Scattering in QED

t u

This is very important!

This is very important!

This is very important!

This is very important!

α(t) = α(0)
1−Π(t)

α(t) = α(t0)
1−Π(t,t0)

Gell Mann-Low Effective Charge
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This is very important!

This is very important!

This is very important!

This is very important!

α(t) = α(0)
1−Π(t)

α(t) = α(t0)
1−Π(t,t0)

This is very important!

This is very important!

This is very important!

This is very important!

α(t) = α(0)
1−Π(t)

α(t) = α(t0)
1−Π(t,t0)

This is very important!

This is very important!

This is very important!

This is very important!

+

α(t) = α(0)
1−Π(t)

α(t) = α(t0)
1−Π(t,t0)

This is very important!

This is very important!

This is very important!

This is very important!

+

+ · · ·+

α(t) = α(0)
1−Π(t)

α(t) = α(t0)
1−Π(t,t0)

All-orders leptonic loop corrections to dressed photon propagator

This is very important!

This is very important!

This is very important!

This is very important!

+

α(t) = α(0)
1−Π(t)

α(t) = α(t0)
1−Π(t,t0)

!−

α(t) = α(0)
1−Π(t)

α(t) = α(t0)
1−Π(t,t0)

Π(t, t0) = Π(t)−Π(t0)
1−Π(t0)

t = −Q2 < 0

Π(Q2) =

QED Effective Charge
!−

< 0|Gµν(x)Gστ(0)|0 >

Gµν = ∂µAν − ∂νAµ + ig[Aµ, Aν]

Π

α(t) = α(0)
1−Π(t)

α(t) = α(t0)
1−Π(t,t0)

!−

< 0|Gµν(x)Gστ(0)|0 >

Gµν = ∂µAν − ∂νAµ + ig[Aµ, Aν]

Π

α(t) = α(0)
1−Π(t)

α(t) = α(t0)
1−Π(t,t0)

!−

< 0|Gµν(x)Gστ(0)|0 >

Gµν = ∂µAν − ∂νAµ + ig[Aµ, Aν]

Π

α(t) = α(0)
1−Π(t)

α(t) = α(t0)
1−Π(t,t0)
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α(t) = α(t0)
1−Π(t,t0)

t = −Q2 < 0

Π(Q2) =

α(0)
3π [53−4m2

Q2 −(1−2m2

Q2 )
√

1 + 4m2

Q2 log
1+

√
1+4m2

Q2

|1−
√

1+4m2

Q2 |
]

Π(Q2) = α(0)
15π

Q2

m2

α(t) = α(t0)
1−Π(t,t0)

t = −Q2 < 0

Π(Q2) =

α(0)
3π [53−4m2

Q2 −(1−2m2

Q2 )
√

1 + 4m2

Q2 log
1+

√
1+4m2

Q2

|1−
√

1+4m2

Q2 |
]

Π(Q2) = α(0)
15π

Q2

m2

α(t) = α(t0)
1−Π(t,t0)

t = −Q2 < 0

Π(Q2) =

α(0)
3π [53−4m2

Q2 −(1−2m2

Q2 )
√

1 + 4m2

Q2 log
1+

√
1+4m2

Q2

|1−
√

1+4m2

Q2 |
]

Π(Q2) = α(0)
15π

Q2

m2

QED One-Loop Vacuum Polarization

α(t) = α(t0)
1−Π(t,t0)

t = −Q2 < 0

Π(Q2) =

α(0)
3π [53−4m2

Q2 −(1−2m2

Q2 )
√

1 + 4m2

Q2 log
1+

√
1+4m2

Q2

|1−
√

1+4m2

Q2 |
]

Π(Q2) = α(0)
15π

Q2

m2 Q2 << 4M2

Π(Q2) = α(0) over3π logQ2

m2

Q2 >> 4M2

β=dα
d logQ2=1

3n$
.

Serber-Uehling

Q2 << 4M2

Π(Q2) = α(0) over3π logQ2

m2

Q2 >> 4M2

β=dα
d logQ2=1

3n$
.

Q2 << 4M2

Π(Q2) = α(0)
3π

logQ2

m2

Q2 >> 4M2

β = dα
d logQ2 = 1

3n$.

Landau Pole

Q2 << 4M2

Π(Q2) = α(0)
3π

logQ2

m2

Q2 >> 4M2

β =
d( α

4π)
d logQ2 = 4

3(
α
4π)2n$ > 0

This is very important!

This is very important!

This is very important!

This is very important!

+

+ · · ·+

!+

!−

α(t) = α(0)
1−Π(t)

α(t) = α(t0)
1−Π(t,t0)

t = −Q2 < 0

Π(Q2) =

α(0)
3π [53−4m2

Q2 −(1−2m2

Q2 )
√

1 + 4m2

Q2 log
1+

√
1+4m2

Q2

|1−
√

1+4m2

Q2 |
]

(t spacelike)

Analytically continue to timelike t: Complex
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• No renormalization scale ambiguity!   

• Two separate physical scales.  

• Gauge Invariant.  Dressed photon propagator

• Sums all vacuum polarization, non-zero beta terms into running coupling.

• If one chooses a different scale, one must sum an infinite number of 
graphs -- but then recover same result!  

• Number of active leptons correctly set 

• Analytic: reproduces correct behavior at lepton mass thresholds

• No renormalization scale ambiguity!   

• Two separate physical scales.  

• Gauge Invariant.  Dressed photon propagator

• Sums all vacuum polarization, non-zero beta terms into running coupling.

• If one chooses a different scale, one must sum an infinite number of 
graphs -- but then recover same result!  

• Number of active leptons correctly set 

• Analytic: reproduces correct behavior at lepton mass thresholds

11

Electron-Electron Scattering in QED

t u
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the light-by-light type diagrams of fig. 1. Since these 

diagrams appear beginning from the four-loop order 

we are interested in one has F(a) =F~ (or) +O( a 4 ) .  

Note also that the total contribution to/-/ ,  of  these 

diagrams is scheme-independent. Therefore, the four- 

loop approximation of the F-function is also scheme- 

independent. 

The flus-function is defined as follows: 

1 /t 2 0o~ 1 ea 
f M s ( a ) =  ~nn O~2u2,,~a - 4-n lim 1 - a 0 1 n Z 3 / 0 0 t "  

(2.5) 

In the MS-scheme Z3 is 

(°) z~ = 1 - I ~ '  ~ lIB(-q~/~2, a)  

= 1- /~[(~nn)  lIB(--qE/lt z, orB(e, c~))] ,  (2.6) 

where the R'-operation subtracts subdivergences and 

/£ picks out poles in e. Note, that the cancellation of 

singularities in (2.5) provides a valuable check of the 

calculations. 

At the four-loop level 58 diagrams contribute to Z3. 

After multiplying them by symmetry coefficients we 

get 153 diagrams in agreement with the result of the 

computer diagram generation [ 18 ]. In the course of 

computations we have used the method of infrared 

rearrangement [9,8] which reduces the problem of 

the calculation of the four-loop counterterms in the 

MS-scheme to the problem of the calculation of the 

three-loop propagator-type integrals up to the finite 

terms in e. The total reevaluation was independently 

made twice by means of the corrected SCHOON- 

SCHIP program [ 12 ] and the SCHOONSCHIP pro- 

gram [ 14 ]. 

The results for certain two-loop integrals were 

Fig. 1. D iag rams  giving rise to the N2-scheme independen t  four- 

loop con t r ibu t ion  to the flMS', ~'- and  F-funct ions.  

checked by the REDUCE program [ 19]. The ob- 

tained final results of both calculations are in 

agreement. 

During the calculations the errors in the lower pole 

contributions to Z3 from six four-loop diagrams ob- 

tained in the course of the work [ 10] were found and 

eliminated. Our final result for the PMs-function reads 

2 OL 3 OL 4 

-{46N+[-~-~+~((3)]NZ+I~32N3}(~y. 

(2.7) 

Note, that in the four-loop term only the N 3-coeffi- 

cient coincides with the previously obtained one [ 10 ]. 

It also agrees with the result of the calculations of the 

PT contributions leading in N to the flMs-function 

[201. 

It is convenient for further applications to present 

the decomposed expression for the four-loop N z- 

contribution to f4, namely 

f~2j =~2j + ~  

704 512 1352 704 2 [ ~ - - - 3 - ( ( 3 )  IN2+ = [ - - ~ - + - ¢ - ( ( 3 )  ]N . 

(2.8) 

The first contribution, ff,~2~, comes from the light- 

by-light-type diagrams of fig. 1. As well as the term 

linear in Nin  eq. (2.7), this term is scheme-indepen- 

dent, in contrast with the N3-term ofeq. (2.7), fJi 3j , 

and the ff~2~-term of eq. (2.8) which come from the 

non-light-by-light-type diagrams with three and two 

fermion circles. 

At N= 1 the expression for the fMs-function takes 

the form 

4 o: 2 OL 3 O/ 4 

flMs(O~)= ~(~--~)+4 (~--~)-  ~ ( ~ - ~ )  

(o)' 
- [ ~ 7 3 ° + ~ ( ( 3 ) 1  ~ , (2.9) 

where ((3)=1.20205.. .  is the Riemann zeta func- 

tion. The detailed description of the calculations will 

be presented elsewhere. 

The byproduct of the calculations is the Fl-func- 
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The analytic four-loop corrections 
to the QED B-function in the MS scheme 
and to the QED  -function. 
Total reevaluation 

S.G. Gorishny 1, A.L. Kataev, S.A. Larin and L.R. Surguladze 2 

Institute of Nuclear Research, Academy of Sciences of the USSR, SU-117 312 Moscow, USSR 

Received 17 November 1990; revised manuscript received 6 December 1990 

The results of the total reevaluation of the four-loop correction to the QED B-function in the minimal and momentum subtrac- 
tion schemes (flMs and gt-functions) and for the functions F1 (cQ and F(c~) determined by the photon vacuum polarization dia- 
grams without fermion-loop contributions to the internal photon lines are presented. It is found that the ((3)-, ((4)- and ((5)- 
terms cancel in the ultimate result for the four-loop coefficient of the F~-function. The results obtained are briefly discussed. 

1. The renormal iza t ion  group ( R G )  method  (see 

e.g. ref. [ 1 ] ) is one o f  the most  powerful  methods  of  

modern  quan tum field theory. The concept  of  B-func- 

t ions occupies a central  place in the R G  formalism. 

Its various appl ica t ions  imply the direct  d iagram- 

mat ic  calculat ions of  the coefficients of  the pertur-  

bat ion theory (PT)  series for B-functions. 

It is known that beginning from the three-loop level 

the coefficients o f  B-functions of  quan tum field 

models  with one coupling constant  depend  on the 

choice o f  the renormal iza t ion  scheme. In QED three 

schemes are commonly  used. The min imal  subtrac- 

t ions (MS)  scheme is convenient  from the point  o f  

view of  the simplif icat ion o f  the RG-calculat ions [ 2 ]. 

The on-shell scheme stands out for its connection with 

the low-energy QED phenomenology.  In the momen-  

tum ( M O M )  subtract ion scheme def ined by subtrac- 

tions of  the photon propagator  at the eucledian point,  

the running coupling constant  coincides with the in- 

var iant  charge o f  QED. Thus the q/-function [ 3],  i.e. 

the QED/?-function of  the M O M  scheme, governs the 

behav iour  of  the QED invar iant  charge. 

Another  impor tan t  QED function is the scheme- 

independent  F i - func t ion  which is de te rmined  by the 

contr ibut ion  to the photon  vacuum polar izat ion 

function H of  the diagrams with one fermion loop. 

This function has been in t roduced in the studies of  

the finite QED program [4] which resulted in the 

foundat ion that  the F~-function would have a zero i f  

the ~,-function had a posi t ive zero (essentially o f  in- 

finite o rder )  [4] .  Moreover,  it was shown that the 

eigenvalue condi t ion ~(O~o)=0 is equivalent  to the 

requirement  F ( a o )  = 0 where the F-funct ion is deter- 

mined  by the photon vacuum polar izat ion diagrams 

without  fermion- loop contr ibut ions  to the internal  

photon  lines [ 5,4 ]. 

It is well known that the expression for the QED 

invar iant  charge obta ined  from a leading approxi-  

mat ion  of  the ~,-function has a pole at high energies 

which could cast a certain doubt  on the self-consis- 

tency of  QED in this region, however,  lying far be- 

yond the point  of  Grand  Unif icat ion.  In view of  the 

existence of  other  theoretical  possibili t ies,  i.e. 

~u(C~o) = 0  [ 3 - 5 ]  and 0~< ~,(c~) <c~/4n [6]  ~ it i s i m -  

Deceased. 
Permanent address: Department of High Energy Physics, Tbi- 
lisi State University, SU-380 086, USSR 

~ The n°rrnalizati°n °f the upper b°und °fthis inequality is de- 
termined by our normalization of the B-functions [see eqs. 
(2.5), (3.1) below]. 

0370-2693/91/$ 03.50 © 1991 - Elsevier Science Publishers B.V, ( North-Holland ) 81 

Phys.Lett.B256:81-86,1991
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Lessons from QED (II)

The QED Effective Charge

• Complex

• Analytic through mass thresholds

• Distinguishes between timelike and spacelike momenta

)(Im)(Im 2
sse %%&'!

9

Analyticity essential ! 

α(s)

µR

Scale of α(µr) unique

µ2
R = s

ρ = C1 αs(µR)+C2 α2
s(µR)+C3 α3

s(µR)+ · · ·M ∝ α(s)

µR

Scale of α(µr) unique

µ2
R = s

ρ = C1 αs(µR)+C2 α2
s(µR)+C3 α3

s(µR)+ · · ·

M ∝ α(s)

µR

Scale of α(µr) unique !

µ2
R = s

ρ = C1 αs(µR)+C2 α2
s(µR)+C3 α3

s(µR)+ · · ·
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M(e+e− → e+e−) ∝ α(s)

Has correct analytic / unitarity thresholds for
ImM at s = 4m2

"+"−

No other scale correct. If one chooses an-
other scale, e.g.,

µ2
R = 0.9s,

then must resum infinite number of vacuum
polarization diagrams.

Recover α(s).

QCD → Abelian Gauge Theory

limNC → 0 at fixed α = CFαs, n" = nF/CF

e+e− → p# p
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Lessons from QED : Summary

• Effective couplings are complex analytic 
functions with the correct threshold structure 
expected from unitarity

• Multiple “renormalization” scales appear

• The scales are unambiguous since they are 
physical kinematic invariants

• Optimal improvement of perturbation theory

11
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The Renormalization Scale Problem
• No renormalization scale ambiguity in QED 

• Gell Mann-Low QED Coupling can be defined from physical 
observable 

• Sums all Vacuum Polarization Contributions

• Recover conformal series

• Renormalization Scale in QED scheme: Identical to Photon Virtuality

• Analytic: Reproduces lepton-pair thresholds

• Examples:  muonic atoms, g-2, Lamb Shift

• Time-like and Space-like QED Coupling related by analyticity

• Uses Dressed Skeleton Expansion

This is very important!

This is very important!

This is very important!

This is very important!

Gyulassy: Higher Order VP verified to

0.1% precision in µ Pb

+
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Example in QED: Muonic Atoms

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

µ

Z

ψH(x,"k⊥, λi)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

µ

Z

e+e−

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

µ−

Z

e+e−

V (q2) = −ZαQED(q2)
q2

αQED = 1
1−Π(Q2)

ψH(x,#k⊥, λi)

pH

x,#k⊥

1− x,−#k⊥

V (q2) = −ZαQED(q2)
q2

αQED(q2) =
αQED(0)
1−Π(q2)

ψH(x,#k⊥, λi)

pH

x,#k⊥

1− x,−#k⊥

Scale is unique:  Tested to ppm

e+e−

V (q2) = −ZαQED(q2)
q2

αQED(q2) =
αQED(0)
1−Π(q2)

µ2
R ≡ q2

ψH(x,#k⊥, λi)

pH

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

µ−

q

Z
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QCD Lagrangian

Yang Mills Gauge Principle: 
Color Rotation and Phase 

Invariance at Every Point of 
Space and Time 

Scale-Invariant Coupling
Renormalizable 

Conformal Template
Asymptotic Freedom
Color Confinement

Quantum Chromodynamics    



 

     QCD
 
        Only quarks and gluons involve basic vertices: Quark-gluon vertex

More exactly

Gluon vertices

Fundamental Couplings 

Similar to QED
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logarithmic derivative 
of the QCD coupling  is negative

Coupling becomes weaker at short 
distances or high momentum transfer Gross, Wilczek, Politzer

Khriplovich, `t Hooft

β = d
d logQ2g(Q2) < 0

β = d
d logQ2g(Q2) > 0

β = d
d logQ2g(Q2) < 0

β = d
d logQ2g(Q2) > 0

This is very important!

This is very important!
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σ(e+e−→three jets)
σ(e+e−→two jets)

proportional to αs(s)

Ratio of rate for e+e− → qq̄g to e+e− → qq̄

σ(e+e−→three jets)
σ(e+e−→two jets)

proportional to αs(s)

Ratio of rate for e+e− → qq̄g to e+e− → qq̄

σ(e+e−→three jets)
σ(e+e−→two jets)

proportional to αs(s)

proportional to αs(Q)

Ratio of rate for e+e− → qq̄g to e+e− → qq̄

at Q = ECM = Ee− + Ee+

σ(e+e−→three jets)
σ(e+e−→two jets)

proportional to αs(s)

proportional to αs(Q)

Ratio of rate for e+e− → qq̄g to e+e− → qq̄

at Q = ECM = Ee− + Ee+

Verification of Asymptotic Freedom 

Gross, Wilczek, Politzer
Khriplovich, `t Hooft

Oberwölz

α(Q2) ! 4π
β0

1
logQ2/Λ2

QCD

Q4F1(Q2)→ constant

Π(Q2) = α
15π

Q2

m2
e

Q2 << 4m2
e

Π(Q2) ∝ Q2

m2
g
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logarithmic derivative 
of the QED coupling  is positive

Coupling becomes stronger at short 
distances or high momentum transfer

In QED (NC=0) 
the beta function is positive

β = d
d logQ2g(Q2) < 0

β = d
d logQ2g(Q2) > 0

β = d
d logQ2g(Q2) < 0

β = d
d logQ2g(Q2) > 0

This is very important!

This is very important!
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limNC → 0 at fixed α = CFαs, n" = nF/CF

e+e− → p# p

P. Huet, sjb

QCD Lagrangian

Analytic limit of QCD: Abelian Gauge Theory

[CF =
N2

C−1
2NC

]

FH(Q2)× [Q2]nH−1 ∼ constant

[Q2]nH−1FH(Q2) ∼ constant

FH(Q2) ∼ [ 1
Q2]

nH−1

fd(Q
2) ≡ Fd(Q

2)

Fp(
Q2
4 )Fp(

Q2
4 )

fd(Q
2) ∼ Fπ(Q2)
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limNC → 0 at fixed α = CFαs, n" = nF/CF

e+e− → p# p

QCD → Abelian Gauge Theory

limNC → 0 at fixed α = CFαs, n" = nF/CF

e+e− → p# p

Huet, sjb

Analytic Feature of SU(Nc) Gauge Theory

Scale-Setting procedure for QCD 
must be applicable to QED
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IR Fixed Point for QCD?

• Dyson-Schwinger Analysis: QCD coupling  (mom 
scheme) has IR Fixed point!     Alkofer, Fischer, von 
Smekal et al.

• Lattice Gauge Theory

• Define coupling from observable, indications of IR fixed 
point for QCD effective charges

• Confined gluons and quarks: Decoupling of QCD vacuum 
polarization at small Q2 

• Justifies application of AdS/CFT in strong-coupling 
conformal window

25
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4

VI. THE QCD RUNNING COUPLING

In the DSE approach, the ghost-gluon coupling in the
M̃OM scheme is calculated by the gluon dressing func-
tion Z3 and the ghost dressing function Z̃3 and the vertex
renormalization factor Z̃1 as

g(q) = Z̃−1
1 Z1/2

3 (µ2, q2)Z̃3(µ2, q2)g(µ).

Our lattice simulation[16] of the gluon propagator and
the ghost propagator of MILCc yields the running cou-
pling shown in FIG.3. There are deviations from the
pQCD (dash-dotted line) and the DSE approach with
κ = 0.5 (long dashed line). As was done by the Orsay
group[9], we consider a correction including the A2 con-
densates and obtained 〈A2〉 ∼ a few GeV2.

-0.4-0.2 0 0.2 0.4 0.6 0.8 1
Log_10!q"GeV#$

0.5

1

1.5

2

2.5

3
Α
s
"q#

FIG. 3: The running coupling αs(q) as a function of
log10 q(GeV) of MILCc (a = 0.12fm) βimp = 6.76(triangles)
and 6.83(diamonds), (50 samles each).

The running coupling in the infrared can be estimated
from the quark-gluon coupling

g(q) = Zψ
1

−1
Z1/2

3 (µ2, q2)Z2(µ2, q2)g(µ),

where Z2 is the quark dressing function and Zψ
1 is the ver-

tex renormalization factor. An evaluation of Z2(µ2, q2)
is given in the next section.

VII. THE QUARK PROPAGATOR

We extended the measurement of the quark propagator
using Asqtad action of MILCc [14] to MILCf . In the
case of MILCc, we compared the Asqtad action and the
Staple+Naik action.

Due to long computation time for the convergence of
the conjugate gradient method, the number of samples is
of the order of 10 for each βimp and the bare quark mass
m0.

The quark propagator is defined as a statistical average
over Landau gauge fixed samples

Sαβ(p) =
〈
〈χp,α| 1

i /D(U) + m0
|χp,β〉

〉
.

In this expression, the inversion, 1

i /D(U)+m0
, is performed

via conjugate gradient method after preconditioning, and
we obtain

Sαβ(q) = Z2(q)
−iγq + M(q)
q2 + M(q)2

.

The mass function M(q) reflects dynamical chiral sym-
metry breaking. In high momentum region, it is param-
eterized as

M(q) = −4π2dM 〈ψ̄ψ〉µ[log(q2/Λ2
QCD)]dM −1

3q2[log(µ2/Λ2
QCD)]dM

+
m(µ2)[log(µ2/Λ2

QCD)]dM

[log(q2/Λ2
QCD)]dM

,

where dM = 12/(33 − 2Nf ) and m(µ2) is the running
mass.

In the infrared region, we adopt the monopole fit

M(q) =
c̃Λ3

q2 + Λ2
+ m0.

The momentum dependence of M(q) and Z2(q) of
m0 = 13.6MeV in the infrared region of Asqtad action is
smoother than that of the Staple+Naik action. It could
be attributed to the effect of the tadpole renormalization.
The parameters c̃ and Λ in our fit of the mass function
are given in TABLE V.

We showed the quark wave function renormalization
Zψ(q2) = g1(µ2)/Z2(q2) of MILCf βimp = 7.11 using
the staple+Naik action in [14], where Z2(q2) is the bare
lattice data and g1(q2) is the coefficient of γµ of the vector
current vertex that compensates artefacts in Z2.

We adopt 〈A2〉 as a fitting parameter and calculate[9]

Zψ(q2) =
g1(µ2)
Z2(q2)

= Zpert
ψ (q2) +

(
α(µ)
α(q)

)(−γ0+γA2 )/β0

q2

〈A2〉µ
4(N2

c − 1)
Zpert

ψ (µ2)

+
c2

q4

where α(q) are data calculated in the M̃OM scheme us-
ing the same MILCf gauge configuration[7].

Here Nf is chosen to be 2 but the data does not change
much for 3. We choose ΛQCD = 0.691GeV and 〈ψ̄ψ〉µ =
−(0.7ΛQCD)3[17, 18].

Since g1(q2) in the infrared is expected to be given by
the running coupling, the absence of suppression of the
quark wave function renormalization suggests that the
infrared suppression of the running coupling obtained by
the ghost-gluon coupling could be an artefact.

In [20] the Z2(q) is normalized to 1 at q = 3GeV. In our
simulation without this kind of renormalization, Z2(q) at
q = 3GeV is close to 1 and the results are consistent.
Our mass function M(q) of βimp = 7.09 are about 20%

Lattice simulation 
(MILC)

Schwinger-Dyson

Infrared-Finite QCD Coupling?

Furui, Nakajima

PQCD Asymptotic freedom 

DSE: Alkofer, Fischer, von Smekal et al.
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Define QCD Coupling from 
Observable

Re+e−→X(s) ≡ 3Σqe2q [1 + αR(s)
π ]

Γ(τ → Xeν)(m2
τ ) ≡ Γ0(τ → ud̄eν)×[1+ατ(m2

τ )
π ]

Re+e−→X(s) ≡ 3Σqe2q [1 + αR(s)
π ]

Γ(τ → Xeν)(m2
τ ) ≡ Γ0(τ → ud̄eν)×[1+ατ(m2

τ )
π ]

Commensurate scale relations: 
Relate observable to observable at commensurate scales

Grunberg

H.Lu, Rathsman, sjb

27

Effective Charges: analytic at quark mass thresholds,  finite at small momenta

Pinch scheme: Cornwall, et al
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!0.008 at s"m!
2 corresponds to a value of "MS(MZ

2)

"(0.117–0.122)!0.002, where the range corresponds to
three different perturbative methods used in analyzing the

data. This result is, at least for the fixed order and renorma-

lon resummation methods, in good agreement with the world

average "MS(MZ

2)"0.117!0.002 #46$. However, from the

figure we also see that the effective charge only reaches

"!(s)%0.9!0.1 at s"1 GeV2, and it even stays within the
same range down to s%0.5 GeV2. This result is in good
agreement with the estimate of Mattingly and Stevenson #47$
for the effective coupling "R(s)%0.85 for !s#0.3 GeV de-
termined from e

$
e

% annihilation, especially if one takes into

account the perturbative commensurate scale relation,

"!(m!!
2
)""R(s*) where, for "R"0.85, we have s*

!0.10 m!!
2
according to Eq. &7'. As we will show in more

detail in the next section, this behavior is not consistent with

the coupling having a Landau pole but rather shows that the

physical coupling is much more constant at low scales, sug-

gesting that physical QCD couplings are effectively constant

or ‘‘frozen’’ at low scales.

At the same time, it should be recognized that the behav-

ior of "!(s) in the region s#1 GeV2 is more and more
influenced by nonperturbative effects as the scale is lowered.

Even though the dominant nonperturbative effects cancel in

the sum of the vector and axial-vector contributions as can

be seen by looking at the corresponding effective charges

individually. Looking at "!
V(s), we see that it more or less

vanishes as the integration region moves to the left of the

two-pion peak in the hadronic spectrum. In the same way the

behavior of "!
A(s) at small scales is governed by the single

pion pole.

III. ANALYSIS OF THE INFRARED BEHAVIOR OF !"„s…

In order to be able to analyze the infrared behavior of the

effective coupling "!(s) in more detail, we will compare

with &a' the fixed-order perturbative evolution of the "!(s)

coupling on the one hand, and &b' with the evolution of cou-
plings that have nonperturbative or all-order resummations

included in their definition. For the latter case, many differ-

ent schemes have been suggested, and we will concentrate on

two of them: the one-loop ‘‘timelike’’ effective coupling

"eff(s) #3–5$, and the modified "̃V coupling calculated from

the static quark potential using perturbative gluon condensate

dynamics #48$.
The perturbative couplings evolve according to the stan-

dard evolution equation

das&s '

d ln s
"%(0as

2&s '%(1as
3&s '%(2as

4&s '%(3as
5&s '% . . . ,

&8'

where as(s)""s(s)/(4)). The first two terms in the ( func-
tion, (0 and (1, are universal at leading twist whereas the
higher order terms are scheme dependent. Currently the (
function is known to four loops ((3) in the MS scheme and
to three loops ((2) in the "! scheme. In the latter case there

also exists an estimate of the four-loop term. For complete-

ness these terms are summarized in the Appendix.

Figure 3 shows a comparison of the experimentally deter-

mined effective charge "!(s) with solutions to the evolution

equation &8' for "! at two-, three-, and four-loop order nor-

malized at m! . It is clear from the figure that the data on

"!(s) does not have the same behavior as the solution of the

&universal' two-loop equation which is singular1 at the scale
s!1 GeV2. However, at three loops the behavior of the per-
turbative solution drastically changes, and instead of diverg-

ing, it freezes to a value "!!2 in the infrared. The reason for
this fundamental change is, of course, the negative sign of

(! ,2 . At the same time, it must be kept in mind that this

result is not perturbatively stable since the evolution of the

coupling is governed by the highest order term. This is illus-

trated by the widely different results obtained for three dif-

ferent values of the unknown four-loop term (! ,3 which are

also shown.2 Still, it may be more than a mere coincidence

that the three-loop solution freezes in the infrared. Recently

it has been argued that "R(s) freezes perturbatively to all

orders #49$. Given the commensurate scale relation &6' this
should also be true perturbatively for "!(s). It is also inter-

esting to note that the central four-loop solution is in good

agreement with the data all the way down to s!1 GeV2.
The one-loop ‘‘timelike’’ effective coupling #3–5$

1The same divergent behavior would also be seen at three-and

four-loop order in the MS scheme where both (2 and (3 are posi-
tive for n f"3.
2The values of (! ,3 used are obtained from the estimate of the four

loop term in the perturbative series of R! , K4
MS"25!50 #30$.

FIG. 3. &Color online' The effective charge "! for nonstrange

hadronic decays of a hypothetical ! lepton with m!!
2 "s compared

to solutions of the fixed order evolution equation &8' for "! at two-,

three-, and four-loop order. Error bands include statistical and sys-

tematic errors.

BRODSKY et al. PHYSICAL REVIEW D 67, 055008 &2003'

055008-4

QCD Effective Coupling from
hadronic τ decay

Menke,Merino,Rathsman,SJB

28
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Conformal symmetry: Template for QCD

• Take conformal symmetry as initial approximation; 
then correct for non-zero beta function and quark 
masses

• Eigensolutions of ERBL evolution equation for 
distribution amplitudes

• Commensurate scale relations: relate observables at 
corresponding scales: Generalized Crewther Relation

• Use  AdS/CFT

29

V. Braun et al; 
 Frishman, Lepage, Sachrajda, sjb
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New Perspectives for QCD from AdS/CFT

• LFWFs:  Fundamental description of hadrons at 
amplitude level

• Holographic Model from AdS/CFT : Confinement at large 
distances and conformal behavior at short distances

• Model for LFWFs, meson and baryon spectra: many 
applications!

• New basis for diagonalizing Light-Front Hamiltonian

• Physics similar to MIT bag model, but covariant. No 
problem with support 0 < x  < 1.

• Quark Interchange dominant force at short distances
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BLM Scale Setting

Use skeleton expansion:
Gardi, Grunberg, Rathsman, sjb

nf  dependent 
coefficient identifies 

quark loop VP 
contribution 

Conformal coefficient - independent of  β = d
d logQ2g(Q2) < 0

β = d
d logQ2g(Q2) > 0

β = d
d logQ2g(Q2) < 0

β = d
d logQ2g(Q2) > 0

This is very important!

This is very important!
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nf  dependent coefficient 
identifies quark loop VP 

contribution 

Conformal coefficient - independent of  β = d
d logQ2g(Q2) < 0

β = d
d logQ2g(Q2) > 0

β = d
d logQ2g(Q2) < 0

β = d
d logQ2g(Q2) > 0

This is very important!

This is very important!
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.

BLM scales for DIS moments
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Similar to PT scheme
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Features of BLM Scale Setting

• All terms associated with nonzero beta function 
summed into running coupling

• Identical procedure in QED

• Resulting series identical to conformal series 

• Renormalon n! growth of PQCD coefficients 
from beta function eliminated!

• In general, BLM scale depends on all invariants

  On The Elimination Of Scale Ambiguities In Perturbative Quantum Chromodynamics.

Phys.Rev.D28:228,1983 Lepage, Mackenzie, sjb
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Kramer & Lampe
Three-Jet Rate

Other Jet Observables:  Rathsman
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µ2
R !

Q2
minQ2

med
Q2

max

µ2
R !

p2
minp2

med
p2
max

xµ = µR√
s

e+e− → γ∗ → 4jets

"+

"−

µ2
R !

Q2
minQ2

med
Q2

max

µ2
R !

p2
minp2

med
p2
max

xµ = µR√
s

e+e− → γ∗ → 4jets

"+

"−

µ2
R !

Q2
minQ2

med
Q2

max

µ2
R !

p2
minp2

med
p2
max

xµ = µR√
s

e+e− → γ∗ → 4jets

"+

"−

µ2
R !

Q2
minQ2

med
Q2

max

µ2
R !

p2
minp2

med
p2
max

xµ = µR√
s

e+e− → γ∗ → 4jets

Q

Q̄

µ2
R !

Q2
minQ2

med
Q2

max

µ2
R !

p2
minp2

med
p2
max

xµ = µR√
s

e+e− → γ∗ → 4jets

Q

Q̄

Example of Multiple BLM Scales
 Angular distributions of massive quarks and leptons close to threshold.
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Example of Multiple BLM Scales
 Angular distributions of massive quarks and leptons close to threshold.
S.J. Brodsky (SLAC) ,  A.H. Hoang (Karlsruhe U., TTP) ,  Johann H. Kuhn (SLAC & Karlsruhe U., TTP) ,  T. 
Teubner (Karlsruhe U., TTP) . SLAC-PUB-6955, SLAC-PUB-95-6955, TTP-95-26, Jul 1995. 13pp. 
Published in Phys.Lett.B359:355-361,1995. 
e-Print Archive: hep-ph/9508274 
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Relate Observables to 
Each Other

• Eliminate intermediate scheme

• No scale ambiguity 

• Transitive!

• Commensurate Scale Relations

• Example: Generalized Crewther Relation
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 Eliminate MSbar, 
Find Amazing Simplification
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Geometric Series in Conformal QCD

Generalized Crewther Relation

Lu, Kataev, Gabadadze, Sjbadd Light-by-Light
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[1 + αR(s∗)
π ][1− αg1(q

2)
π ] = 1

√
s∗ $ 0.52Q

[1 + αR(s∗)
π ][1− αg1(q

2)
π ] = 1

√
s∗ $ 0.52Q

Generalized Crewther Relatio!

Conformal relation true to all orders in 
perturbation theory

No radiative corrections to axial anomaly
Nonconformal terms set relative scales (BLM)

Analytic matching at quark thresholds
No renormalization scale ambiguity!

Lu, Kataev, Gabadadze, Sjb
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Transitivity Property of Renormalization Group

A B

C

A      C C      B A       B identical to 
Relation of observables independent of intermediate scheme C
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Transitivity of the renormalization group im-
plies predictions for a physical observable O
cannot depend on choice of intermediate renor-
malization scheme,

e.g., choice of αMS or αmom.

dO
dµscheme

= 0

Transitivity of the renormalization group im-
plies predictions for a physical observable O
cannot depend on choice of intermediate renor-
malization scheme,

e.g., choice of αMS or αmom.

dO
dµscheme

= 0

Transitivity of the renormalization group im-
plies predictions for a physical observable O
cannot depend on choice of intermediate renor-
malization scheme,

e.g., choice of αMS or αmom.

dO
dµscheme

= 0

not

dO
dµrenormalization

= 0

not

dO
dµrenormalization

= 0
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Translation between schemes at LO

p

Leading Order Commensurate Scales
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Use Physical Scheme to 
Characterize QCD Coupling

• Use Observable to define QCD coupling or Pinch 
Scheme

• Analytic: Smooth behavior as one crosses new 
quark threshold

• New perspective on grand unification
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Conformal symmetry: 
Template for QCD

• Initial approximation to PQCD; then correct for 
non-zero beta function and quark masses

• Commensurate scale relations: relate observables at 
corresponding scales: Generalized Crewther Relation

• Arguments for Infrared fixed-point for αs

• Effective Charges: analytic at quark mass thresholds,  
finite at small momenta

• Eigensolutions of Evolution Equation of distribution 
amplitudes

Alhofer, et al.

50
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Analyticity and Mass Thresholds

MS does not have automatic decoupling of heavy particles

Must define a set of schemes in each desert region and match

)()( )1()(

Q

f

sQ

f

s MM !
"##

• The coupling has discontinuous derivative at the matching point

• At higher orders the coupling itself becomes discontinuous!

• Does not distinguish between spacelike and timelike momenta

“AN ANALYTIC EXTENSION OF THE MS-BAR RENORMALIZATION SCHEME”

S. Brodsky, M. Gill, M. Melles, J. Rathsman.  Phys.Rev.D58:116006,1998 6
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Unification in Physical Schemes

• Smooth analytic threshold behavior 
with automatic decoupling

• More directly reflects the unification of 
the forces 

• Higher “unification” scale than usual

19
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General Structure of the 

Three-Gluon Vertex

3 index tensor            built out of          and          

with 
321

ˆ
!!!" !#g 321

,, ppp

0
321
$%% ppp

“THE FORM-FACTORS OF THE GAUGE-INVARIANT THREE-GLUON VERTEX”

M.B. and Stanley J. Brodsky.  hep-ph/0602199. Submitted to PRD

1
p

3
p2

p
3

!
2

!

1
!

$"
321

ˆ
!!!

14 basis tensors and form factors
22
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Binger, sjb

Full calculation, 
general masses, spin
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13

The Pinch Technique
(Cornwall, Papavassiliou)

Gauge-invariant gluon self-energy!

Gauge-dependent

++(2)PT =

self!energy!like projection

self!energy!like projection

)()(),( 11 kSpSkpVq !!
!"#

q V

Natural generalization of QED charge

!−

< 0|Gµν(x)Gστ(0)|0 >

Gµν = ∂µAν − ∂νAµ + [Aµ, Aν]

α(t) = α(0)
1−Π(t)

α(t) = α(t0)
1−Π(t,t0)

Π(t, t0) = Π(t)−Π(t0)
1−Π(t0)

!−

< 0|Gµν(x)Gστ(0)|0 >

Gµν = ∂µAν − ∂νAµ + ig[Aµ, Aν]

α(t) = α(0)
1−Π(t)

α(t) = α(t0)
1−Π(t,t0)

Π(t, t0) = Π(t)−Π(t0)
1−Π(t0)
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Pinch Scheme (PT)

• J. M. Cornwall, Phys. Rev. D  26, 345 (1982)

• Equivalent to Background Field Method in Feynman guage

• Effective Lagrangian Scheme of Kennedy & Lynn

• Rearrange Feynman diagrams to satisfy Ward Identities

• Longitudinal momenta from triple-gluon coupling, etc. hit 
vertices which cancel (“pinch”) propagators

• Two-point function: Uniqueness, analyticity, unitarity, optical 
theorem

• Defines analytic coupling with smooth threshold behavior
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self!energy!like

projection

self!energy!like

projection

self!energy!like

projection

Figure 3: Pinch-technique for QCD at 1 loop. The unique gluonic self-energy-
like projection of the vertex and box graphs yield terms which must be added to the
conventional self-energy to get the PT effective charge.

where ηPT−DRED
p ( Q

mp
) = ηp are the constants given in Table I for massive fields and

ηg = 64/33 for massless spin 1 fields9. The fact that these ηO
p (Q/m) functions are

constants is what makes the PT observable the most simple and natural choice for
defining an effective charge scheme. More general physical effective charge schemes
(see Eqs.(8,9,10)) have more complicated running due to the ηO

p (Q/mp) terms. The
calculation of α̃(Q) has been performed using dimensional reduction (DRED), rather

9We will use ′W ′ or ′1′ subscripts to denote massive spin 1 fields and a ′g′ subscript for massless
spin fields. The constants 64/33 and 40/21 are related straightforwardly. In general, for a massive
gauge boson W in the representation R of group G that is being considered and representations R′

in additional group factors G′, we have

βW =
11

3
C(R)d(R′) − 1

6
C(R)d(R′) =

7

2
C(R)d(R′) (20)

and

ηW =
1

βW

(
11

3
C(R)d(R′)

(64

33

)
− 1

6
C(R)d(R′)

(8

3

))
=

40

21
. (21)

13

Pinch Scheme -- Effective Charge

!−

< 0|Gµν(x)Gστ(0)|0 >

Gµν = ∂µAν − ∂νAµ + [Aµ, Aν]

α(t) = α(0)
1−Π(t)

α(t) = α(t0)
1−Π(t,t0)

Π(t, t0) = Π(t)−Π(t0)
1−Π(t0)

!−

< 0|Gµν(x)Gστ(0)|0 >

Gµν = ∂µAν − ∂νAµ + ig[Aµ, Aν]

α(t) = α(0)
1−Π(t)

α(t) = α(t0)
1−Π(t,t0)

Π(t, t0) = Π(t)−Π(t0)
1−Π(t0)
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3 Gluon Vertex In 

Scattering Amplitudes

Pinch-Technique approach : 

fully dress with gauge-invariant Green’s functions

(A)
+ perms

(B)

35
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The Gauge Invariant 

Three Gluon Vertex
Cornwall and Papavassiliou performed 

the PT construction :

The “pinched” parts are added 

to the “regular” 3 gluon vertex

21

PT = + pinched

parts

Later shown to = BFMFG

Integrals were not evaluated…

gauge

dependent

gauge

invariant
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Multi-scale Renormalization of 

the Three-Gluon Vertex

36

)( 2

1pg

gauge-invariant 

subset of rad. cor.

coupling at each vertex 

absorb the rad. cor. 

)( 2

2pg )( 2

3pg

1p

2p

3p

),,(~ 2

3

2

2

2

1 pppg
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General Structure of the 

Three-Gluon Vertex

Simple (QED-like) Ward ID

! " ! " )(ˆ1 )(  )(ˆ1 )(),,(ˆ
11223213 2121321

3 pptpptpppp #$%#$&' (((((((

(

)(()() ppgppt %& 2)(where

13 nonzero form factorsOne form factor always = 0

(not obvious)

23
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3 Gluon Vertex In 

Scattering Amplitudes

! "hHtAtAtAg

cgbgagverticescolorAmplitude

bare
ˆˆˆˆ)1(                   

)()()(

00 ####$

$$%

&&##

Other tensors and form factors

Tree level tensor structure :

132321213 )()()(ˆ
1332210

'''''''''
gppgppgppt &#&#&%

),,(~ cbag

2

3

2

2

2

1

pc

pb

pa

%

%

%

Form factors                                        depend on theseHAAA  , , ,0 &#

37
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Convenient Tensor Bases

24

Physical      Basis

• Written in terms of linear 
combinations of momenta

called “+” and “-” momenta
such that

by elementary Ward IDs

• Maximum # of FF’s vanish 
when in a physical matrix 
element  

• Good for real scattering 
problems

LT Basis

• Longitudinal (L) FF’s :

• Transverse (T) FF’s :

• Good for theoretical work and 
solving Ward ID

!

0    ),,(ˆ
321

)(

3 321

3 "#$ pppp
L

%%%

%

0    ),,(ˆ
321

)(

3 321

3 "#$ pppp
T

%%%

%

Complementary in their relation to current conservation (Ward ID’s)

0"$& extVp
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Form Factors : Supersymmetric

Relations

• Any form factor can be decomposed :

!! ""#
s

Ss

f

QfGA FTFTFCF 22

G = gluons

Q = quarks

S = scalars
sfA TTC  , , are color factors

• Individually,                     are complicated…SQG FFF ,,

29
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Form Factors : Supersymmetric

Relations (Massless)

GQQG FF
d

F !
"

#$
2

2
)(

….but certain linear sums are simple : 

0    for 7 of the 13 FF’s

(in physical basis)

Simple N=1 SUSY contribution in d=4

0)10(4 %"!! SQG FdFF For all FF’s !!

N=4 SUSY in d=4 gives 0 

These are off-shell generalizations of relations found in 

SUSY scattering amplitudes by

Z. Bern, L.J. Dixon, D.C. Dunbar, and D.A. Kosower (NPB 425,435) 30

Vanishing contribution of the N=4 supermutiplet in  d=4 dimensions

±

µ2
R !

Q2
minQ2

med
Q2

max

µ2
R !

p2
minp2

med
p2
max

xµ = µR√
s

e+e− → γ∗ → 4jets

Q
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Form Factors : Consequences of 

Supersymmetric Relations

For any SUSY each of the 13 FF’s are

even though only one FF is directly related 

to coupling renormalization

0!"

##
$

$
$

$
$

$

$
%

f

s

f

fA T
d

T
d

d
C

d

d
d

1

1

1

)2(2

)1(2

67
)(0!

sfA TTC
3

1

3

4

3

11
$$

d = 4

Contributions of gluons, quarks, and 

scalars have same functional form 33
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Form Factors Without 

Supersymmetry (in d=4)

Gsfc FNNNF !
"

#
$
%

& '()
2

1
0)( )* FQG

Seven FF’s have 

!!
"

#
$$
%

&

(
(

(
(

(+ ,,
s

s

f

fc T
d

T
d

d
NA

)2(3

2

)2(3

)83(2

3

11
0

- .fc NNB (+ 40 0)(0 )SB

FF of tree level tensor

Another FF has 

0
3

1

3

4

3

11
/)!

"

#
$
%

& (( sfc TTN
d = 4

Form Factors Without 

Supersymmetry (in d=4)

Gsfc FNNNF !
"

#
$
%

& '()
2

1
0)( )* FQG

Seven FF’s have 

!!
"

#
$$
%

&

(
(

(
(

(+ ,,
s

s

f

fc T
d

T
d

d
NA

)2(3

2

)2(3

)83(2

3

11
0

- .fc NNB (+ 40 0)(0 )SB

FF of tree level tensor

Another FF has 

0
3

1

3

4

3

11
/)!

"

#
$
%

& (( sfc TTN
d = 4
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Form Factors : Supersymmetric

Relations (Massive)
Equal masses for massive gauge bosons (MG), quarks (MQ), and scalars (MS)

0)9(4 !"## MSMQMG FdFF

Massive gauge boson (MG) inside of loop might be the

X and Y gauge bosons of SU(5), for example

1 d.o.f. “eaten” by MG

External gluons remain unbroken and massless

MGMQMQG FF
d

F #
"

$%
2

1
)( is simple 

31
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Summary of Supersymmetric

Relations

0)9(4 !"## MSMQMG FdFF0)10(4 !"## SQG FdFF

Massless Massive

GQQG FF
d

F #
"

$%
2

2
)(

= simple

MGMQMQG FF
d

F #
"

$%
2

1
)(

= simple

32
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3 Scale Effective Charge

!
"

4

),,(~
),,(~

2 cbag
cba #

(First suggested by H.J. Lu)

$
%

&
'
(

) ***+,+-
.

/
!""

1
),,(

4

11

),,(~
1

0 cbaL
cba bare

0 1,(),,(
4

1

),,(~
1

),,(~
1

00

000

aLcbaL
cbacba

,+- /
!""

L(a,b,c) = 3-scale “log-like” function

), 00 cb

L(a,a,a) = log(a)
38
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3 Scale Log-Like Function

! " #$%$$
&

' ),,(logloglog
1

),,( cbaJabccbacbaL ()*(*)

39

! "

! "

! "acbpp

cbapp

bacpp

%%'+'

%%'+'

%%'+'

2

1

2

1

2

1

13

32

21

)

(

*

)*()*( $$'&

125.3,#

Master triangle integral can be 

written in terms of Clausen functions

! "-- ieLiCl 22 Im)( '

2

3

2

2

2

1

pc

pb

pa

'

'

'
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3 Scale Effective Scale

! " ),,(Im),,(log),,( 2 cbaLicbaQcbaL eff #$

Governs strength of the three-gluon vertex

% &),,(),,(
4

1

),,(~
1

),,(~
1

0000

000

cbaLcbaL
cbacba

'#( )
*++

),,(~ˆ
321

cba+,,, -.

Generalization of the BLM scale to the 3-gluon vetex
40

Generalization of BLM Scale to 3-Gluon Vertex
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Properties of the Effective Scale

),,(),,( 22 cbaQcbaQ effeff !!!"

),,(||),,( 22 cbaQcbaQ effeff #### "

||),,(2 aaaaQeff "

||54.5),,(2 aaaaQeff $!!

||||for         ||08.3),,(2 caccaaQeff %%$

||||for         ||8.22),,(2 caccaaQeff %%$!

|||,|||for         
||

||
8.22),,(2 cba
a

bc
cbaQeff %%$

41

Surprising dependence on Invariants
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General Structure of the 

Three-Gluon Vertex

3 index tensor            built out of          and          

with 
321

ˆ
!!!" !#g 321

,, ppp

0
321
$%% ppp

“THE FORM-FACTORS OF THE GAUGE-INVARIANT THREE-GLUON VERTEX”

M.B. and Stanley J. Brodsky.  hep-ph/0602199. Submitted to PRD

1
p

3
p2

p
3

!
2

!

1
!

$"
321

ˆ
!!!

14 basis tensors and form factors
22

µ2
R !

Q2
minQ2

med
Q2

max

µ2
R !

p2
minp2

med
p2
max

!+

!−

< 0|Gµν(x)Gστ(0)|0 >

Gµν = ∂µAν − ∂νAµ + ig[Aµ, Aν]

H. J. Lu
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The Effective Scale

! "2222
,GeV 10 ,GeV 10 pQeff ! "2222

,GeV 10 ,GeV 10 pQeff ##

42
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The Effective Scale

! "2222
, ,GeV 10 ppQeff ! "2222

,,GeV 10 ppQeff #

43



 
 Stan Brodsky,  SLAC

UCLA  February 13, 2007
 Renormalization Scale Setting

76

44

The Effective Scale

),,1(2 yxQeff
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Mass Effects

Calculated for all form factors

SUSY relations 0)9(4 !"## MSMQMG FdFF

FF of tree level tensor structure Effective Charge

$
%

&
'
(

)
222

,,
M

c

M

b

M

a
LMQMassive “log-like” function :

46

|||,||,|  for     125.5,, 2

222
cbaM

M

c

M

b

M

a
LMQ **+$

%

&
'
(

)

|||,||,|  for     log),,(,, 22

222
cbaMMcbaL

M

c

M

b

M

a
LMQ ,,"+$

%

&
'
(

)
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Massive Log-Like Function

! "

#
$

%
&
'

( )
)*

+
)*

+
)*

+

,+)*+*+*
-

.#
$

%
&
'

(

),,(
2)(2)(2)(

2                                   

),,()()()(
1

,,

2

222

cbaJ
c

c

b

b

a

a
M

cbaJabccba
M

c

M

b

M

a
L

M

MMQ /01/10

47

.* )(a

! "
! "
! " 2ivvv

vv

vv

))

))

))

1

11

11

tanh2

tan2

tanh2

2

2

4

40

0

Ma

Ma

a

3

44

4

for

1
4

           
4

1
22

).).
a

M
v

a

M
v

Massive Master 

Triangle Integral

(very complicated)
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48

Symmetric Spacelike

!!
"

#
$$
%

&
'''

2

2

2

2

2

2

,,
M

Q

M

Q

M

Q
LMQ

!!
"

#
$$
%

&
2

2

log
M

Q
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Effective Number of Flavors

!
"

#
$
%

&
'(!

"

#
$
%

&
2222222

,,
log

,,
M

c

M

b

M

a
L

Md

d

M

c

M

b

M

a
N MQF

!!
"

#
$$
%

&
'''

2

2

2

2

2

2

,,
M

Q

M

Q

M

Q
NF 3/5

2

2

2

2

2/122

2

1

1
               

log

e
Q

M

M

Q
L

Md

d

M

Q
nf

)

*

!!
"

#
$$
%

&
'(!!

"

#
$$
%

&

51
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Symmetric Timelike

49

Re

Im

!
"

#
$
%

&
222

,,
M

a

M

a

M

a
LMQ

Singularities: anomalous thresholds
Related to three-beam scattering?
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Symmetric Mixed Signature

!
"

#
$
%

&
'

222
,,
M

a

M

a

M

a
LMQ

Re

Im

50

Singularities: anomalous thresholds Related to three-beam scattering?
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52

• Preliminary calculation 
using (massless) results 
for tree level form factor

• Very low effective scale         

much larger cross 
section than         with 
scale 

• Future : repeat analysis 
using the full mass-
dependent results and 
include all form factors

crossed++=

= 0
jet

jet

p
T

T

p

proton

proton

C

C

= 0

where

MS

QQQR MM or    !"

Heavy Quark Hadro-production

Q

Q

Expect that this approach accounts for most of the one-loop corrections
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Use Physical Scheme to 
Characterize QCD Coupling

• Use Observable to define QCD coupling or Pinch 
Scheme

• Analytic: Smooth behavior as one crosses new 
quark threshold

• New perspective on grand unification

Binger, Sjb 
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Unification in Physical Schemes

! "###$%& ' )/(
4

)(ˆ 22

)(

)(

pps

p

p

i
i

i mQLQ (
)

*
)(ˆ)(ˆ1

)(
)(

0

0

QQ

Q
Q

ii

i
i

&+&$
%

*
* i=1,2,3

)/log( 22

)( pps mQeL p $,
-

40/21 5/3, 8/3,%p-

For spin s(p) = 0, !, and 1

“log-like” function:

“PHYSICAL RENORMALIZATION SCHEMES AND GRAND UNIFICATION”

M.B. and Stanley J. Brodsky. Phys.Rev.D69:095007,2004

Elegant and natural formalism for all threshold effects

(Automatically included) 17
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1

1

!
"

1

2

!
"

1

3

!
"

18

Asymptotic unification of 
strong, electromagnetic, and 

weak forces in analytic 
pinch scheme

QED

QCD

Binger, sjb
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Figure 6: Asymptotic Unification. The solid lines are the analytic PT effective
couplings, while the dashed lines are the DR couplings. For illustrative purposes,
α3(MZ) has been chosen so that unification occurs at a finite scale for DR and
asymptotically for the PT couplings. Here MSUSY = 200GeV is the mass of all light
superpartners except the wino and gluino which have values 1

2mg̃ = MSUSY = 2mw̃.
For illustrative purposes, we use SU(5).

and

δH
i =

∑
h∈H

1

4π
β(h)

i log
m2

h

M2
X

. (32)

The exact 1-loop analytic light threshold corrections are contained in ∆L
i , while the

heavy threshold splittings are contained in δH
i , with some arbitrarily chosen heavy

mass MX which is conveniently taken to be the mass of heavy gauge bosons.
It is useful to verify that predictions for lX and α3(MZ) are invariant under the

choice of physical renormalization scheme. In performing the calculation, one must
use the fact that the ηO

p functions do not depend on the gauge group or representation
of p, only the spin. These are necessary (but not sufficient) conditions for the sum
rule in Eq.(11). This scheme equivalence does not extend to unphysical schemes such
as DR, though the errors are quantifiable.

Due to the physical renormalization scheme invariance, we may choose the simplest

21

Binger, sjb
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γ∗

e+e− → "V jet X

Infamous J/ψ → ρπ decay:

Violates hadron helicity conservation

ψ′ → ρπ and ψ′′ → ρπ suppressed

Is there an Υ → ρπ puzzle?

εµνστ εµV pν
V pσ

jet qτ

e+

e- kg

c

c

c

c

c

Production of four heavy-quark jets

Defines analytic QCD effective charge

  time-like values not same as space-like 

coupling similar to  “pinch” scheme

complex for time-like argument

M. Binger, sjb

T (γ∗ → QQ̄QQ̄) ∝ α4Q(k2
g )

dσ
dz ∝ (1− z)9

FH(s) ∝ [1s ]
nH−1

Sz = 0

Tseagull = F (M2
HH̄

)

e+e− → BcBc

e+e− → DsDs

T (γ∗ → QQ̄QQ̄) ∝ α4Q(k2
g )

dσ
dz ∝ (1− z)9

FH(s) ∝ [1s ]
nH−1

Sz = 0

Tseagull = F (M2
HH̄

)

e+e− → BcBc

e+e− → DsDs



 
 Stan Brodsky,  SLAC

UCLA  February 13, 2007
 Renormalization Scale Setting

89

Future Directions

Gauge-invariant four gluon vertex

),,,( 43214 ppppL

),,,( 4321

2

 4 ppppQ eff

PT

Hundreds of form factors!

57
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The Gauge-Invariant  Family of 

Green’s Functions
Ward ID’s

PT

PT

PT
PT

PT

Etc…

58
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PT Self-Energy at Two-Loops

PT

• Finite terms give relation between

• 3-loop beta function 

• 2-loop longitudinal form factors of the 

three-gluon vertex (via the Ward ID)

• N=4 Supersymmetry gives a non-zero 

but UV finite contribution 

 )(  and  )( 22
QQ

SMPT !!

55
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54

PT Self-Energy at Two-Loops

F1, S1, G1, H1

S5 S6 S7

S2 S3 S4

F4F3F2

RF2, RS2, RGH2RF1, RS1, RGH1H7

H6H5H4

H3H2G5

G4G3G2

Y4Y3

Y2Y1

Papavassiliou showed :

BFMPT =

1!Q"
B B
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Future Directions

• Implement in Monte Carlo generator

• Gauge-invariant Standard Model 

triple gauge boson vertices

• Schwinger-Dyson Equations

59
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Summary and Future

• Multi-scale analytic renormalization 

based on physical, gauge-invariant

Green’s functions

• Optimal improvement of perturbation 

theory with no scale-ambiguity since 

physical kinematic invariants are the 

arguments of the (multi-scale) couplings 

60
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•  Guess arbitrary renormalization scale and take arbitrary 
range.    Wrong for QED and Precision Electroweak.  

• Prediction depends on choice of renormalization scheme

•  Variation of result with respect to renormalization scale 
only sensitive to nonconformal terms; no information on 
genuine (conformal) higher order terms

• FAC and PMS give unphysical results.

• Renormalization scale not arbitrary:  Analytic constraint 
from flavor thresholds

Conventional renormalization scale-setting method :
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Features of BLM Scale Setting

• All terms associated with nonzero beta function summed into running coupling

• BLM Scale Q* sets the number of active flavors

• Only nf dependence required to determine renormalization scale at NLO

• Result is scheme independent: Q* has exactly the correct dependence to 
compensate for change of scheme

• Correct Abelian limit

• Resulting series identical to conformal series! 

• Renormalon n! growth of PQCD coefficients from beta function eliminated!

• In general, BLM scale depends on all invariants

  On The Elimination Of Scale Ambiguities In Perturbative Quantum Chromodynamics.

Phys.Rev.D28:228,1983 Lepage, Mackenzie, sjb
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Use BLM!

• Satisfies Transitivity,  all aspects of Renormalization Group; scheme 
independent

• Analytic at Flavor Thresholds

• Preserves Underlying Conformal Template

• Physical Interpretation of Scales; Multiple Scales

• Correct Abelian Limit (NC =0) 

• Eliminates unnecessary source of imprecision of PQCD predictions

• Commensurate Scale Relations:  Fundamental Tests of QCD free of 
renormalization scale and scheme ambiguities

• BLM used in many applications, QED, LGTH, BFKL, ...
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On Renormalons and the 

Structure of Perturbation Theory

Investigate the relation between : 
1. Renormalons

2. BLM Scale Fixing

3. Effective Charges Running Inside of Loops

Higher order corrections to the quark propagatorLaboratory :

(e) (f)(d)

(c)(b)(a)

= + +

+ 3-loops

(Gray, Broadhurst, Grafe, Schilcher and Chetyrkin, Steinhauser)

Relation between quark pole mass        massMS 69
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On Renormalons and the 

Structure of Perturbation Theory

BLM Methods

• Predicts 3-loop term with an accuracy of 3-4% 

• Conformal term is very small

Not associated with running coupling 

Expect that almost all of the loop corrections 

are “associated with” the running coupling 

Seems to be very much in contrast to what we found using the RIA

Perhaps the success of BLM is not tied to a hypothetical 

skeleton expansion with running charges inside of loops 71
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Factorization scale

• Arbitrary separation of soft and hard physics

• Dependence on factorization scale not associated 
with beta function - present even in conformal 
theory

• Keep factorization scale separate from 
renormalization scale

• Residual dependence when one works in fixed 
order in  perturbation theory.

100

not

dO
dµrenormalization

= 0

µfactorization != µrenormalization

dO
dµfactorization

= 0

at all orders

not

dO
dµrenormalization

= 0

µfactorization != µrenormalization

dO
dµfactorization

= 0

at all orders


