How to measure the Higgs Width

Evidence of off-shell Higgs boson production from ZZ leptonic decay channels and constraints on its total width with the ATLAS detector

> Simon Grewe MPP LHC Seminar 2023

Based on :[2304.01532] Talk inspired by: LHC talk by Rafael Coelho Lopes De Sa [link]

Higgs Boson

- Discovered in 2012 by the ATLAS and CMS collaborations
- "Newest" Particle in the Standard model
- Study its property
 - Mass √
 - Spin & CP 🗸
 - Couplings √
 - Width ?

- The decay width of a particle can be extracted by measuring the line-shape of the invariant mass distribution e.g m₄₁ or m_{yy}
- But the predicted SM value for the Higgs boson width is : 4.07 MeV
 - Higgs boson width is 3 orders of magnitude smaller than the experimental resolution & is thus not directly measurable !
- Still this can be done yielding limits of the Higgs mass Γ<2.6 GeV [1406.3827]
- Measurment of the Higgs lifetime Γ>3.5 e-9 MeV [1507.06656]

Off-shell production of the Higgs boson

How to actually measure the Higgs width

- The Higgs boson with can be calculated measuring the ratio of offshell and on-shell Higgs production
 - Assuming that the on and off-shell coupling evolve like predicted by the SM
 - No additional new particles enter the Higgs production/decay

$$\mu_{\text{on-shell}} = \frac{\sigma_{\text{on-shell}}^{pp \to H \to ZZ}}{\sigma_{\text{on-shell,SM}}^{pp \to H \to ZZ}} = \frac{\kappa_{g,\text{on-shell}}^2 \kappa_{V,\text{on-shell}}^2}{\Gamma_H / \Gamma_H^{\text{SM}}}$$

$$\mu_{\text{off-shell}} = \frac{\sigma_{\text{off-shell}}^{pp \to H \to ZZ}}{\sigma_{\text{off-shell},SM}^{pp \to H \to ZZ}} = \kappa_{g,\text{off-shell}}^2 \kappa_{V,\text{off-shell}}^2$$

Measurment of the off-Shell Higgs production

- Target the Higgs to four lepton final state $h \rightarrow ZZ \rightarrow 4I/2I2v$
- Consider both vector-boson-fusion and gluon-fusion-production
- Large interference between the Signal and Background

VBF production

Interfering Background

Event Selection

 $ZZ \rightarrow 4I$

- 4 leptons
 - 2 opposite singe same flavor pairs
- Leading lepton $p_T > 20,15,10$ GeV
- m_{4l}> 180 GeV
- 50 GeV< m12<106 GeV
- 50-(190-m_{4|}/2)<m34<115 GeV

 $ZZ \rightarrow 2|2v$

- 2 leptons
 - Same flavor opposite charged
 - Leading lepton $p_T > 30,20$ GeV
 - 76>m_{II}<106 GeV
 - E_T^{miss} > 120 GeV
 - $\Delta R_{||} < 1.8$
 - b-jet veto
 - E_T^{miss} significance >10
 - $\Delta \phi(Z, E_T^{miss}) > 2.5$

Analysis Strategy-Signal Regions

Goal: be sensitive to VBF production and ggF production

ggF Signal regions

m_{4II}>220 GeV Failing Mixed or EW SR requirements

mixed Signal regions $m_{4||}$ >220 GeV Exactly forward1 jet p_{τ} jet > 30 GeV $\eta(j)$ >2.2

EW-Signal regions m_{4l}>220 GeV N_{Jets} ≥2 p_T jet > 30 GeV Δη(jj)>4

Analysis strategy in the 4l channel

- Train a Neural Network to differentiate between signal(s), interfering(B) background and non-interfering background(NI)
- Have separate NNs for ggF production (also used in the mixed SRs) and VBF production
 - Trained on the full 4-lepton kinematic +(2 jet kinematic)& the LO ME
- NN mainly focuses on the spin-parity nature of the Higgs Boson
- Construct the final discriminant:

$$O_{\rm NN} = \log_{10} \left(\frac{P_{\rm S}}{P_{\rm B} + P_{\rm NI}} \right)$$

Distributions in the 4I SRs

Events

Analysis Strategy in the 2l2v channel

• Use the transverse mass as the discriminating variable:

$$(m_T^{ZZ})^2 = \left[\sqrt{m_Z^2 + \left(p_T^{\ell\ell}\right)^2} + \sqrt{m_Z^2 + \left(E_T^{\text{miss}}\right)^2}\right]^2 - \left|p_T^{\ell\ell} + \overline{E_T^{\text{miss}}}\right|^2$$

• The signal is enhanced wrt. the background for high values of m_T^{ZZ}

Distributions in the 2 lepton SRs

Background normalization and Control regions

- The normalization of the dominant background are determined from data while the shape is determined from MC (free floating)
- Have dedicated Control regions for each background
- CRs targeting $qq \rightarrow ZZ$ are defined in the 4l final state by 180 <m_{4l}<220
 - Further split by jet multiplicity: 0,1 2+ jets
- Further CRs are defined in the 2l2v final state
 - WZ CR: require a third lepton with p_T >20 GeV

Systematic uncertainties

• Measurment is dominated by modeling uncertainties

Impact of the systematic uncertainties:

Systematic Uncertainty Fixed	$\mu_{\text{off-shell}}$ value at which $-2\ln\lambda(\mu_{\text{off-shell}}) = 4$	
Parton shower uncertainty for $gg \rightarrow ZZ$ (normalisation)	2.26	
Parton shower uncertainty for $gg \rightarrow ZZ$ (shape)	2.29	
NLO EW uncertainty for $qq \rightarrow ZZ$	2.27	
NLO QCD uncertainty for $gg \rightarrow ZZ$	2.29	
Parton shower uncertainty for $qq \rightarrow ZZ$ (shape)	2.29	
Jet energy scale and resolution uncertainty	2.26	
None	2.30	

Dominant uncertainties on the individual backgrounds

	U			
Process	Uncertainty	Final State	Value (%)	
ggF Signal Region				
$qq \rightarrow ZZ$	QCD Scale	$2\ell 2\nu$	4-40	
$qq \rightarrow ZZ + 2j$	QCD Scale	4ℓ	21-28	
$qq \rightarrow ZZ + 2j$	QCD Scale	$2\ell 2\nu$	22-37	
$qq \rightarrow ZZ + 2j$	Parton Shower	$2\ell 2\nu$	1-67	
$gg \to H^* \to ZZ$	Parton Shower	4ℓ	27	
$gg \to H^* \to ZZ$	Parton Shower	$2\ell 2\nu$	8-45	
$gg \rightarrow ZZ$	Parton Shower	4ℓ	38	
$gg \rightarrow ZZ$	Parton Shower	$2\ell 2\nu$	6-43	
WZ + 0j	QCD Scale	$2\ell 2\nu$	1-54	
1-jet Signal Region				
$gg \rightarrow H^* \rightarrow ZZ$	Parton Shower	4ℓ	27	
$gg \to H^* \to ZZ$	QCD Scale	$2\ell 2\nu$	13-18	
$gg \rightarrow ZZ$	Parton Shower	4ℓ	38	
$gg \rightarrow ZZ$	QCD Scale	$2\ell 2\nu$	18-20	
$qq \to ZZ(\mathrm{EW})$	QCD Scale	$2\ell 2\nu$	7-18	
2-jet Signal Region				
$qq \rightarrow ZZ + 2j$	QCD Scale	4ℓ	18-26	
$qq \rightarrow ZZ + 2j$	QCD Scale	$2\ell 2\nu$	8-32	
$gg \to H^* \to ZZ$	Parton Shower	4ℓ	27	
$gg \rightarrow ZZ$	Parton Shower	4ℓ	38	
$gg \rightarrow ZZ$	QCD Scale	$2\ell 2\nu$	18-20	
WZ + 2j	QCD Scale	$2\ell 2\nu$	20-22	
$qq \rightarrow ZZ$ Control Regions				
$qq \rightarrow ZZ + 2j$	QCD Scale	4ℓ	26	
Three-lepton Control Regions				
WZ + 2j	QCD Scale	$2\ell 2\nu$	28	

Fit

- Perform a simultaneous Likelihood fit in the 6 SRs and 8 CRs
- Fit the signal strength and the normalization of the 8 backgrounds
- Because of the large interference both the signal and interfering background have to be considered

• N(gg
$$\rightarrow$$
 ZZ): = $(\mu_{\text{off-shell}}^{\text{ggF}} - \sqrt{\mu_{\text{off-shell}}^{\text{ggF}}}) \cdot n_{\text{S}}^{\text{ggF}}(\theta) + \sqrt{\mu_{\text{off-shell}}^{\text{ggF}}} \cdot n_{\text{SBI}}^{\text{ggF}}(\theta) + (1 - \sqrt{\mu_{\text{off-shell}}^{\text{ggF}}}) \cdot n_{\text{B}}^{\text{ggF}}(\theta)$

Normalization factor	Fitted value
$\mu_{ m qqZZ}$	1.11 ± 0.07
μ^{1j}_{qqZZ}	0.90 ± 0.10
$\mu_{ m qqZZ}^{2j}$	0.88 ± 0.26
$\mu_{3\ell}$	1.06 ± 0.03
$\mu^{1j}_{3\ell}$	0.92 ± 0.10
$\mu^{2j}_{3\ell}$	0.75 ± 0.19
$\mu_{ m Zj}$	0.90 ± 0.19
$\mu_{e\mu}$	1.08 ± 0.09

Results

- The observed signal strength is 1.09 +- 0.6
- The background only hypothesis is rejected at 3.2 sigma
- Assuming:

 $\mu_{off-shell} = \kappa_{g,off-shell}^2 \kappa_{V,off-shell}^2 = \kappa_V^4$

- $\mu_{off-shell}{}^{gFF} = K_{g,off-shell}{}^2 K_{V,off-shell}{}^2$
- $\mu_{\text{off-shell}} = K_{\text{V,off-shell}}^4$

μ^{ggF} off-shell

Determination of the Higgs width

- To determine the Higgs width the off shell production has to be combined with the on-shell production i.e [2004.03447]
- A combined Likelihood is built from the 2 analysis
- Measured ration Γ/Γ_{SM}=1.11±0.7=4.5MeV(±3.3,2.5)

Summary

- While directly not measurable the Higgs boson width can be measured from the off-shell production
- The off-shell Higgs production is measured in $H \rightarrow ZZ \rightarrow 4I$ and $H \rightarrow ZZ \rightarrow 2I2v$ events with the Full Run 2 dataset by ATLAS
- There is evidence for off-shell Higgs boson production. The no-offshell hypothesis is rejected with a observed significance of 3.2σ
- Trough combination with the on-shell Higgs boson measurement the width can be determined: Γ_{Higgs} =4.6 $^{+2.6}_{-2.5}$ MeV