Unlocking the mysteries of dark matter and neutrinos with PandaX

Jianglai Liu

Tsung-Dao Lee Institute and School of Physics and Astronomy Shanghai Jiao Tong University

Proposed by T. D. Lee and founded in 2016, Tsung-Dao Lee Institute (TDLI) is a fundamental research institute in physics dedicated to

- elucidating the origin, evolution, and structure formation of matters, and unraveling its governing law,
- via big science research paradigm.

- Astronomy & Astrophysics
- Particle and Nuclear Physics
- Quantum Science

A New Hub for Global Physicists in Shanghai

Mysterious Content of the Universe

Particle Dark Matter: seeded by Gershtein and Zeldovich, JETP Lett. 4, 120 (1966), who first discussed relic neutrinos

Dark matter direct detection: classical Chadwick experiment

DM landscape: "Too many" exclusions

The big three xenon DM experiments

Neutrinos are Dirac or Majorana?

Neutrinoless double- β decay

Majorana neutrino may be an important link in connecting to matter-antimatter asymmetry in our universe.

0vDBD, if found

- Majorana or Dirac
- Lepton number violation
- Measures effective Majorana mass: relate 0vββ to absolute neutrino mass

$$(T_{1/2}^{0\nu})^{-1} = G^{0\nu}(Q, Z) |M^{0\nu}|^2 \frac{|\langle m_{\beta\beta} \rangle|^2}{m_e^2}$$

Nuclear
matrix
element

Effective Majorana neutrino mass:

$$|\langle m_{\beta\beta} \rangle| = \left| \sum_{i=1}^{3} U_{ei}^{2} m_{ei} \right|$$

$\beta\beta$ isotopes

Isotope	Q-value [MeV]	Natural abudance [%]
⁴⁸ Ca	4.27	0.187
¹⁵⁰ Nd	3.37	5.6
⁹⁶ Zr	3.35	2.8
¹⁰⁰ Mo	3.03	9.8
⁸² Se	3.00	8.7
¹¹⁶ Cd	2.81	7.5
¹³⁰ Te	2.53	34.1
¹³⁶ Xe	2.46	8.86
¹²⁴ Sn	2.29	5.8
⁷⁶ Ge	2.04	7.73
¹¹⁰ Pd	2.02	11.7

¹³⁶Xe

CUORE/CUPID

Bolometer

KamLAND-ZEN Doped LS

LEGEND family HPGe

Dual-phase xenon time projection chamber (TPC)

Detector capability:

- 3D reconstruction and fiducialization
- Good ER/NR rejection
- Calorimeter capable of seeing a couple of photons/electrons

Magic of self-shielding

Material background (gammas/neutrons)

- Cluster @ boundary
- Multi-site
- Energy deep in target without high E cascade in the outskirt further suppressed
- \Rightarrow "self-shielding" if reconstruct vertex

XENON1T demonstrated physics @ MeV

Particle and Astronhysical Xenon observatory

Coll

China Jinping underground Laboratory

中

CJPL-II Project (2014-)

PHYSICS

China supersizes its underground physics lab Planned expansion could pave way for "ultimate dark matter experiment"

he world's deepest physics laboratory is about to become one of its largest. Early next year, workers will start carving four cavernous experiment halls along a tunnel through Jinping Mountain in China's Sichuan province. Once the science at the China Jinping Underground Laboratory (CJPL) is scaled up as well, "it will be a milestone for Chinese physics," says Nigel Smith, director of the underground SNOLAB in Sudbury, Canada.

tory gest. tart ping rovbing tup lese the da. 300k m³ with 8 main halls of 14x14x65 m (4000m³ of CJPL-I).

上海交通大学PandaX暗物质与中微子实验平台

TPC installation

Ultrapure water filling

Timeline of the commissioning run

- Apr. 2, 2018, permission from CJPL management to start construction in B2 hall
- Aug. 19, 2019, infrastructure completed, detector installation in CJPL-II started
- Mar 6, 2020, offline distillation of xenon completed
- May 28, 2020, installation completed
- Nov. 28, 2020 Apr. 16, 2021, commissioning run

Dark matter candidates

- Events uniformly distributed in the FV, expected if dominated by tritium and radon.
- In FV, 1058 candidates, 6 below NR median line (~-1σ downward fluctuation from expected 9.8 evts)

WIMP-nucleon SI exclusion limits

PRL 127, 261802 (2021)

- Exposure: 0.63 tonne•year
- Sensitivity improved from PandaX-II final analysis by 2.6 times (40 GeV/c²)

LZ and XENONnT first results

How dark is dark matter?

State-of-the-art Constraints to the DM EM properties

Spectra with DMFormFactor, Fitzpatrick et al, 2013

nature

Article Published: 17 May 2023

Limits on the luminance of dark matter from xenon recoil data

Going after electrons

- DM could certainly interact directly with electrons
- Bound electrons in the atomic, leading to sizable energy deposition from electron ionization. Essig, Mardon, Volansky, PRD 85, 076007 (2012)

S2-only approach

Tight limits on DM-e scattering

⁸B neutrino floor?

PandaX-4T Search on B8 CEvNS

- To enhance sensitivity ⁸B, need to lower the selection threshold (S1↓, S2↓)
- Key difficulty: accidental background ↑
- Blind analysis: with 0.48 ton-year data, excluding period when we see an increase of noises rates (micro-discharge)

Control of accidental background

- Use "scrambled" real data to predict accidental background
- B8 signal model built on snippets of S1 and S2 from calibration data
- BDT training/selection is entirely blinded
- 17% probability (with ⁸B CEvNS and no WIMP)

Nhit requirement on S1	BDT	Expected BKG (evt)	Expected 8B (evt)	Observed (evt)				
2	Before	62.7	2.3	59				
	After	1.5	1.4	1				
3	Before	0.9	0.4	2				
	After	0.07	0.3	0				

⁸B & low mass WIMP results

- Leading constraint on ⁸B flux using CEvNS
- Can cast constraint on neutrinonucleus interactions
- Assuming nominal ⁸B background, also set tightest low mass WIMP-nucleon SI interaction limit between 5 and 10 GeV/c²
- PRL 130, 021802 (2023)

Going after low energy pp neutrino

Direct measurement of Pb214 shape

Preliminary solar pp + ⁷Be neutrinos

ROI chosen as [24, 144] keV

- Constrained from higher energy fits or dedicated studies:
 - Pb214 (10% constraint)
 - Material (12.5% constraint)
 - ¹³⁶Xe 2nbb (4.6% constraint)
 - ⁸⁵Kr (51% constraint)
- Float:
 - 35 keV single gaussian peak (¹²⁷Xe + ¹²⁴Xe + ¹²⁵I)
 - 65 keV single gaussian peak (¹²⁴Xe + ¹²⁵I)
 - ¹³³Xe (simulated spectrum)

First pp neutrino measurement below 190 keV!

¹³⁶Xe double beta decay

Calibration and energy response

PandaX-4T, precise measurement of 2vDBD

PandaX-4T, precise measurement of 2vDBD

Тор

HPGe

²³⁸U

Fit

Counts

otal

600

500

PandaX-4T, precise measurement of 2vDBD

- ¹³⁶Xe DBD half-life: 2.27 ± 0.03 (stat.) ± 0.10 (syst.) $\times 10^{21}$ year
- First such measurement with natural xenon arXiv:2205.12809, Research vol 2022, 9798721

- Tritium removal
 - xenon distillation, gas flushing, etc
- 2021/11 2022/05: physics run (Run1)
 - 164 days: ~ 1 tonne-year (blinded)
- 2022/09 2023/08: hall construction
 - xenon recuperation
 - detector upgraded
- Expect to resume by the end of 2023

After commissioning

Level of tritium

- Preliminary estimation of tritium level for Run1 by fitting S1 spectrum with S2 blinded
- Extensive tritium measures planned for next run (Run 2)

Preliminary background (Run0+Run1)

Component	Run0: 0.6 tonne-year	Run1: 1.0 tonne-year
Tritium	2.3 ± 0.2 counts/day/tonne	0.4 ± 0.1 counts/day/tonne
Rn	7.1 ± 0.2 uBq/kg	8.7 ± 0.3 uBq/kg
Kr	0.5 ± 0.3 ppt	0.9 ± 0.3 ppt
Neutron	1.0 ± 0.2 events	2.3 ± 0.4 events
Surface	0.10 ± 0.06 events	0.16 ± 0.09 events
AC	work-in-progress	work-in-progress

Future

China starts to call major instrumentation proposals for the 15th 5-year

PandaX-xT

- Continue operate PandaX-4T till end of 2024
- Next: PandaX-xT, general-purpose observatory on dark matter, 0vDBD (¹³⁶Xe), neutrinos, other ultra-rare phenomena
- 47-ton xenon, including 43-ton sensitive volume
- CJPL advantages
 - DM: unique advantage on atmospheric neutrino background (low latitude), 50% of LNGS (PRD 105, 043001, 2022)
 - 0vDBD: Low ¹³⁷Xe background (depth), 1/100 of LNGS (estimated using μ rate)

Advantage of Liquid: staged plan

Neutrino significant background

Low energy: dominated by ²²²Rn, pp neutrino, ¹³⁶Xe (34.2 ton FV)

High energy: dominated by ²²²Rn, ⁸B neutrino, and ²³⁸U in material (8.4 ton FV) Note ¹³⁷Xe (4 min $T_{1/2}$) after muon, key background for LNGS

Scientific potential

Scientific potential

Li, Ramsey-Musolf, Vasquez, PRL 126, 151801 (2021) 51

Scientific potential

Staged development

PandaX Project Timeline	2022 2023	3 2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042
Operation of PandaX-4T, and R&D for the upgrade																				
Project Phase-I: construct and operate PandaX-xT on the basis of PandaX-4T; procure xenon by stages and upgrade detector along the way till 43-ton target, and keep >50% of experimental live time																				
Project Phase-II: with isotopically separated xenon (versatile configurations)																				

Staged development

• Stage 2: Xenon with artificially modified isotopic abundance (AMIA), either via a split of odd and even nuclei, or further enrichment of ¹³⁶Xe, to improve sensitivity to spin-dependence of DM-nucleon interactions and NLDBD

Discovery smoking gun!

Summary

- PandaX-4T is a cutting-edge, multi-ton liquid xenon experiment
- Very rich programs in DM and neutrinos
- Background improvement is demonstrated, and is continuing
- Future: a pragmatic approach with a stage-wise upgrade to PandaX-xT aiming for VERY exciting physics
- Highly welcome collaborators and new theoretical ideas

Thank you!